uniformlyk8k8.com
k8k8.com 时间:2021-03-21 阅读:(
)
DynamicCollapseAnalysisofReticulatedShellStructureswithSubstructuresLiHong-mei,WangJun-lin,RenXiao-qiang,SunJian-hengCollegeofUrbanandRuralConstruction,AgriculturalUniversityofHebei,Baoding071001,ChinaLuWeiEngineeringandTechnicalcollegeofHebei,Cangzhou061001,Chinaxqren@126.
comAbstract—Dynamiccollapseanalysisisanimportantresearchsubjectforlargespansinglelayerreticulatedshellstructures.
Inthispaper,thedynamiccollapsebehaviorofthesinglelayerreticulatedshellwithsubstructurewhichsupportsthereticulatedshellisinvestigatedundertheearthquakeactions.
Intheanalysis,thegeometricimperfections,thematerialandthegeometricnonlinearofthestructuresareconsidered.
Theeffectsofthedifferentstiffnessofsubstructuretothecollapseearthquakeaccelerationsandtheplasticmemberdistributionofthereticulatedshellareinvestigated.
Keywords—Singlelayersphericalreticulatedshell;dynamiccollapse;Substructures;plasticityratioI.
INTRODUCTIONReticulatedshellstructureisabasictypeofthelargespatialstructures.
Anditiswidelyusedinengineeringduetoitsattractivearchitecturalperformanceandthegoodloadbearingcapacity.
Becausethemembraneforceisthemainresistanceforceofthereticulatedshellstructuresunderloads,thestabilitybehaviorofthistypestructureisacontrollingfactorintheanalysisanddesign.
Thestabilitybehaviorincludesstaticstabilityanddynamicstability.
Inthepastdecades,thestaticstabilityofthereticulatedshellstructureshasbeenextensivelystudied,andalotofresearchresultshavebeengot[1-4].
Inrecentyears,thedynamiccollapseofthereticulatedshellcausedbytheearthquakeactionalsoattractsalotofresearchers,andaseriesoftheinvestigationresultshavebeenpresented[5-8].
Butuptonow,mostofthedynamiccollapseanalysispapersconsideredonlythereticulatedshellitselfandneglectedthesupportingframestructures,namelysubstructures.
Inpractical,mostspatialstructureshaveasupportingframeorcalled,"substructure".
Duringanearthquake,theeffectsofseismicgroundmotionsactonthebaseofthesesubstructuresandthentheseeffectsaretransmittedupintothemainreticulatedshellstructure.
Inthisrespect,anaccurateandrealisticinvestigationofthebehaviorofearthquakeresistantspatialstructureswouldbeachievedifthereticulatedshellstructureandthesupportingframe(substructure)areconsideredasanintegralwhole.
Todate,thereareonlyafewpaperspublishedconcerningthisissue[9-11].
Thispaperconsidersthereticulatedsphericalshellstructureandthesubstructuresasanintegralwholeandinvestigatesthedynamiccollapsebehaviorofthereticulatedshellunderearthquakeactions.
Intheanalysis,theinitialgeometricimperfectionstogetherwithgeometricandmaterialnonlinearitiesareallincluded,andthereticulatedsphericalshellswithsubstructuresofthedifferentstiffnessareanalyzedtodemonstratetheeffectsofstiffnessonthedynamiccollapseofthestructures.
Fig.
1.
K8reticulatedshellFig.
2.
K8reticulatedshellwithsubstructureII.
RETICULATEDSHELLMODELSANDCOLLAPSEANALYSISMETHODThewidelyusedK8reticulatedsphericalshell,asshowninFig.
1andFig.
2,isusedasthemodelstructureinthenumericalanalysis.
Themodelreticulatedshellhasaspanof50mandriseof10mwhichgivethestructurearisetospanratioof0.
2.
ThesteelframeshowninFig.
2isusedasthesubstructuretosupportthemainreticulatedsphericalshellstructure.
Themainreticulatedsphericalshellisrigid-jointedwiththesubstructure.
Thesubstructurehasaheightof8mandisalsorigid-jointedwiththebase.
Auniformlydistributedloadof1.
3kN/m2wasassumedtobeappliedoverthedome.
ThesteelmaterialusedforthemembersofboththedomeandsubstructurewasQ235withamodulusofelasticityE=206MPa,Poissonratioν=0.
26,yieldstrengthfy=235MPaandthematerialdensityis7850kg/m3.
Allofthematerialwasassumedtobeperfectlyelastic-plasticinbehavior.
TheRayleighdampingisusedinthenumericalanalysisandadampingratioof0.
02wasassumed.
Threetypeoftubularcross-sectionsareappliedforthemembersofthereticulatedsphericalshell,andtheyareΦ108*4,Φ83*4andΦ70*4respectivelyaccordingtotheinternalforceofmembersarisingfromstaticanalysis.
Theringbeamofthesubstructureismadeofsteelwitha'I'section250*250*10(flange)*8(web)cross-section.
Thecrosssectionsofthemembersofthestructurearealsotubularcrosssectionsandtheirdimensionisgiveninthefollowingsection.
ThenumericalanalysisofthestructuresiscarriedoutbyusingthefiniteelementanalysissoftwareANSYS[12].
IntheanalysisbyANSYS,thePIPE20elementisusedforallthetubularmembers.
Thiselementtypecandealwithboththegeometricandmaterialnonlinearbehaviorofthestructure.
Themembersofthemaindomeandthesubstructureareallrigidlyconnected.
Tomodeltheweightofthestructurefortheseismicanalysis,three-dimensionalMASS21elementsareusedtoconcentratetheweightofthestructureontothecorrespondingnodes.
ThethreedimensionalEl-Centroearthquakeaccelerationtimeseriesisselectedastheinputacceleration,inwhichthethreepeakaccelerationsofthetimeseriesinbothhorizontalandverticaldirectionsareax=2.
1014m/s2,ay=3.
4170m/s2,az=-2.
0635m/s2,respectively[13].
Tensecondtimehistorydurationisusedsothatallthepeakaccelerationsareincludedintheanalysis.
Forthemaindomestructure,avalueofD/300fortheinitialgeometricimperfectionwasconsidered,andthefirstbucklingmodeisemployedforthedistributionoftheimperfection.
Inthenumericalanalysis,theBudinsky-Roth[14]criterionisusedtodeterminethedynamiccollapseaccelerationofthemainreticulatedshellstructure.
Byusingthiscriterion,theseismicaccelerationincreasesgraduallybythesamefactorinthreedirectionswhilethecycleofthetimeseriesiskeptunchanged.
Thedynamicresponseofthestructureismonitoredunderincreasingacceleration,andasuddenincreaseofdisplacementduetoaverysmallincreaseinthemagnitudeoftheaccelerationisconsideredasanindicationofthedynamiccollapseofthestructure.
III.
DYNAMICCOLLAPSEANALYSISOFTHERETICULATEDSHELLWITHSUBSTRUCTURETodemonstratetheeffectofthesubstructuretothedynamiccollapseofthemainstructure,thereticulatedsphericalshellwithoutsubstructureisanalyzedfirstly.
Intheanalysis,thereticulatedsphericalshellispinconnectedwiththebase,andallthethreetranslationaldisplacementsoftheboundarynodesofthereticulatedstructuresarerestrained.
Fig.
3.
MaximumdisplacementofthereticulatedshellwithoutsubstructureFig.
4.
Dynamicresponseofthemaximumdisplacementofnode91Fig.
5.
Dynamicresponseofthemaximumdisplacementofnode91ThenumericaldynamicanalysisresultsofthereticulatedsphericalshellwithoutconsideringthesubstructureareshowninFig.
3,Fig.
4andFig.
5.
Theresultalsoshowsthatthemaximumdisplacementoccursintheverticaldisplacementofnode91.
Fig.
3showsthevariationofthemaximumnodedisplacementofthereticulatedshellwiththeearthquakepeakacceleration.
Thefigureindicatesthatwhentheearthquake0510152025050100150200250300350400Displacement/mmSeismicaccelerate/m/s2Time/sDisplacement/mTime/sDisplacement/mpeakaccelerationincreasesfrom3.
4m/s2to11.
9m/s2,themaximumdisplacementincreasesfrom50mmto157mm.
Thedisplacementincreasesnearlylinearlywithearthquakepeakacceleration.
Whentheearthquakepeakaccelerationincreasesfrom11.
9m/s2to13.
2m/s2,themaximumdisplacementincreasesto206mmfrom157mm,whichismuchlargerthantheincreasingratiooftheearthquakeacceleration.
Fig.
4showsthatwhentheearthquakeaccelerationis11.
9m/s2,thedynamicresponseofthemaximumdisplacementmaintainsthecharacterofvibratingatitsinitialvibrationequilibriumposition.
Fig.
5showsthatwhentheearthquakeaccelerationreaches13.
2m/s2,thedynamicresponseofthemaximumdisplacementdeviatesfromitsinitialvibrationequilibriumposition.
BaseontheBudinsky-Rothcriterion,thecollapseaccelerationofthestructureisbetween11.
9m/s2and13.
2m/s2,andtheaveragenumber12.
6m/s2istakenasthedynamiccollapseaccelerationofthereticulatedsphericalshellwithoutasubstructure.
Whenthesubstructureisconsidered,thesteelframeshowninFig.
2isusedasthesubstructure.
ThetubularcrosssectionofФ194*8isadoptedforallthecolumnsofthesubstructure.
ThenumericalanalysisresultsareshowninFig.
6andFig.
7.
Themaximumdisplacementundertheactionofearthquakeoccursintheverticaldisplacementofnode53insteadofnode91whenthesubstructureisnotconsidered.
Fig.
6showsthemaximumdisplacementofnode53underdifferentpeakacceleration.
Whenthepeakaccelerationincreasesfrom3.
4m/s2to9.
2m/s2,themaximumdisplacementincreasefrom67mmto129mm,andwhenthepeakaccelerationincreasesfrom9.
2m/s2to9.
5m/s2only,themaximumdisplacementincreasesto144mmrapidly.
Fig.
7showsthatthedynamicresponseofnode53hasseriouslydeviatesfromitsinitialvibrationequilibriumpositionwhenthepeakaccelerationreaches9.
5m/s2.
BasedontheBudinsky-Rothcriterion,thedynamiccollapseaccelerationofthereticulatedsphericalshellwithsubstructureofthecrosssectionФ194*8is9.
2m/s2,whichisless24.
6%thanthecollapseaccelerationwithoutsubstructure.
Fig.
6.
MaximumdisplacementofthereticulatedshellwithsubstructureFig.
7.
Dynamicresponseofthemaximumdisplacementofnode53IV.
EFFECTOFTHESTIFFNESSOFTHESUBSTRUCTURETheaboveanalysisclearlyshowsthatthecollapseaccelerationdecreaseslargelywhenthesubstructureisconsidered.
Toillustratetheeffectofadifferentstiffnessofthesubstructuretothecollapseaccelerationofthemainreticulatedshellstructure,afurtheranalysisofadifferentcrosssectionofthesubstructureiscarriedout.
Inthenumericalanalysis,thetubularcrosssectionofΦ245*10,Φ152*6isusedrespectivelyforallthecolumnofthesubstructure.
Fig.
8showsthemaximumdynamicdisplacementofthereticulatedshellwithsubstructure'scrosssectionofΦ245*10,Φ152*6andΦ194*8respectively.
Thefigureshowsthatwhenthedynamicaccelerationisless4m/s2,thedifferentstiffnessofthesubstructurehaslittleeffecttothemaximumdisplacementofthemainreticulatedshell.
Themaximumdisplacementofthemainreticulatedshellincreaseswiththedecreaseofthestiffnessofthesubstructurewhenthedynamicaccelerationislargerthan4m/s2.
TableIalsoclearlyshowsthatthedynamiccollapseaccelerationofthemainreticulatedshelldecreaseswiththeweakenedofthesubstructure.
WhenthetubularcrosssectionofΦ245*10,Φ194*8andΦ152*6isusedasthecolumnofthesubstructurerespectively,thedynamiccollapseaccelerationreduced19.
0%,24.
6%and35.
7%correspondinglycomparingwiththedynamiccollapseaccelerationofthemainstructurewithoutconsideringthesubstructure.
Themaximumdisplacementisaffectedlittlebythestiffnessofthesubstructurewhenthemainreticulatedshellcollapses.
Fig.
8.
Effectofthestiffnessofsubstructure051015050100150200250300350Displacement/mmSeismicaccelerate/m/s2Time/sDisplacement/m0501001502002503003500246810121416Φ152*6Φ194*8Φ245*10Displacement/mmSeismicaccelerate/m/s2TABLEI.
EFFECTOFSTIFFNESSOFSUBSTRUCTURE.
SectionofcolumnΦ245*10Φ194*8Φ152*6Dynamiccollapseacceleration(m/s2)10.
29.
28.
1Reducedratio19.
0%24.
6%35.
7%Maximumdisplacement(mm)158144157V.
THEPLASTICITYMEMBERSDISTRIBUTIONOFTHEMAINRETICULATEDSHELLSTRUCTUREWiththeincreaseofthedynamicacceleration,somemembersofthereticulatedshellwillreachintoplasticityfromelasticity,andthiswillaffectthedynamiccollapseaccelerationofthestructure.
Todemonstratehowthestiffnessofthesubstructureaffectstheplasticitydevelopmentofthememberofthemainstructure,theinvestigationofthewholeprocessoftheplasticitydevelopmentofmembersunderincreasingdynamicaccelerationispresentedbyFig.
9andFig.
10.
Fig.
9showstherationofplasticitymemberofwithoutconsideringthesubstructureandconsideringthesubstructureofdifferentstiffness.
Thefigureshowsthatforthesamedynamicacceleration,theratioofplasticitymemberofthereticulatedshellwithsubstructureismuchhigherthanthatofthereticulatedshellwithoutsubstructureandthattherationofplasticitymemberincreasesrapidlywiththedecreaseofthestiffnessofthesubstructure.
Whenthedynamicaccelerationis3.
4m/s2,1.
5%ofthemembersofthereticulatedshellwithasubstructureofΦ152*6hasreachedintoplasticity,butnoplasticitymembersappearfortheotherconditions.
Whenthedynamicaccelerationreaches5.
1m/s2,theplasticityratioofthememberofthereticulatedshellwithasubstructureofΦ152*6increasesto4.
6%,andthereticulatedshellwithoutsubstructurehasnoplasticitymemberstill.
Thenwiththeincreaseofthedynamicacceleration,theplasticitymembersappearforreticulatedshellofallconditions,andtheplasticityratioofmembersalsoincreases.
Theplasticityratioofmemberschangesfrom14%to16.
5%accordingtodifferentsupportconditionwhenthedynamiccollapseofthemainreticulatedshelloccurs.
Theinvestigationindicatesthatwhenmoreandmoremembersreachintoplasticitybehavior,thestiffnessofthemainreticulatedshellisreduced,andwhichfinallycausesthecollapseofthestructure.
Theplasticitymembersofthemainreticulatedshellwiththeweakersubstructureappearmuchmoreearlyandtheratioofplasticitymemberincreasemuchfasterthanthatofthereticulatedshellwithstrongersubstructureandwithoutsubstructure.
Therefore,thedynamiccollapseaccelerationofthereticulatedshellwithweakersubstructureismuchlessthanthatofthereticulatedshellwithstrongersubstructureandwithoutsubstructure.
Fig.
9.
Theplasticratioofthememberofreticulatedshellwithandwithoutsubstructure.
(a)a=5.
1m/s2(b)a=6.
8m/s2(c)a=8.
5m/s2(d)a=10.
2m/s2(e)a=11.
9m/s2Fig.
10.
DevelopmentProcessoftheplasticitymembersofthereticulatedshell051015202502468101214Proportionofplasticmembers/%Seismicaccelerate/m/s2withoutsubstructureΦ245*10Φ194*8Φ152*6Fig.
10showsthedevelopmentprocessofplasticitymembersofthemainreticulatedshellwithasubstructureoftubularcrosssectionΦ194*8,anditclearlydemonstratesthatwiththeincreaseofthedynamicacceleration,themoreandmoremembersofthereticulatedshellreachintoplasticitybehaviorfromelasticitybehavior.
VI.
CONCLUSIONThispaperinvestigatestheeffectofsubstructuretothedynamiccollapseofthereticulatedshell.
Intheanalysis,thegeometricimperfections,thematerialandthegeometricnonlinearofthestructuresareconsidered.
Theeffectsofthedifferentstiffnessofsubstructuretothecollapseearthquakeaccelerationsandtheplasticmemberdistributionofthereticulatedshellarealsoinvestigated.
(1)Thesubstructurewillreducethedynamiccollapseaccelerationsofthemainreticulatedshellstructure,andwhenthedynamiccollapseofthereticulatedshellstructureisanalyzed,themainstructureandthesubstructureshouldbeconsideredasanintegralwhole.
(2)Thedynamiccollapseaccelerationreducedwiththedecreaseofthestiffnessofthesubstructure.
Thisindicatesthatthestiffnessofthesubstructureshouldhaveacertainstiffnesstoensurethatthemainreticulatedshellhasenoughearthquakeresistancecapability(3)Theplasticitymembersofthemainreticulatedshellwiththeweakersubstructureappearmuchmoreearlyandtheplasticityratioofmembersalsoincreasemuchfasterthanthatofthereticulatedshellwithstrongersubstructureandwithoutsubstructure.
Therefore,thedynamiccollapseaccelerationofthereticulatedshellwithweakersubstructureismuchlessthanthatofthereticulatedshellwithstrongersubstructureandwithoutsubstructure.
REFERENCES[1]S.
Z.
Shen.
etal.
StabilityofReticulatedShells.
SciencePress,Beijing,China,1995.
[2]M.
Fujimoto,andK.
Imai,etal.
BucklingExperimentofSingle-layerTwo-wayGridCylinderShellRoofunderCentrallyConcentratedLoading.
SpaceStructures5,ThomasTelford,London,2002.
[3]W.
Chen,G.
Fu,andY.
He.
GeometricallyNonlinearStabilityPerformanceforPatialDoubleLayerReticulatedSteelShellStructures.
SpaceStructures5,ThomasTelford,London,2002.
[4]M.
Zeinoddini,G.
A.
R.
Parke,andP.
Disney.
"TheStabilityStudyofanInnovativeSteelDome,"Int.
J.
SpaceStruct.
vol.
19,no.
2,pp.
109-125,2004.
[5]S.
Jianheng.
StabilityofBracedDomesUnderDynamicLoads.
SpaceStructures4,ThomasTelford,London,1993.
[6]S.
Kato,T.
Ueki,andY.
Mukaiyama,"StudyofDynamicCollapseofSingle-layerReticularDomesSubjectedtoEarthquakeMotionsandEstimationofStaticallyEquivalentSeismicForce",Int.
J.
SpaceStruct.
vol.
12,no.
3/4,pp.
191-204,1997.
[7]I.
Ario,andT.
Kaita,DynamicStabilityofDomeStructureswithHomoclinicOrbit.
SpaceStructures5,ThomasTelford,London,2002.
[8]F.
Fan,S.
Z.
Shen,andG.
A.
R.
Parke,"StudyoftheDynamicStrengthofReticulatedDomesunderSevereEarthquakeLoading",Int.
J.
SpaceStruct.
vol.
20,no.
4,2005.
[9]A.
Sadeghi.
HorizontalEarthquakeLoadingandLinear/NonlinearSeismicBehaviorofDoubleLayerBarrelVaults.
InternationalJournalofSpaceStructures,Vol.
19,No.
1,pp.
235-244,2004.
[10]T.
Thkeuchi,andT.
Orawa,etal.
ResponseEvaluationofMediumSpanLatticeDomeswithSubstructuresUsingResponseSpectrumAnalysis.
ProceedingsoftheIASS,2004.
[11]S.
Jianheng,L.
Hongmei,andA.
RahimiNoshnagh.
EarthquakeEffectsonSingle-layerLatticeDomeswithSupportingFrames.
ProceedingofIABSE-IASS2011,London,2011.
[12]L.
Liming,ANSYSHandbookforFiniteElementAnalysis.
TuinghuaPublishingHouse,Bejing,2005.
[13]F.
P.
Ulrich,"TheImperialValleyEarthquakeof1940",Bull.
Seismolog.
Soc.
Am.
vol.
31,no.
2,pp.
13-31,1941.
[14]B.
Budiansky,andR.
S.
Roth,Axisymmetricdynamicbucklingofclampedshallowsphericalshells.
CollectedPapersonInstabilityofShellStructures,NASATND1510,pp.
597-606,1962.
IntoVPS是成立于2004年的Hosterion SRL旗下于2009年推出的无管理型VPS主机品牌,商家提供基于OpenStack构建的VPS产品,支持小时计费是他的一大特色,VPS可选数据中心包括美国弗里蒙特、达拉斯、英国伦敦、荷兰和罗马尼亚等6个地区机房。商家VPS主机基于KVM架构,最低每小时0.0075美元起($5/月)。下面列出几款VPS主机配置信息。CPU:1core内存:2GB...
819云是我们的老熟人了,服务器一直都是稳定为主,老板人也很好,这次给大家带来了新活动,十分给力 香港CN2 日本CN2 物理机 E5 16G 1T 20M 3IP 240元0官方网站:https://www.819yun.com/ 特惠专员Q:442379204套餐介绍套餐CPU内存硬盘带宽IP价格香港CN2 (特价)E5 随机分配16G1T 机械20M3IP240元/月日本CN2 (...
从介绍看啊,新增的HostYun 俄罗斯机房采用的是双向CN2线路,其他的像香港和日本机房,均为国内直连线路,访问质量不错。HostYun商家通用九折优惠码:HostYun内存CPUSSD流量带宽价格(原价)购买地址1G1核10G300G/月200M28元/月购买链接1G1核10G500G/月200M38元/月购买链接1G1核20G900G/月200M68元/月购买链接2G1核30G1500G/月...
k8k8.com为你推荐
futureshop笔记本电脑一般国外比国内便宜多少h连锁酒店连锁酒店有哪些今日油条油条是怎样由来云计算什么是云计算?长尾关键词挖掘工具怎么挖掘长尾关键词,可以批量操作的那种5xoy.comhttp://www.5yau.com (舞与伦比),以前是这个地址,后来更新了,很长时间没玩了,谁知道现在的地址? 谢谢,www.bbb551.com100bbb网站怎样上不去了广告法中国的广告法有哪些。baqizi.cc汉字的故事100字www.toutoulu.com安装好派克滤芯后要检查其是否漏气
ip查域名 香港服务器租用99idc 域名查询工具 godaddy域名解析教程 ddos kvmla BWH 日志分析软件 申请空间 国外网站代理服务器 骨干网络 双11秒杀 129邮箱 中国电信宽带测速网 drupal安装 空间首页登陆 路由跟踪 阿里云手机官网 江苏徐州移动 江苏双线 更多