XXXXporntime

porntime  时间:2021-03-19  阅读:()
δ13CStableIsotopeAnalysisofAtmosphericOxygenatedVolatileOrganicCompoundsbyGasChromatography-IsotopeRatioMassSpectrometryBrianM.
Giebel,*PeterK.
Swart,andDanielD.
RiemerUniversityofMiami,RosenstielSchoolofMarineandAtmosphericScience,4600RickenbackerCauseway,Miami,Florida33149Wepresentanewmethodforanalyzingtheδ13Cisotopiccompositionofseveraloxygenatedvolatileorganiccompounds(OVOCs)fromdirectsourcesandambientatmosphericsamples.
Guidedbytherequirementsforanalysisoftracecomponentsinair,agaschromato-graphisotoperatiomassspectrometer(GC-IRMS)systemwasdevelopedwiththegoalofincreasingsensitivity,reducingdead-volumeandpeakbandbroad-ening,optimizingcombustionandwaterremoval,anddecreasingthesplitratiototheisotoperatiomassspectrometer(IRMS).
Thetechniquereliesonatwo-stagepreconcentrationsystem,alow-volumecapillaryreactorandwatertrap,andabalancedreferencegasdeliverysystem.
Theinstrument'smeasurementpreci-sionis0.
6to2.
9‰(1σ),andresultsindicatethatnegligiblesamplefractionationoccursduringgassam-pling.
Measuredδ13Cvalueshaveaminordependenceonsamplesize;linearityforacetonewas0.
06‰ngC-1andwasbestover1-10ngC.
Sensitivityis10timesgreaterthansimilarinstrumentationdesigns,incor-poratestheuseofadilutedworkingreferencegas(0.
1%CO2),andrequirescollectionof>0.
7ngCtoproduceaccurateandpreciseresults.
Withthisdetec-tionlimit,a1.
0Lsampleofambientairprovidessufcientcarbonforisotopicanalysis.
Emissionsfromvegetationandvehicleexhaustarecomparedandshowcleardifferencesinisotopicsignatures.
AmbientsamplescollectedinmetropolitanMiamiandtheEvergladesNationalParkcanbedifferentiatedandreectmultiplesourcesandsinksaffectingasinglesamplinglocation.
Vehicleexhaustemissionsofetha-nol,andthosecollectedinmetropolitanMiami,haveanomalouslyenrichedδ13Cvaluesrangingfrom-5.
0to-17.
2‰;weattributethisresulttoethanol'soriginfromcornanduseasanadditiveinautomotivefuels.
Oxygenatedvolatileorganiccompounds(OVOCs)suchasmethanol,ethanol,acetaldehyde,andacetonearegasesfoundthroughoutthetropospherethatinuenceatmosphericchemistryinmanyways.
Thesecompoundsactasasourceofradicalsandasinkforthehydroxylradical(OH),participateintroposphericozoneformation,andareprecursorstoformaldehydeandCO.
1MixingratiosforOVOCsaretypicallyatthelowpartsperbillionbyvolume(ppbv)levelanddependonsamplinglocationandseason.
2-5MostatmosphericOVOCmeasurementshavereportedinformationonambientlevels,sourceemissionstrengths,anduxrates,2,3,5-9withtwoindividualOVOCs,methanolandacetone,receivingthemajorityoffocusthusfar.
Methanolisthesecondmostabundantorganicgasintheatmosphereaftermethaneanditsglobalbudgethasbeenstudiedextensively.
3,10-12Emissionsfromvegetationarethesinglelargestsourcetotheatmosphereandareestimatedbetween75-312Tgyear-1.
Othersourcesofmethanolexist,includingfossilfuelcombustion,biomassburning,plantdecay,andinsituatmo-sphericproductionviaoxidationofmethane.
Combined,thesesourcesareestimatedat2‰wereobserved.
Thistestwasperformeddailytoevaluatetheintegrityoftheinstrumentation.
Iftheoffsetswere0.
3-0.
5‰,theconcur-rentdataforthedaywerecorrectedbytheappropriateamount.
Iftheoffsetexceeded0.
5‰,thecapillaryreactorwasreplaced.
DynamicRangeandLinearity.
A6LelectropolishedstainlesssteelbulbwithadiptubeassemblyservedasanexponentialdilutionasktotestthedynamicrangeandlinearityofthemethodandIRMSintheabsenceofcombustion.
Thebulbcontaineda1%CO2mixtureinheliummadefromthesamesubsampledCO2usedintheproductionofworkingreferencegas.
Adiluantowofheliumenteredthesteelbulbthroughthediptubeatarateof125cm3min-1andtheoutowwasplumbedtoRV1.
Thetotalanalysisoccurredovera5.
5hperiodbrokeninto9segmentswiththeintroductionofworkingreferencegas.
Theamountofcarbonreachingtheionsourcewas0.
1-80ng.
Theδ13Cvaluesoverthisrangeareexpressedasadifferenceofthemeasured(andcorrected)exponentiallydilutedCO2fromtheworkingreferencegas'acceptedvalueandaredisplayedinFigure3a.
Ofparticularinterestistheappearanceofapositiveoffset,0.
46‰,fromzero.
Effortsweremadetominimizefractionationsduringthegastransfers,andthegasesweremadefromthesamestock.
Despitethiseffort,theoffsetstillpersisted.
(43)Apel,E.
C.
;Emmons,L.
K.
;Karl,T.
;Flocke,F.
;Hills,A.
J.
;Madronich,S.
;Lee-Taylor,J.
;Fried,A.
;Weibring,P.
;Walega,J.
;Richter,D.
;Tie,X.
;Mauldin,L.
;Campos,T.
;Weinheimer,A.
;Knapp,D.
;Sive,B.
;Kleinman,L.
;Springston,S.
;Zaveri,R.
;Ortega,J.
;Voss,P.
;Blake,D.
;Baker,A.
;Warneke,C.
;Welsh-Bon,D.
;deGouw,J.
;Zheng,J.
;Zhang,R.
;Rudolph,J.
;Junkermann,W.
;Riemer,D.
D.
Atmos.
Chem.
Phys.
2010,10,2353–2375.
Figure2.
RangeofatmosphericOVOCmixingratiosexpectedinlargeportionsofthetroposphereandtheirrelationtocarbontransmittedtotheIRMSionsource.
Theshadedareacorrespondstothemethoddetectionlimit.
EAnalyticalChemistry,Vol.
xxx,No.
xx,MonthXX,XXXXThepositiveoffsetforCO2waslikelyaresultofsmallamountsofambientCO2becomingentrainedinthesystemandtherebyenrichingthemeasuredδ13Cvalue.
Forlargesamplesizesthisappearedtohaveaminimaleffect.
However,theeffectbecamemagniedforsamplesizesbelow1ngC,wheredeviationsupto2‰areobserved.
Thelinearityoverthisrange,determinedbyordinarylinearregression,was0.
01‰ngC-1.
Thissuggeststhatvariationoftheδ13Csignaturewithsamplesizeisnegligibleandrequires10ngCtoinduceachangeof0.
1‰.
Accuracyandprecisionwerebestovertherangeof0.
2to20ngC.
Samplescontainingmorethan20ngCandlessthat0.
2ngCwereenrichedin13C.
LiquidCompoundsandSingle-ComponentGases.
Low-pressuresingle-componentgassamplesenteredRV1atarateof3cm3min-1andwereloopinjectedontotheGC-IRMSwithnocryo-focusingbeforethechromatographiccolumn.
Teninjec-tionsofeachgaswerecomparedtosixinjectionsofworkingreferencegas.
Single-componentgasestestedtheGC-IRMSinstrumentationbycomparisontotheisotopicvaluesobtainedfortherawliquidsontheelementalanalyzer(ANCA).
Thevaluesfortherawliquidsservedasthebasisofallourcomparisons.
Thecalculatedpercentdifferencebetweenthetwomeasurementsrangedbetween-0.
1and4.
8%,andtheresultsarelistedinTable1.
AcetonewassuitabletotestthedynamicrangeandlinearresponseoftheIRMSwiththeaddedstepofcombustion.
Acetonewaschosenastheanalytebecauseitshowedconsistentandexcellentreproducibilityacrossallaspectsofthisstudy.
TheexperimentaldesignwasidenticaltothatoftheCO2experimentdescribedpreviouslybutwithoneexception,theacetonemixturehadastartingcarbonequivalentof0.
1%beforethediluentowofheliumwasadded.
A1%mixtureofacetonewasFigure3.
(A,B)Resultsforexponentiallydiluted(A)CO2and(B)acetonesamples.
δ13CvaluesareexpressedasadifferenceofthedilutedCO2andacetonefromtheacceptedvalueofthe0.
1%workingreferencegasandacetonevalueobtainedontheelementalanalyzer.
Anoffset,oppositeinsignbutalmostequalmagnitude,existsforCO2(0.
5‰)andacetone(-0.
6‰).
ForCO2,thisisthoughttobetheresultofanambientleakwherebyatmosphericCO2entersthesystem.
Foracetone,incompletecombustionwithinthecapillaryreactormaycontributetotheobservednegativeoffset.
Table1.
Tabulatedδ13CValuesforOVOCsUsedinThisWorkaelementalanalyzerliquidcompoundsGC-IRMSsingle-componentgasGC-IRMSlow-pressure7-componentGC-IRMShigh-pressure7-componentpooledGC-IRMSmean±1σ(‰)mean±1σ(‰)95%condence(±‰)%errormean±1σ(‰)95%condence(±‰)%errormean±1σ(‰)95%condence(±‰)%errormean±1σ(‰)95%condence(±‰)%errormethanol–35.
3±0.
1–34.
1±0.
10.
13.
5–33.
0±0.
10.
16.
5–34.
4±2.
82.
12.
5–34.
0±1.
60.
73.
7ethanol–29.
2±0.
2–27.
8±0.
80.
64.
8–26.
2±0.
81.
310.
2–26.
5±0.
50.
49.
2–26.
6±1.
40.
68.
7propanal–32.
8±0.
1–31.
9±0.
20.
12.
7–35.
0±0.
61.
0–6.
9–27.
4±0.
80.
616.
5–30.
5±2.
91.
26.
9acetone–27.
5±0.
2–28.
5±0.
70.
5–3.
7–27.
9±0.
20.
3–1.
4–27.
6±0.
20.
1–0.
4–28.
0±0.
60.
2–1.
7MEK–23.
2±0.
2–23.
5±0.
90.
6–1.
3–25.
5±0.
71.
1–10.
1–22.
5±0.
30.
2–3.
0–23.
5±1.
20.
5–1.
22-pentanone–25.
0±0.
3–26.
1±0.
20.
1–4.
3–33.
7±1.
11.
8–34.
8–28.
4±0.
60.
5–13.
6–28.
6±2.
81.
1–14.
33-pentanone–30.
7±0.
2–30.
7±0.
60.
4–0.
1–34.
3±0.
30.
5–11.
6–32.
7±0.
70.
5–6.
5–32.
3±1.
50.
6–5.
1samplenumbern)3n)10n)4n)9n)23InstrumentVariablesdiluentHeHeN2sampleloopRV1RV1RV2cryo-focusnoyesyescarbonsorbentnonoyeszeroairdilutionnonoyesaAccuracyandprecisionistracedfromtheelementalanalyzerthroughthenaldesignoftheGC-IRMSsystem.
Differentvariablestestedduringeachphasearelisted.
Thesystem'stotalprecisionwascalculatedbetween0.
6and2.
9‰whencomparedtothevaluesobtainedontheelementalanalyzer.
FAnalyticalChemistry,Vol.
xxx,No.
xx,MonthXX,XXXXavoidedfortworeasons.
First,ambientsamplesarenotexpectedtobegreaterthan0.
1%,andsecond,thereismoreconcernforwhathappenstomeasuredisotopicsignaturesassmallersampleconcentrationsareapproached.
TheamountofcarbonreachingtheionsourcewasdeterminedsimilarlytotheCO2testandrangedbetween0.
8and12ng.
Theδ13Cvaluesoverthisrangeareexpressedasadifferenceofthemeasuredandcorrectedexponentiallydilutedacetonefromthevalueobtainedontheelementalanalyzer(Figure3b).
Thelinearityoverthisrange,determinedbyordinarylinearregression,was0.
06‰ngC-1.
Foracetone,thisindicatesthatsamplesizecaninuencemeasuredδ13Candthatachangebetween1and10ngCcaninduceanoticeableshiftof0.
6‰inmeasuredδ13C.
Accuracyandprecisionwerebestovertherangeof0.
2-10ngC.
Alsoworthnotingistheapparentnegativeoffsetforacetone,-0.
56‰,comparedtothepositiveoffsetforCO2,0.
46‰.
Rawdataforbothexperimentswerecorrectedby0.
5‰and0.
4‰foracetoneandCO2,respectively.
However,theoffsetsstillexist.
EntrainmentofambientCO2didnotappeartoaffectacetonebecauseofitsseparationonthechromatographiccolumn.
Thenegativeoffsetforacetonewaslikelyrelatedtoincompletecombustionwithinthecapillaryreactor.
Thermo-dynamicprinciplessupport12Cbeingcombustedbefore13C;thus,ifcombustionwasincomplete,wewouldobservealighterδ13Cvalue.
CalibrantGasAnalyses.
Low-PressureSeven-ComponentGasMixture.
Alow-pressureseven-componentgasmixtureinheliumwasusedpreliminarilytotestchromatographicconditionsintheabsenceofthecarbonsorbentbyusingtheRV1loop(Table1).
Thiswasalogicalstepbetweentheuseofsingle-componentgasesandagravimetricallyprepared,high-pressure,seven-componentcalibrationgasinnitrogen.
Thelow-pressureseven-componentgasmixtureowedthroughtheRV1loopfor5minpriortostartingtheanalysis.
Theowrate(3cm3min-1)wasmaintainedbyMFC(no.
1)upstreamofRV1.
Aftertheinitial5minpurgeperiod,RV1wasmanuallyswitchedandthegaswithintheinjectionloopwasdivertedthroughRV2andcryogenicallyfocusedinliquidnitrogenforanadditional5minbeforeinjectionintothechromatographiccolumn.
Ofparticularnotearethevaluesobtainedfor2-and3-pentanone,whicharedepletedin13Ccomparedtoboththeliquidcompoundsandthesinglecomponentgasmixtures.
Thismayindicateanunknowneffectresultingfromtheanalyticalcolumn.
Thepercenterrorbetweenthismeasurementtechniqueandthatperformedontheelementalanalyzerforthepureliquidcompoundsrangesbetween1.
4and35%.
GravimetricSeven-ComponentGasMixture.
OneofthemaingoalsofthisworkwastodevelopaGC-IRMSsystemcapableofmeasuringOVOCsoverthedynamicrangefoundintheatmo-sphere.
Tomimicambientlevelsofthesecompoundsintheatmosphere,thehigh-pressurecalibrantgaswasdilutedintomoistzero-airusingadynamicdilutionsystem.
Dilutionproducedmixingratiosbetween18.
6ppbv(methanol)and7.
3ppbv(2-pentanone)forallcomponents.
Thedilutedcalibrantwascon-necteddirectlytothegasmanifold(Figure1).
Usingtherangeofmixingratiosproducedafterthehigh-pressurecalibrantgaswasdilutedinzero-air(7.
3-18.
6ppbv),thevolumeofairconcentrated(1.
0L),andtheopensplitdilution(30%),wecalculated2.
5-5ngCweredeliveredtotheionsourceforallcomponents.
ResultsforninereplicateanalysesarepresentedinTable1,andanexampleofthechromatographicresponseappearsinFigure4.
Reasonableagreementexistsforallsevencomponentscomparedtotheliquidreagentsanalyzedontheelementalanalyzer;themarginoferrorbetweenthesetwomeasurementsrangedbetween0.
4and16.
5%.
Thecomponentswiththetwolargesterrorswerepropanal(16.
5%)and2-pentanone(13.
6%).
Bothofthesepeaksaretheleadingpeakinapair(propanal/acetoneand2-penatnone/3-penatanone),andperhapsthelaterelutingcompoundsinuencethemeasuredδ13Cvaluesoftheearliercompounds.
Thisissupportedbytheobservationthatanalysisofthesingle-componentgasesforthesamecompoundsontheGC-IRMShadalowererror(25%ofU.
S.
cornproductionandthatethanolconstitutes99%ofallbiofuelsintheUnitedStates.
47,48UtilizingC4photosynthesis,whichdiscriminateslessagainst13C,cornandotherC4plantsaregenerallyenrichedintheisotopecomparedtoC3plants.
Bulkcarbohydrateanalysesbetweenthetwoplanttypesshowanenrichmentof15‰incarbohydratesextractedfromC4plantmaterial.
49Investigationsofindustriallyproducedethanoloriginatingfromcornhavebeenshowntohaveδ13Cvaluesof-10.
71±0.
31‰.
49ThevaluesweobservedintheScoutsamplesare5‰heavierand,consideringthewidespreaduseofethanol(7.
5billiongallonsareexpectedtobeusedinfuelby201248),mayserveasatracerfortransportationrelatedsourcestotheatmosphere.
Somebiogenicsamplesinthisstudy,suchassandliveoakandorangecitrus,hadsubstantiallydepletedvaluesformethanolandagreewithincubatedemissionsfromvariousdeciduoustreesandgrassesmadebyKeppleretal.
33(Table2).
However,thisobservationisnotconsistentacrossallsamplesandsuggestthatvariationsinδ13Cvaluesmayresultfrominterspeciesdiffer-ences,microbeinteractionontheleaf'ssurface,prey/injuryresponse,thepotentialpresenceofamethanolutilizationpathwaywhichoxidizesmethanoltoformaldehydeandformicacid/formate,50,51andotherlesserknownmetabolic,formation,andlosspathwayswithinplants.
52Finally,awoundresponsemaybeobservedbetweentheclippedandintactphilodendronandseagrapesamples.
Inonedistinctcase,acetaldehydeemittedfromclippedseagrapespecimenswereenrichedby4‰comparedtothefossilfuelemissions.
AmbientMeasurementResults.
Considerabledifferencesinδ13Careobservedbetweenambientsamplinglocations(Table3).
ResultsfromMiamiInternationalAirportarereectiveofanaveragedvalueforfreshvehicularsources.
Themeasuredδ13Crangeforairportsamplesisbetween-12.
3±3.
7‰(ethanol)to-35.
3±1.
7‰(3-pentanone).
Withtheexceptionofethanol,whichhasaδ13CvalueconsistentwithitsC4plantsource,and2-and3-pentanone,themeasuredrangeattheairportagreeswiththatestablishedforNMHCsfromtrans-portation-relatedsourcesbyRudolph,namely,-21.
9to-31.
3‰.
25Ouracetaldehydevalueisconsistentwiththerange(44)Iannone,R.
;Koppmann,R.
;Rudolph,J.
J.
Atmos.
Chem.
2007,58,181–202.
(45)Rudolph,J.
;Anderson,R.
S.
;Czapiewski,K.
V.
;Czuba,E.
;Ernst,D.
;Gillespie,T.
;Huang,L.
;Rigby,C.
;Thompson,A.
E.
J.
Atmos.
Chem.
2003,44,39–55.
(46)Rudolph,J.
;Czuba,E.
;Norman,A.
L.
;Huang,L.
;Ernst,D.
Atmos.
Environ.
2002,36,1173–1181.
(47)Barnett,M.
O.
Environ.
Sci.
Technol.
2010,44,5330-5331.
(48)Farrell,A.
E.
;Plevin,R.
J.
;Turner,B.
T.
;Jones,A.
D.
;O'Hare,M.
;Kammen,D.
M.
Science2006,311,506–508.
(49)Ishida-Fujii,K.
;Goto,S.
;Uemura,R.
;Yamada,K.
;Sato,M.
;Yoshida,N.
Biosci.
,Biotechnol.
,Biochem.
2005,69,2193–2199.
(50)Cossins,E.
A.
Can.
J.
Biochem.
1964,42,1793–1802.
(51)Gout,E.
;Aubert,S.
;Bligny,R.
;Rebeille,F.
;Nonomura,A.
R.
;Benson,A.
A.
;Douce,R.
PlantPhysiol.
2000,123,287–296.
(52)Fall,R.
InReactiveHydrocarbonsintheAtmosphere;Hewitt,C.
N.
,Ed.
;AcademicPress:SanDiego,CA,1999;pp43-97.
Table2.
δ13CValuesforCompoundsEmittedfromVariousTropicalPlantsandaFossilFuelCombustionSourceaplanttypesandliveoakQuercusgeminataorangeCitrussinensislemonCitruslimonphilodendronPhilodendronselloumseagrapeCoccolobauviferaKeppleretal.
33fossilfuelcombustionacetaldehyde-29.
9(2.
3)-25.
7(0.
1)-22.
4(1.
4)*-17.
5(0.
5)-30.
7(1.
1)*-24.
9(2.
2)-20.
9(0.
4)methanol-41.
9(3.
1)-59.
7(2.
9)-37.
8(2.
6)*-27.
5(0.
5)-30.
7(1.
0)*-68.
2(11.
2)-16.
9(1.
3)ethanol-41.
5(0.
8)-37.
5(0.
3)-30.
6(0.
2)-36.
5(0.
2)*-29.
4(2.
6)-5.
0(0.
4)propanal-25.
6(2.
7)isopreneoffscaleb-26.
9(3.
7)-35.
2(3.
5)-33.
8(2.
6)-23.
0(2.
6)*-16.
7(1.
2)-32.
6(0.
9)*acetone-35.
7(4.
1)-37.
4(2.
4)-32.
8(1.
2)-38.
8(1.
1)-29.
3(1.
5)*-33.
8(0.
8)-31.
3(0.
8)*-28.
1(2.
5)-25.
6(0.
5)2-pentanone-35.
2(1.
4)benzene-26.
9(0.
3)toluene-27.
5(0.
6)aAlsoincludedarevaluesforpreppedandincubatedbiogenicsamplesfromKeppleretal.
.
33Allvaluesarereportedastheaverage(standarddeviation).
Allsamplesn)5,exceptthefossilfuelsourcewheren)3.
Allbiogenicsamplesarewounded/clippedbranches,exceptwherenoted(*),whichrepresentsanintactbranchonthesamplespecimen.
Thefossilfuelsourcewascollectedfroma1972ScoutInternationalwithnocatalyticconverterataconstantcruise.
bIsoprenewaspresent;however,itsaturatedthedetectorsandthesignalresponsewasoffscaleandtheδ13Cvaluecouldnotbecalculated.
HAnalyticalChemistry,Vol.
xxx,No.
xx,MonthXX,XXXXpresentedbyWenetal.
whomeasuredvaluesviaaderivati-zationprocedureof-21.
0‰and-29.
2‰forsamplescollectedatabusstationandpetrochemicalrenery,respec-tively.
36SomeobservationsatMiami'sFinancialDistrictarebetween2.
2and4.
4‰enrichedin13CcomparedtothesamecompoundsatMiamiInternationalAirport,andagainweobserveananomalouslyenrichedvalueforethanol(-17.
2±4.
1‰).
Samplesfromtheairportaregeneralδ13CvalueswecanexpectforOVOCsfromtransportationrelatedsourceswithoutadditionfromothersourcesandlossescausedbysolarradiationandreactionwithOH.
Miami'sFinancialDistrictislocatedwithin0.
1mileofBiscayneBayand1mileofthePortofMiamiandwasdominatedbyanonshorebreezeduringthesamplecollection.
Therefore,wecanexpectvaluesfromthenancialdistricttobeenrichedsincetheδ13Csignatureforeachcompoundwillreectacombinationofvehicular,biogenic,andpossiblymarinesourcesand,additionally,lossesattributabletoreactivitywithOHandphotolysis.
Isotopicvaluesforsamplesfromthenancialdistrictareboundwithinthereportedrangeof-15.
8to-37.
4‰forNMHCssampledatamoderatelypollutedwaterfrontinWellington,NewZealand.
25Incomparisonwithautomobileexhaust(Table2),themeanvaluesobservedatMiamiInternationalAirportandMiami'snancialdistrictaregenerallydepletedin13C.
Thetwomostobviousdifferencesamongthesesamplesthatmayinuencetheobservationsarethefuelsourceandthepresenceofacatalyticconverter.
Emissionscollectedattheairportareamixofrenedpetroleumanddiesel,whereastheScoutInterna-tionalwasfueledbyunleadedgasoline.
Furthermore,vehicleemissionsattheairportareassumedtobeproducedbyengineshavingacatalyticconverter.
However,theScoutlackedaconverter,andthespeedsoftheenginesproducingtheemissionswereverydifferent.
Trafcthroughtheairport'slowerroadwaymovedatanidlepaceandrarelyexceeded15mph.
TheScoutsampleswereobtainedwiththeengineundersignicantloadandataconstantrevolutionperminute(2000rpm)andcruisespeed(80kph).
Toourknowledge,nostudiesexistshowinghowthepresenceofacatalyticconverterorenginespeedmayinuencetheδ13Cofemittedhydrocarbons.
SamplesfromEvergladesNationalParkspannedalargerangefrom-19.
0to-36.
3‰.
MeasuredmethanolfromwithintheNationalParkwas-36.
3±3.
7‰,considerablydepletedandconsistentwithothervaluesobtainedinthetropicalplantenclosurestudies(i.
e.
,sandliveoakδ13CMethanol)-41.
9±3.
1‰)andwiththeresultspresentedearlierfromKeppleretal.
33Similarly,δ13CvaluesforisoprenereleasedfromC3plantsrangefrom-26to-29‰.
45IsoprenevaluesattheNationalParkarelighter(-30.
3±2.
1‰)thantherangepresentedbyRudolphetal.
However,whentheprecisionofthemeasure-mentisconsidered,theisoprenevaluesmeasuredfromtheEverglades'samplesoverlaptherangeobservedwiththatpreviouswork.
AcetoneandacetaldehydevaluesfromwithintheNationalParkaremoreenrichedthananticipated.
Themeanδ13Cvaluesforthesecompoundsare-23.
7‰and-19.
0‰,respectively.
Eachareenrichedapproximately7.
5‰comparedtosamplescollectedatMiamiInternationalAirportandarefairlyconsistentwithsamplesfromMiami'snancialdistrictandfossilfuelcombustion.
Whenestimatedatmosphericlifetimes(τ)areconsideredforthesecompoundsinthetroposphereforlossescausedbyreactivitywithOH(τacetoneOH)66days;τacetaldehydeOH)11h)andphotolysis(τacetonehν)38days;τacetaldehydehν)5days),theseobservationscanbeexplained,especiallyfortheenrichmentofacetaldehydeoveracetone(5‰).
Fewstudiesofambientδ13Cforacetaldehydeexist,29,36andonlyoneexistsforacetone.
37ForsamplescollectedwithinabiospherereserveinChina,Guoetal.
measuredacetaldehydevaluesbetween-31.
6and-34.
9‰.
Thesevaluesaredepletedin13Ccomparedtoourmeasurements.
However,theyreportweakphotolyticlossofformaldehydeinthesamestudy,andconsideringformaldehyde'slifetimeagainstphotolysisisshorter(4h)comparedtoacetaldehyde(5days),weassumethistobetrueforacetaldehydeatthesamelocation.
Guoetal.
usedaderivatizationmethodtocalculateδ13Cvaluesforacetonecollectedataforestedsite(-31‰)andatthetopofa10mbuildinginuencedbyvehicleemissions(-26‰).
TheacetonevaluesfromEvergladesNationalParkareenrichedby2-7‰comparedtothevaluespresentedbyGuoetal.
Isotopicvaluesobtainedfromtheforestmayreectthesignatureoffreshacetoneemissionsfrombiomass,whilevaluesforEvergladesNationalParksamplesmaybemorestronglyinuencedbyphotochemistry.
ThemeasuredvaluesforacetoneandacetaldehydefromwithintheEvergladesmayalsoindicatecontributionsfrominsituatmosphericproductionviaoxidationandphotolysisofhigherorderhydrocarbons.
Anexactassessmenttoseparatedirectemissionsfromphoto-chemicalproductionandlossisnotpossibleatthistimesincefractionationsassociatedwiththesepathwaysarenotknown.
CONCLUSIONSAnewmethodformeasuringδ13Cvaluesoflow-molecularweightOVOCsfromdirectsourcesandambientsampleswasdeveloped.
Themethodincorporatedacarbonsorbent,alow-volumecapillaryreactor,watertrap,andbalancedworkingreferencegasdeliverysystem.
Themethod'stotalprecisionrangedbetween0.
6and2.
9‰,andnegligiblesamplefraction-ationoccurredwhilesamplingandtrappinggases.
Furthertestingshowedthatmeasuredδ13CvalueshadlittledependenceTable3.
AmbientMeasurementResultsforSamplesCollectedfromMetropolitanMiamiandEvergladesNationalParkaδ13C±1σ(‰)MiamiInternationalAirportMiamiFinancialDistrictEvergladesNationalParkacetaldehyde-26.
7±0.
7-26.
8±1.
2-19.
0±2.
7methanol-36.
3±3.
7ethanol-12.
3±3.
7-17.
2±4.
1isoprene-30.
3±2.
1propanal-28.
4±1.
5-26.
2±2.
4acetone-31.
0±3.
5-26.
6±0.
4-23.
7±0.
4MEK-28.
3±2.
1-25.
9±1.
92-pentanone-34.
8±6.
5-29.
4±0.
13-pentanone-35.
3±1.
7-37.
8±1.
8toluene-33.
7±2.
0aMiamiInternationalAirport,n)5;Miaminancialdistrict,n)4;EvergladesNationalPark,n)3.
IAnalyticalChemistry,Vol.
xxx,No.
xx,MonthXX,XXXXonsamplesize(0.
06‰ngC1-),andlinearitywasbestovertherangeof1-10ngC.
Themethodwassensitive,requiring>0.
2ngCintotheionsourcetoproduceaccurateandpreciseresults.
Theanalysisofambientsamplesrequiredsmallsamplevolumes,with1.
0Lofgasprovidingsufcientcarbonforanalysis.
Cleardistinctionsinδ13Cwereobservedbetweenemissionsreleasedfromplantsandautomobiles.
Inparticular,ethanolemissionsfromautomotiveexhaustandmetropolitanMiamiweresignicantlyenrichedin13C.
Thisisrelatedtoethanol'sC4plantoriginanduseasafueladditive.
Ambientsamplescanbedifferentiated,butthevariationinδ13Cvalueswasnotasgreatasforthesourcesamples.
Ambientsamplessufferfromadditionalcomplexitywithmultiplesourcesandsinksaffectingsinglesamplinglocations.
Clearly,morestudiesofsourcesandambientsamplingarerequiredtodeneandcharacterizeOVOCsinthetropospherealongwithlaboratorystudiestodeterminethekineticisotopeeffectsassociatedwithOVOCs'insituproductionandlossfromreactionwithOHandphotolysis.
Asitstandsnow,thistechniquecanbeusedtodifferentiateOVOCsourcesandtoassessthecarbonisotopicvaluesforOVOCsinambientair.
Itshouldserveasausefulwaytoinvestigatetransformationsoforganicgasesintheatmosphere.
ACKNOWLEDGMENTWethankTomBrennaandHerbertTobiasforhelpfuldiscus-sionsindevelopingthismethodandRichIannoneforprovidingatemplateforrawdatacalculations.
WeacknowledgeJohnMakandZhihuiWangfortheworkingreferencegasinterlabcompari-son.
WeappreciatetheeffortsofKevinPolkandhis1972InternationalScout.
Finally,wegratefullyacknowledgethehelpfulcommentsmadebytwoanonymousreviewersandsupportprovidedbyNSFGrantNo.
0450939.
SUPPORTINGINFORMATIONAVAILABLEAdditionalinformationasnotedintext.
ThismaterialisavailablefreeofchargeviatheInternetathttp://pubs.
acs.
org.
ReceivedforreviewMarch23,2010.
AcceptedJuly6,2010.
AC1007442JAnalyticalChemistry,Vol.
xxx,No.
xx,MonthXX,XXXX

IntoVPS:按小时计费KVM月费5美元起($0.0075/小时),6个机房可选

IntoVPS是成立于2004年的Hosterion SRL旗下于2009年推出的无管理型VPS主机品牌,商家提供基于OpenStack构建的VPS产品,支持小时计费是他的一大特色,VPS可选数据中心包括美国弗里蒙特、达拉斯、英国伦敦、荷兰和罗马尼亚等6个地区机房。商家VPS主机基于KVM架构,最低每小时0.0075美元起($5/月)。下面列出几款VPS主机配置信息。CPU:1core内存:2GB...

快云科技:香港沙田CN2云服务器低至29元/月起;美国高防弹性云/洛杉矶CUVIP低至33.6元/月起

快云科技怎么样?快云科技是一家成立于2020年的新起国内主机商,资质齐全 持有IDC ICP ISP等正规商家。云服务器网(yuntue.com)小编之前已经介绍过很多快云科技的香港及美国云服务器了,这次再介绍一下新的优惠方案。目前,香港云沙田CN2云服务器低至29元/月起;美国超防弹性云/洛杉矶CUVIP低至33.6元/月起。快云科技的云主机架构采用KVM虚拟化技术,全盘SSD硬盘,RAID10...

香港 E5-2650 16G 10M 900元首月 美国 E5-2660 V2 16G 100M 688元/月 华纳云

华纳云双11钜惠出海:CN2海外物理服务器终身价688元/月,香港/美国机房,免费送20G DDos防御,50M CN2或100M国际带宽可选,(文内附带测评)华纳云作为一家专业的全球数据中心基础服务提供商,总部在香港,拥有香港政府颁发的商业登记证明,APNIC 和 ARIN 会员单位。主营香港服务器、美国服务器、香港/美国OpenStack云服务器、香港高防物理服务器、美国高防服务器、香港高防I...

porntime为你推荐
今日油条油条是怎样由来梦之队官网梦之队是什么呢?是那个国家的呢?他们又是参加那个项目的呢?得了几块金牌呢?比肩工场大运比肩主事,运行长生地是什么意思?杰景新特美国杰尼.巴尼特的资料rawtools相机中的RAW是什么意思?丑福晋男主角中毒眼瞎毁容,女主角被逼当丫鬟,应用自己的血做药引帮男主角解毒的言情小说百花百游百花蛇草的作用同ip域名什么是同主机域名qq530.com求教:如何下载http://www.qq530.com/ 上的音乐haole10.comwww.qq10eu.in是QQ网站吗
私服服务器租用 万网域名证书查询 naning9韩国官网 阿里云邮箱登陆首页 site5 警告本网站美国保护 ntfs格式分区 免费网页申请 新睿云 申请网站 登陆空间 上海电信测速网站 小夜博客 fatcow htaccess cdn加速 godaddy退款 木马检测 dns是什么意思 电脑主机内部结构 更多