StrongEnhancementofNonlinearOpticalPropertiesThroughSupramolecularChiralityThierryVerbiest,*SvenVanElshocht,MarttiKauranen,LouisHellemans,JohanSnauwaert,ColinNuckolls,ThomasJ.
Katz,AndrePersoonsAnewapproachtosecond-ordernonlinearoptical(NLO)materialsisreported,inwhichchiralityandsupramolecularorganizationplaykeyroles.
Langmuir-Blodgettlmsofachiralhelicenearecomposedofsupramoleculararraysofthemolecules.
Thechiralsupramolecularorganizationmakesthesecond-orderNLOsusceptibilityabout30timeslargerforthenonracemicmaterialthanfortheracemicmaterialwiththesamechemicalstructure.
Thesusceptibilityofthenonracemiclmsisarespectable50picometerspervolt,eventhoughthehelicenestructurelacksfeaturescommonlyassociatedwithhighnonlinearity.
Susceptibilitycomponentsthatareallowedonlybychiralitydominatethesecond-orderNLOresponse.
Second-orderNLOeffectsareusuallyob-servedonlyfromnoncentrosymmetricmate-rials(1).
Commonly,suchmaterialsarecon-structedbyincorporatingdonor-acceptor–substitutedmoleculesthathaveanonvanish-ingmolecularhyperpolarizability(2)intononcentrosymmetricstructuressuchaspoledpolymerfilms,Langmuir-Blodgett(LB)films,self-assembledfilms,orcrystals(3,4).
Thenonlinearityofsuchmaterialshasbeenimprovedbyoptimizingthemicroscopicre-sponseofthemolecules(5)orbyimprovingtheiralignmentororientationinthemacro-scopicstructure(6).
Anotherwaytoachievenoncentrosymme-tryistousechiralmolecules.
Suchmoleculesarenecessarilynoncentrosymmetric,andtheirsecond-orderNLOresponseisthereforenonzero(7).
Evensuchhighlysymmetricmacroscopicassembliesasisotropicsolutionsofasingleenantiomer(asinglemirror-imageform)ofachiralmoleculearenoncentrosym-metricandcanbeusedforsecond-ordernon-linearoptics,asshownbysum-frequencygenerationinsugarsolutions(8,9).
Thein-trinsicvalueofthenonlinearsusceptibilityofsuchmaterialscanbequitehigh(0.
4pm/V).
However,theprocessisnotphasematch-able,anditsoverallefficiencyisthereforelow.
Amoreefficientapproachhasbeentousechiralityindirectly,toensuremolecularcrystallizationinanoncentrosymmetricgroup(10).
Recently,nonlinearopticshasalsobeenusedasasensitivetooltostudychiralsurfaces(11,12).
Weshowthathighnonlinearitycanbeachievedbyassemblingthemoleculesofanenantiomericallypurehelicene(13)intosu-pramoleculararrays.
TheNLOresponseoftheirfilmsismuchhigherthanthatoffilmsofthecorrespondingracemic(50/50)mixtureoftheenantiomers,eventhoughtheconstit-uentmoleculesinbothfilmshavethesamechemicalstructure.
ThemoleculeswestudiedwerethoseofthetetrasubstitutedhelicenebisquinoneshowninFig.
1(13,14).
Inbulksamples,thenonrace-mic,butnottheracemic,formofthematerialspontaneouslyorganizes(15)intolongfibersclearlyvisibleunderanopticalmicroscope.
Thesefiberscomprisecolumnarstacksofheli-cenemolecules(15).
Similarcolumnarstacksself-assembleinappropriatesolvents,suchasn-dodecane,whentheconcentrationsaregreat-erthan1mM,andwhentheyassemble,thecirculardichroisms(CD)ofthesolutionsin-creasesignificantly(13).
WepreparedLBfilms(16)oftheheli-cenebyspreadingadilutechloroformsolu-tion(210–4M)ontothepurewatersub-phaseofanLBtrough.
Afterthesolventhadbeenevaporatedat20°C,thefilmswereslowlycompressedtoasurfacepressureof20mN/m.
Afterstabilizingfor30min,thefilmsweredepositedbyhorizontaldippingontohydrophobicglass[forsecond-harmonicgen-eration(SHG)measurements],fusedquartz[forultraviolet(UV)–visibleabsorptionandatomicforcemicroscopy(AFM)measure-ments],orsilicon(forAFMmeasurements).
Theopticalqualityofthefilmswasexcellent.
Although60isthelargestnumberoflayersdepositedtodate,thereisnoindicationthatthequalityoffilmswithmorelayerswouldbelower.
Opticalmicroscopydetectednofibersorothermacroscopicfeaturesinthefilms.
ThismeansthatintheLBfilmsofeventhenonracemicmaterial,anysupramolecularorganizationextendsonlytosubmicrometerlengths.
Thesampleswereirradiatedata45°angleofincidencewithafundamentalbeamfromaNd–yttrium-aluminum-garnet(Nd:YAG)la-ser(1064nm,50Hz,8ns),andtheSHGsignals(532nm)weredetectedinthetrans-mitteddirection.
Half-andquarterwave-plateswereusedtocontrolthepolarizationoftheirradiatingbeam,andthesecond-harmon-iclightwasresolvedintop-(intheplaneofincidence)ands-(outoftheplaneofinci-dence)polarizedcomponents.
TheSHGsignalsmeasuredarisefromthequadraticresponseofthematerialtothefun-damentalbeam.
ThisresponseisrepresentedbytheNLOpolarization(1)Pi(2)j,kijkEj()Ek()whereijkrefertothecartesiancoordinates,Ej()andEk()arecomponentsoftheelec-tric-fieldamplitudeatthefundamentalfre-quency,Pi(2)isacomponentofthenon-linearsourcepolarizationatthesecond-har-monicfrequency2,andijkisacomponentofthesecond-ordersusceptibilitytensor.
Forsufficientlythinsamples,thepolarizationleadstotheamplitudeofthesecond-harmon-icfieldE(2)growinglinearlywiththickness(1).
Consequently,theintensityofthesec-ond-harmonicfield,whichisproportionaltothesquareoftheamplitude,shouldincreasequadraticallywithboththethicknessofthefilmandthevalueofthesusceptibility.
Thefilmsofthenonracemichelicenegen-eratedstrongSHGsignalswhoseintensityincreasedquadraticallyasafunctionofthenumberofdepositedlayers(Fig.
2A),whichconfirmsthegoodstructuralandopticalqual-ityofthefilms.
ThestrongestSHGsignalfromaone-layernonracemicfilmwasap-proximately1000timesasintenseasthatfromasimilarracemicfilm,correspondingtoa30-foldenhancementinthevalueofthesusceptibility.
Thisenhancementisextraordi-nary,becausetheindividualmoleculesinbothfilmshavethesamechemicalstructures.
Forthenonracemicsample,theSHGsig-nalwasstrongestwhentheincidentbeamwasp-polarizedandtheSHGbeamwass-polarized(p-in–s-outsignal),whereas,fortheracemicsample,thesignalwasstrongestwhenbothbeamswerep-polarized(p-in–p-outsignal).
Forisotropicsurfacesandthinfilms(17),thep-in–s-outsignalisduetothecomponentsofthesecond-ordersusceptibili-T.
Verbiest,S.
VanElshocht,M.
Kauranen,L.
Helle-mans,J.
Snauwaert,A.
Persoons,LaboratoryofChem-icalandBiologicalDynamics,KatholiekeUniversiteitLeuven,Celestijnenlaan200D,B-3001Heverlee,Bel-gium.
C.
NuckollsandT.
J.
Katz,DepartmentofChem-istry,ColumbiaUniversity,NewYork,NY10027,USA.
*Towhomcorrespondenceshouldbeaddressed.
E-mail:thierry@lcbdiris.
fys.
kuleuven.
ac.
beREPORTSwww.
sciencemag.
orgSCIENCEVOL28230OCTOBER1998913tytensorthatarenonvanishingonlyinthepresenceofchirality(chiralcomponents).
Thep-in–p-outsignal,however,isallowedforallsurfacesandthusisduetotheachiralcomponentsofthesusceptibilitytensor.
Theseresultssuggestthatinthenonracemicsamples,thedominantpartofthesusceptibil-itytensoristhatassociatedwithchirality.
Intheracemicsamples,thispartmustcancel.
Analternativeexplanationforthedifferentbehaviorofthetwotypesofsamplesisthatthehelicenepacksdifferentlyintheracemicandnonracemicfilms.
Toanalyzethesepossibilities,wefirstinvestigatedwhetherthedominantcompo-nentsofthesecond-ordersusceptibilityten-sorareallowedonlybychirality.
Althoughseparatingthechiralandachiraltensorcom-ponentsisstraightforwardforthinfilmsthatareisotropic,in-planeanisotropysignificant-lycomplicatessuchseparation(18).
There-fore,insteadofrelyingontypicalchiralef-fects(19),wedeterminedthesymmetryandnonvanishingtensorcomponentsofthesam-ples,usingseveraldifferentmeasurements.
WefirstmeasuredSHGsignalswhilero-tatingthesamplesabouttheirsurfacenormal(20).
Filmsoftheracemicmaterialwereiso-tropic(Cvsymmetry).
Ontheotherhand,therotationpatternobtainedforafive-layernonracemicfilmandp-in–s-outsignal(Fig.
2B)isanisotropicandsuggeststhatthenon-racemicfilmpossessesC2symmetry.
Ifsuchafilmwereachiral,thatis,ifithadC2vsymmetry,thesignalshowninFig.
2Bwouldvanishatsomerotationalangle.
Becauseitdoesnot,theremustbeafinitechiralsuscep-tibilitycomponent.
Moreover,thiscompo-nentprobablyplaysanimportantrole,be-causetheaveragesignalisverylarge.
ToseparatetheeffectsofchiralityandanisotropyontheNLOresponseofthenon-racemicfilms,wedeterminedthecompo-nentsofthenonlinearsusceptibilitytensorofafive-layerfilm.
Weuseacoordinatesystemwithzalongthesurfacenormalandxandyintheplaneofthesubstrate.
ThenonvanishingcomponentsofthesusceptibilitytensoroftheC2grouparezzz,zxx,zyy,xxzxzx,yyzyzy,xyzxzy,yxzyzx,andzxyzyx.
Forahypotheticalachiralsam-plewithtwofoldsymmetry(C2v),amirrorplanecontainingthesurfacenormalfixesthedirectionsofthein-planecoordinatesxandy.
Furthermore,reflectioninthatplaneimpliesthatthecomponentsxyz,yxz,andzxyareallowedonlybychirality.
However,ourchiralC2samplehasnomirrorplane,andthereforethechoiceofxandyisarbitrary.
Inaddition,rotationofthein-planecoordinatesmixestheachiralandchiraltensorcompo-nents.
Forexample,whenrotated,zxycon-tributestozxx,zyy,zxy,andzyx.
Hence,noneofthetensorcomponentscanuniquelybeassociatedwithchirality.
Tocircumventthisarbitrariness,itisnecessarytoconsiderlinearcombinationsofthetensorcomponentsthatdonotdependonthein-planerotationalangle.
Suchisotropiccombinationsare:zzz,zxxzyy,xxzyyz,andxyz–yxz.
Thelastofthesecombinationscanbeuniquelyassociatedwithchirality.
Todeterminethecomponentsofthesus-ceptibilitytensor,weusedthepolarizationtechniqueof(21)tomeasuretheSHGsignalsfromsamplesatseveralin-planeazimuthalrotationalangles.
Wealsoverifiedthattheisotropiccombinationsareindependentoftheassumed0°orientationofthesample.
Themagnitudesdeterminedforthesecombina-tions,referencedtoaquartzwedge(d110.
3pm/V)(22),areshowninTable1.
Theachiralcombinationsareseentobeatleast10timessmallerthanthechiralone.
Thenonlinearityofthenonracemicsamplesisthereforedom-inatedbythechiraltensorcomponents.
Thus,thechiralityofthenonracemicsamplecon-tributessignificantlytothedifferentNLOresponsesoftheracemicandnonracemicsamples.
Thatitisessentiallythesolefactorresponsibleforthedifferencewasverifiedbyobservingthattheabsolutelevelsofthep-in–p-outsignals,averagedoverthein-planero-tationalangle,were,within20%error,equalfortheracemicandnonracemicsamples.
Hence,theachiralpartsofthenonlinearityareessentiallythesamefortheracemicandnonracemicsamples.
Whythechiralsuscep-tibilitycomponentsarelargeis,however,notexplainedbytheseresults.
TheUV-visibleabsorptionspectraofLBfilmsoftheracemicandnonracemicsamplesareidenticalandsimilartothoseofnonrace-micsolutionsinwhichthemoleculesareaggregated,notisolated(13).
Thissuggeststhatthemoleculesoftheracemicandnonra-cemicmaterialsareorganizedintosimilaraggregatesonasmallscale.
AFMimages(Fig.
3)supportthissuggestion,fortheyshowthattheaggregatedmoleculesinbothfilmsarefurtherassembledintofibrousstruc-tures.
However,theorganizationisgreaterinthefilmsofthenonracemicmaterial(Fig.
3,AandC).
Thestructuresintheseare5nmwide[aboutthewidth(4.
1nm)ofthecol-umnsintowhichthemoleculesassembleinbulk(14)],severaltensofnanometerslong,andarrangedinbundles.
However,thescaleoftheorganizationintheLBfilmsissuffi-cientlysmallthatthestructurescannotbeseenoptically,althoughthealignmentofthebundlesintheplaneofthesubstrateprobablyaccountsfortheC2symmetryevidencedinFig.
2B.
Intheracemicmaterial(Fig.
3B),thefibrousstructuresareshorterandnotaswellFig.
1.
(Top)Chemicalstructureoftheheliceneand(bottom)schematicrepresentationofcol-umnsofstackedhelicenemoleculesasob-servedinsolidbulksamples(thesidechainshavebeendeletedforclarity,andthersthelicenesarearbitrarilyshowntobeinthesamerotationalphase).
Fig.
2.
Second-harmonicsignalsfromthenon-racemicLBlms.
(A)Thesignalasafunctionofthenumberofdepositedlayers.
(B)Thes-polarizedsecond-harmonicsignalforp-polar-izedfundamentalbeamasafunctionoftheazimuthal(in-plane)rotationangleofave-layersample.
The0°azimuthalorientationischosenarbitrarily.
Table1.
Absolutevaluesofchiralandachiralisotropiccombinationsofsusceptibilitycompo-nentsofthenonracemicLBlms.
IsotropiccombinationAbsolutevalue(pm/V)Chiralityzzz6Achiralxxzyyz2Achiralzxxzyy4Achiralxyz–yxz50ChiralREPORTS30OCTOBER1998VOL282SCIENCEwww.
sciencemag.
org914organizedinbundles.
Thissuggeststhattheinteractionsbetweentheenantiomersarenotfavorableforlarge-scaleorganization,whichmayrelatetowhytheracematedoesnotformfibrousstructuresinbulk(15).
Thelesserdegreeoforganizationintheracemicmate-rialalsoconformswiththefailuretoseex-raydiffractionfromthesefilms,whereasitisseenfromfilmsofthenonracemicmaterial.
Forthelatter,x-raydiffractionshowstheinterlayerdistancestobesimilartothediam-etersofthehelicenemoleculesandtothecolumnsobservedinbulk(23).
Theaboveresultssuggestthattheprimaryexplanationforthehighsecond-orderNLOresponseofthehelicenesistheaggregationintocolumnarstackswithlargechiral(xyz-type)nonlineartensorcomponents.
Sponta-neouschiralsegregation(24)probablyoccursintheracemicfilms,witheachenantiomeraggregatingwithitselfandmaintainingthelargechiralcomponents.
Intheracemicsam-pleshowever,thesedominantcomponentsofthetwoenantiomersareequalinmagnitudebutoppositeinsign,whichlowerstheoverallNLOresponse.
FurtherorganizationoftheaggregatesintobundlesappearstobelessimportantfortheNLOproperties,althoughitaccountsforthedifferentrotationalsymme-tryoftheracemicandnonracemicfilms.
The50pm/Vvalueofthedominantpartofthenonlinearity(xyz–yxz;Table1)issufficientlyhighthatthematerialcouldbeuseful(25).
Thelinearabsorptionspectrum,however,suggeststhattheNLOresponsemayberesonantlyenhanced.
Nevertheless,itiswithinoneorderofmagnitudeofthehigh-estvaluesreported(26).
Wefindtheresultremarkablebecause(i)thenonlinearityisdominatedbythechiraltensorcomponents,whichsuggeststhatthetraditionalrequire-mentsfornonlinearmoleculestobeorientedoutoftheplane(1)arenotimportantforstructuresbasedonthehelicenederivative,and(ii)althoughthechemicalstructuredoesnotfulfillclassicalrequirementsforhighmo-lecularnonlinearity(2),theNLOsusceptibil-ityisneverthelessrelativelyhigh,whichsug-geststhatfurtherimprovementsmightbeachievablethroughsynthesis.
Thefilmsofthenonracemichelicenehaveothervirtues.
Afive-layerfilmshowedim-pressivethermalstability.
Whenstoredfor250hoursinairat150°C,itlostnoSHGefficiency,andevenshortexcursionsabove200°ChadnodetrimentaleffectontheNLOresponse.
Moreover,topreparethickfilms,theverticaldippingprocedurecouldbeused,whichisdesirablebecauseitislesstime-consumingthanhorizontaldipping.
Althoughthetypeofdepositionachievedwhenthehelicenewasdippedverticallydependedonthehumidity,thetemperature,andthewaythesubstratewasprepared,wewereabletomakeY-typeLBfilms(thosedepositeddur-ingbothupanddownstrokes)whoseopticalqualitiesandnonlinearefficienciesequaledthoseoffilmsformedbyhorizontaldipping.
Thehelicenefilmsalsosuggestanewwaytoachievephasematching.
Phasematchingisanimportantconsiderationinfrequencycon-version,inwhichthephaserelationbetweenthedrivingnonlinearpolarizationandthegeneratedfieldcanusuallybemaintainedonlyoverthedistanceofcoherencelength(27).
However,phasematchingoverarbitrarydistancescanbeachievedbyusingmultilayerstructuresinwhichthesignofthenonlinearityisreversedaftereverycoherencelength(quasi–phasematching)(28).
Thesignofthechiralpartofthenonlinearitycanbereversedsimplybychang-ingtheenantiomerofthemoleculewithnoneedforadditionaldomainreversal.
Theuseofthetwoenantiomersinaquasi–phase-matchedstructurealsohastheadditionalbenefitthatnonetpolarizationrotationduetolinearop-ticalactivitywilloccur.
Asapreliminarytestofthemutualcompatibilityofthetwoenan-tiomersofthehelicene,wepreparedfourlayersofoneenantiomerbyverticaldippingandcoveredthemwithfourlayersoftheother.
Forsuchthinfilms,thenonlinearitiesofthetwoenantiomersshouldcancel.
TheSHGsignalfromthesamplevanished,whichsuggeststhatitmightbepossibletousehelicenestopreparequasi–phase-matchedstructures.
ReferencesandNotes1.
P.
N.
PrasadandD.
J.
Williams,IntroductiontoNon-linearOpticalEffectsinMoleculesandPolymers(Wiley,NewYork,1991).
2.
T.
Verbiest,S.
Houbrechts,M.
Kauranen,K.
Clays,A.
Persoons,J.
Mater.
Chem.
7,2175(1997).
3.
Ch.
Bosshardetal.
,OrganicNonlinearOpticalMate-rials(Gordon&Breach,Basel,Switzerland,1995).
4.
T.
J.
MarksandM.
A.
Ratner,Angew.
Chem.
Int.
Ed.
Engl.
34,155(1995).
5.
S.
R.
Marder,D.
N.
Beratan,L.
-T.
Cheng,Science252,103(1991).
6.
T.
Verbiestetal.
,Adv.
Mater.
8,757(1996).
7.
L.
D.
Barron,MolecularLightScatteringandOpticalActivity(CambridgeUniv.
Press,Cambridge,1982).
8.
J.
A.
Giordmaine,Phys.
Rev.
138,A1599(1965).
9.
P.
M.
Rentzepis,J.
A.
Giordmaine,K.
W.
Wecht,Phys.
Rev.
Lett.
16,792(1966).
10.
J.
ZyssandD.
S.
Chemla,inNonlinearOpticalProp-ertiesofOrganicMoleculesandCrystals,D.
S.
ChemlaandJ.
Zyss,Eds.
(AcademicPress,Orlando,FL,1987),vol.
1.
11.
T.
Petralli-Mallow,T.
M.
Wong,J.
D.
Byers,H.
I.
Lee,J.
M.
Hicks,J.
Phys.
Chem.
97,1383(1993).
12.
M.
Kauranenetal.
,Adv.
Mater.
7,641(1995).
13.
C.
Nuckolls,T.
J.
Katz,L.
Castellanos,J.
Am.
Chem.
Soc.
118,3767(1996).
14.
A.
J.
Lovinger,C.
Nuckolls,T.
J.
Katz,ibid.
120,264(1998).
15.
C.
Nuckolls,T.
J.
Katz,G.
Katz,P.
J.
Collings,L.
Castellanos,inpreparation.
16.
G.
Roberts,Langmuir-BlodgettFilms(Plenum,NewYork,1990).
17.
J.
J.
Maki,M.
Kauranen,A.
Persoons,Phys.
Rev.
B51,1425(1995).
18.
T.
Verbiest,M.
Kauranen,Y.
VanRompaey,A.
Per-soons,Phys.
Rev.
Lett.
77,1456(1996).
19.
M.
Kauranen,T.
Verbiest,A.
Persoons,J.
Mod.
Opt.
45,403(1998).
20.
X.
Zhuang,D.
Wilk,L.
Marrucci,Y.
R.
Shen,Phys.
Rev.
Lett.
75,2144(1995).
21.
M.
Kauranen,J.
J.
Maki,T.
Verbiest,S.
VanElshocht,A.
Persoons,Phys.
Rev.
B55,R1985(1997).
22.
D.
Roberts,IEEEJ.
QuantumElectron.
28,2057(1992).
23.
C.
Nuckollsetal.
,J.
Am.
Chem.
Soc.
120,8656(1998).
24.
P.
Nassoy,M.
Goldmann,O.
Bouloussa,F.
Rondelez,Phys.
Rev.
Lett.
75,457(1995).
25.
D.
M.
Burland,R.
D.
Miller,C.
A.
Walsh,Chem.
Rev.
94,31(1994).
26.
G.
J.
Ashwell,R.
C.
Hargreaves,C.
E.
Baldwin,G.
S.
Bahra,C.
R.
Brown,Nature357,393(1992).
27.
R.
W.
Boyd,NonlinearOptics(AcademicPress,SanDiego,CA,1992).
28.
M.
M.
Fejer,G.
A.
Magel,D.
H.
Jundt,R.
L.
Byer,IEEEJ.
QuantumElectron.
28,2631(1992).
29.
WeacknowledgenancialsupportfromtheBelgiangovernment,theBelgianNationalScienceFounda-tion,andtheKatholiekeUniversiteitLeuven.
T.
V.
isapostdoctoralfellowandL.
H.
isaresearchassociateoftheFundforScienticResearch-Flanders.
M.
K.
ac-knowledgesthesupportoftheAcademyofFinland.
C.
N.
andT.
J.
K.
thanktheKanagawaAcademyofScienceandTechnologyandNSFforsupport.
31July1998;accepted29September1998Fig.
3.
AFMimages(80nmby80nm)offour-layerLBlmsofthehelicenemeasuredinthetappingmode.
(A)Phase-contrastimageofanonracemiclmonsilanizedsilicon.
(B)Phase-contrastimageofaracemiclmonsilanizedsilicon.
(C)Topographicimageofanonracemiclmonsilanizedglass.
REPORTSwww.
sciencemag.
orgSCIENCEVOL28230OCTOBER1998915
妮妮云的来历妮妮云是 789 陈总 张总 三方共同投资建立的网站 本着“良心 便宜 稳定”的初衷 为小白用户避免被坑妮妮云的市场定位妮妮云主要代理市场稳定速度的云服务器产品,避免新手购买云服务器的时候众多商家不知道如何选择,妮妮云就帮你选择好了产品,无需承担购买风险,不用担心出现被跑路 被诈骗的情况。妮妮云的售后保证妮妮云退款 通过于合作商的友好协商,云服务器提供2天内全额退款,超过2天不退款 物...
digital-vm怎么样?digital-vm在今年1月份就新增了日本、新加坡独立服务器业务,但是不知为何,期间终止了销售日本服务器和新加坡服务器,今天无意中在webhostingtalk论坛看到Digital-VM在发日本和新加坡独立服务器销售信息。服务器硬件是 Supermicro、采用最新一代 Intel CPU、DDR4 RAM 和 Enterprise Samsung SSD内存,默认...
A400互联是一家成立于2020年的商家,本次给大家带来的是,全新上线的香港节点,cmi+cn2线路,全场香港产品7折优惠,优惠码0711,A400互联,只为给你提供更快,更稳,更实惠的套餐。目前,商家推出香港cn2节点+cmi线路云主机,1H/1G/10M/300G流量,37.8元/季,云上日子,你我共享。A400互联优惠码:七折优惠码:0711A400互联优惠方案:适合建站,个人开发爱好者配置...
zzz13.com为你推荐
bbs.99nets.com做一款即时通讯软件难吗 像hi qq这类的同ip网站一个域名能对应多个IP吗百度关键词工具百度有关键字分析工具吗?Google AdWords有的长尾关键词挖掘工具大家是怎么挖掘长尾关键词的?www.yahoo.com.hk香港有什么网页sss17.com一玩棋牌吧(www.17wqp.com)怎么样?mole.61.com谁知道摩尔庄园的网址啊m.2828dy.comwww.dy6868.com这个电影网怎么样?抓站工具抓鸡要什么工具?baqizi.cc曹操跟甄洛是什么关系
上海虚拟主机 yaokan永久域名经常更换 免费试用vps smartvps 服务器评测 la域名 谷歌香港 光棍节日志 ssh帐号 panel1 网站挂马检测工具 刀片服务器是什么 如何用qq邮箱发邮件 鲁诺 免费asp空间 net空间 服务器防火墙 国内空间 服务器托管价格 windowssever2008 更多