leadcentos6.0

centos6.0  时间:2021-03-27  阅读:()
TheNewAlgorithmoftheItem-basedonMapReduceZHAOWei1,a1CollegesoftwareTechnologySchool,ZhengzhouUniversityZhengzhou450002,Chinaaiezhaowei@163.
comKeywords:RecommendationsystemparallelcomputingClusteringAbstract.
TraditionalcollaborativefilteringalgorithmbasedonitemandK-meansclusteringalgorithmarestudied,theparallelalgorithmofcollaborativefilteringItem-basedonMapReduceisproposedbyusingMapReduceprogrammingmodel.
Thealgorithmismainlydividedintotwosteps,onestepisK-Meansalgorithmclusteringforusers,anotherstepistheparallelItem-basedalgorithmforclusteringuserrecommendation.
Experimentalresultsshowthatthealgorithmhasobtainedverygoodeffect,improvedtherunningspeedandexecutionefficiency,theimprovedalgorithmismuchsuitableforprocessingbigdata.
IntroductionBigdatausuallyincludesdatasetswithsizesbeyondtheabilityofcommonlyusedsoftwaretoolstocapture,curate,manage,andprocessdatawithinatolerableelapsedtime.
Bigdataishighvolume,highvelocity,and/orhighvarietyinformationassetsthatrequirenewformsofprocessingtoenableenhanceddecisionmaking,insightdiscoveryandprocessoptimization.
Volumemeansbigdatadoesn'tsample;itjustobservesandtrackswhathappens;Velocitymeansbigdataisoftenavailableinreal-time;Varietymeansbigdatadrawsfromtext,images,audio,video;plusitcompletesmissingpiecesthroughdatafusion[1].
Therefore,thebigdatamustbethroughthecomputerstatistics,comparison,analysisofthedatacanbetheobjectiveresults.
Nowelectroniccommercesystemsofeverytransaction,everyinputandeverysearchcanasdata,datathroughthecomputersystemtodothescreening,sorting,analysis,sothattheanalysisresultsisnotonlyanobjectiveconclusion,moreabletohelpbusinessprovidedthedecision-makingofenterprisesandalsocollectedusefuldatacanalsobereasonableplanning,activelyguidethedevelopmentoflargerpowerconsumption,andmoreeffectivemarketingandpromotion.
Withtheincreasingamountofdataintheelectroniccommercesystem,theneedforalargenumberofdatadepthanalysisisincreasinglyurgent.
Therefore,theuseofasimpleandhighscalabilityoftheprogramfortheanalysisofproductrecommendationisparticularlyimportant.
Atpresentdomesticmanyecommercesitesusecollaborativefilteringalgorithm,suchasAmazon,Dangdang,collaborativefilteringalgorithmismainlydividedintobasedontheitemsofthecollaborativefilteringalgorithmanduserbasedcollaborativefilteringalgorithm.
Basedonitemsofcollaborativefilteringalgorithmistomeasurethesimilaritybetweenitemsaccordingtotheuser'spreferences,donotneedtoconsidertheitemspecificcontentfeatures,sothealgorithmismainlyusedine-commercerecommendationandmovierecommendationdomain,thealgorithmwhileinthefieldofelectroniccommercerecommendationhasbeenacertaindegreeofsuccess.
Butinmassivedataarerecommendedwhenthedataisrecommendedperformanceisnothighandthedatainformationlackofsharingandextendedtheleadtothehardwarerequirementscomparedhigherinherentshortcomingsmakeitdidnotreceiveapromotionandsupportofenterpriseelectroniccommerce[2].
SoifweuseMapReducetoachievedistributedparallelcomputing,itwillgreatlyimprovetheefficiencyandperformanceofthealgorithm,andpromotethefurtherdevelopmentofthealgorithm[3-4].
Basedontheitemsofthecollaborativefilteringalgorithmisaccordingtoitemsimilarityanduserhistoryaccessrecordrecommendedtotheusertogeneratealistofitems,buttherearesomesmallproblems,suchasdatasparsityproblemandwhenthemassofusersandthenumberofitems,theuserbehaviorandrecorddatawillgreatly,andthealgorithmforcomputingitemswithsimilarmatrixcostgreatly,algorithmefficiencyandperformancewillgreatlyreduce.
Aimingattheaboveproblems,theclusteringalgorithmhasalsobeenappliedtoacollaborativefilteringalgorithmbasedonitem,themassiveuserclusteringanalysis,soitcanavoidthequestioncarefully,foreachusertorecommendoperation.
Thefirstshoppinguserswithsimilarinterestsintoauserclass,withaclusterofuserrecommendedgoodsarethesame.
Thesecondistoreducethemassiveuserdimensionsbecomedozensofclusteringlimited,thetimecomplexityencounteredabottleneck,andtheparallelclusteringalgorithmusingMapReduceistheeffectivewaytosolvethebottleneck[5].
MapReduceisadistributedprogrammingmodelframeworkonHadoopplatform,intheconditionofnotfamiliarwiththeunderlyingdetailsofthedistributedimplementationoftheimplementationoftheprogram[6].
TheMapReduceasparallelcomputingprogrammingmodel,firstofalltousersofMapReducebasedparallelclusteringandaccordingtotheresultsofuserclustering,ineveryuserclassusingtheMapReduceparallelcollaborativefilteringrecommendation,eventuallygiveusersareasonablepersonalizedcommodityrecommendationlist.
Therunningtimeofdifferentnodesinthequantitativedataiscomparedwiththenewalgorithm.
Theresultsshowthatthedataprocessingperformanceoftheproposedalgorithmisgreatlyimproved.
TheprincipleofMapReduceprogrammingmodelMapReduceisinHadoopplatformbyusingparallelcomputingprogrammingmodel,thetechniqueisproposedbyGoogleforatypicaldistributedparallelprogrammingmodel,theuserintheMapReducemodeldevelopthemapandreducefunctions,canrealizetheparallelprocessing.
Mapwillberesponsiblefordatadispersion,Reduceisresponsiblefordataaggregation.
UsersonlyneedtoachieveMapandReducetwointerface,youcancompletethecalculationofTBleveldata.
BecauseoftheMapReducemodel,thedetailsoftheparallelandfault-tolerantprocessingareencapsulated,whichmakesprogrammingveryeasytoimplement.
MapReduceparallelcalculationisdividedintotwoparts,thefirststepisinitializingtheoriginalinputdatafileandthedatasetisdividedintoapluralityofacertainsizeofdatablock,facilitateparallelcomputing;thesecondstepistostartthemapandreducefunctionsalgorithmofparallelcomputing,finallyproducedthefinalresult.
Figure1ParallelflowchartofMapReduceKeytechnologyresearchandImplementation1.
ThebasicideaofthetraditionalcollaborativefilteringalgorithmbasedonItem-basedThetraditionalbasedonitemsofcollaborativefilteringalgorithmthebasicideaisdividedintothreeparts,thefirstpartistocomputethesimilaritybetweenitems,commonsimilaritycalculationmethodwithcosinesimilarity,Pearsoncorrelationcoefficient,Tanmotocoefficientcorrelationof.
ThispaperselectstheEuclideansimilarityalgorithm,asfollows:TheassumptionisthatthereisavectorXandavectorY:X=(1x,2x,3x),Y=(1y,2y,3y),UsingtheEuclideansimilarityalgorithmtocalculatethesimilaritybetweenXandYSvector(x,y)formulaisasfollows[7]:1(,)1(,)Sxydxy=+(1)Where(,)dxyisthedistancebetweenthevectorXandY,thecalculationformulaisasfollows:222231123(dxyxyyyxx2)Thesecondpartistocalculatetheuserratingsmatrixontheitemsofthegoodsaccordingtothesimilaritymatrix;thethirdpartistheitemsimilaritymatrixWandtheusersoftheitemscorematrixmultiplicationtoobtaintherecommendationresults.
TraditionalItem-Basedcollaborativefilteringrecommendationalgorithmbasedonitemisthestagethataffectstheperformanceofthealgorithm.
Ifthenumberofusersisn,thenumberofcommodityitemsism,thetimecomplexityoffindingalltheitemsinthenprojectisO(2m),thetotalsearchspaceisnusers,sothetimecomplexityofcomputingsimilarityisO(2nm).
Sowhencalculatingthesimilaritymatrixofitems,itisindependentofthesimilaritybetweenthecalculatedandtheotherpairofitemstoaproject,soitispossibletocalculatethesimilaritymatrix.
2.
AnewalgorithmofItem-basedbasedonMapReduceThenewalgorithmismainlydividedintotwosteps;thefirststepistheMapReduceimplementationofK-Meansalgorithmbasedonclusteringofusers.
ThesecondstepistoachievetheparallelrecommendationalgorithmofItem-basedonMapReduce,theproductofuserclusteringrecommendation.
2.
1ThenewalgorithmK-MeansbasedonMapReduceThebasicideaofthetraditionalK-meansclusteringalgorithm:fromMdataobjectsinarbitrarychoiceofKobjectsastheinitialclustercenters;fortherestoftheotherobjects,accordingtotheirdistanceandtheclustercenters,respectively,theyallocatedtoitsmostsimilarclustering;thencalculateeachreceivedanewclusteringalgorithmclusteringcenter;keeprepeatingtheprocessuntilnochangesinacore.
Inthek-meansalgorithmtocalculatethedistancebetweendataobjectsandclustercentersisthemosttime-consumingoperation.
ThedataobjectandKclustercenterdistancecomparisonatthesametime,datafromotherobjectscanalsobecomparedwiththeKdistanceofthecenterofcluster,sotheoperationcanbeparallelized[8]BasedonMapReduceparallelimplementationofK-meansalgorithmcanimprovethespeedoftheclusteringalgorithm,isdividedintothreesteps:thefirststep:themapfunction,foreverypointcalculationrecentlythecenterdistanceandthecorrespondingtothenearestclustercenter.
Thesecondstep:Combinefunction,justcompletedtheMapmachineonthemachinearecompletedwiththesamepointoftheclusterpointofsummation,reducetheamountofcommunicationandcomputationofReduceoperation.
ThisstepisthekeytotheuseofCombinefunctiononthemachineonthefirstofthesameclustermerge,reducedtotheReducefunctionofthetransferandtheamountofcomputation.
Thethirdstep:theReducefunction,theintermediatedataofeachclustercenterwillbeformedandthenewclustercentercanbeobtained.
Eachiterationisrepeatedonthethreestep.
Figure2ParallelFlowChartofK-meansAlgorithmbasedonMapReduce2.
2thecollaborativefilteringalgorithmbasedonMapReduceforparallelimplementationofItem-basedBasedonthesimilaritycalculationformulamentionedabove(1),thispaperpresentsacollaborativefilteringrecommendationalgorithmbasedonMapReduce.
Algorithm1ThecollaborativefilteringrecommendationalgorithmbasedonMapReduceINPUT:Userinformationfile,Iteminformationfile,IntendeduserOUTPUT:IntendeduserrecommendedlistTheprocessisasfollows:Step1:Transformingtheuservectorintoanitemvector;Step2:Parallelcalculationofthesimilaritybetweenitems;thecalculationofthesimilaritybetweenitemsaccordingtotheformula(2)tocalculate;Step3:Similaritymatrixofparallelcomputingobjects;Step4:Parallelcomputinguserratingmatrix;inthecalculationoftheuser'sscoringmatrix,iftheuserisnotontheitemstoomuch,thenthedefaultscoreis1;Step5:Theresultsobtainedbythemultiplicationofthesimilaritymatrixofparallelcomputingobjectsandtheuser'sscorematrixarerecommended.
Experimentalresultanalysis1.
experimentalenvironmentThesimulationexperimentusingVMware_Workstation_10.
0.
3,virtualizationsoftwaretovirtualHadoopcloudplatform.
EightvirtualmachinesareinstalledonthevirtualHadoopcloudplatform,andaHadoopclusterenvironmentisbuiltontheseeightvirtualmachines.
OneofthevirtualmachineasagoodJobTrackernodeNameNode,theothersevenvirtualmachinesdeployedTaskTrackerandDataNode.
Thesemachinesareinthesamelocalareanetwork.
Theexperimentuseseightsetsofvirtualmachinehardwareconfigurationandsoftwareconfigurationasshownintable1:Table1HadoopClusterConfigurationOSCentos6.
4JDKVersion1.
6.
0Hadoop1.
1.
2HardWare2GRAM100GHardDisk2.
ExperimentandanalysisBasedonMapReduceparallelimplementationofItem-basedcollaborativefilteringalgorithminparallelmodeexpansionrateperformancecomparisontest,selectthesizeofthedataset,respectively,intheefficiencyof1-8nodesrunning.
Theexperimentalresultsareshownbelow:Figure3PerformanceTestChartFigure3isbasedonMapReduceparallelimplementationofitembasedcollaborativefilteringalgorithmcantestchart,theXaxisisthenumberofclients,they-axisistheresponsetimeofthesystem.
TheexperimentalresultsshowthatbasedonMapReduceparallelimplementationofitembasedcollaborativefilteringalgorithmperformancecomparedtothetraditionalrecommendationalgorithmissignificantlyimproved.
ConclusionInthispaper,anewalgorithmofcollaborativefilteringalgorithmbasedonMapReduceisproposed.
Theexperimentresultsshowthatthenewalgorithmhashighefficiencyandcanachievehighperformanceatalowcost.
Butinthispaper,theuserclusteringiscompletedonthebasisoftheuserwithasmallnumberofattributes,forhighdimensionalattributesoftheusergroups,butalsotodofurtherresearch.
Inadditiontothenewalgorithminthispaperhasbeenputforward,wewillcontinuetoimprovetheexperimentalmethod,andconstantlyimprovetheaccuracyoftherecommendationalgorithm.
References[1]Chenruming,Challenges,valuesandcopingstrategiesintheeraofbigdata[J].
MobileCommunications.
2012(17):14-15.
[2]SunLingfang,ZhangJing.
ElectronicrecommendationmechanismbasedonRFMmodelandcollaborativefiltering[J].
JournalofJiangsuUniversityofScienceandTechnology(NaturalScienceEdition).
2010,24(3):285-289.
[3]LIGai,PANRong.
etCollaborativefilteringalgorithmparallelizeresearchbasedonlargedatasetsa[J].
ComputerEngineeringandDesign,2012,33(6):2437-2441.
[4]LIWenhai;XUShuren;DesignandimplementationofrecommendationsystemforE-commerceonHadoop[J].
ComputerEngineeringandDesign,2014(35):131-136.
[5]SUNTianhao,LIAnnenget.
ResearchonDistributedCollaborativeFilteringRecommendationAlgorithmBasedonHadoop[J].
ComputerEngineeringandApplications,2014,51(15):124:128[6]XieXuelian,LiLanyou.
ResearchonParallelK-meansAlgorithmBasedonCloundComputingPlatform[J].
ComputerMeasurement&Control,2014,22(5):1510-1512.
[7]YanCun,JiGenlin.
DesignandImplementationofItem-BasedParallelCollaborativeFilteringAlgorithm[J].
JOURNALOFNANJINGNORMALUNIVERSITY(NaturalScienceEdition),2014,37(1):71-75.
[8]WAGNFei,QinXiaolin.
Algorithmfork-meansBasedonDataStreaminCloudComputing[J].
ComputerScience,2015,42(11):235:239.

青果云(59元/月)香港多线BGP云服务器 1核 1G

青果云香港CN2_GIA主机测评青果云香港多线BGP网络,接入电信CN2 GIA等优质链路,测试IP:45.251.136.1青果网络QG.NET是一家高效多云管理服务商,拥有工信部颁发的全网云计算/CDN/IDC/ISP/IP-VPN等多项资质,是CNNIC/APNIC联盟的成员之一。青果云香港CN2_GIA主机性能分享下面和大家分享下。官方网站:点击进入CPU内存系统盘数据盘宽带ip价格购买地...

HostKvm - 夏季云服务器七折优惠 香港和韩国机房月付5.95美元起

HostKvm,我们很多人都算是比较熟悉的国人服务商,旗下也有多个品牌,差异化多占位策略营销的,商家是一个创建于2013年的品牌,有提供中国香港、美国、日本、新加坡区域虚拟化服务器业务,所有业务均对中国大陆地区线路优化,已经如果做海外线路的话,竞争力不够。今天有看到HostKvm夏季优惠发布,主要针对香港国际和韩国VPS提供7折优惠,折后最低月付5.95美元,其他机房VPS依然是全场8折。第一、夏...

2021HawkHost老鹰主机黑色星期五虚拟主机低至3.5折 永久4.5折

老鹰主机HawkHost是个人比较喜欢的海外主机商,如果没有记错的话,大约2012年左右的时候算是比较早提供支付宝付款的主机商。当然这个主机商成立时间更早一些的,由于早期提供支付宝付款后,所以受众用户比较青睐,要知道我们早期购买海外主机是比较麻烦的,信用卡和PAYPAL还没有普及,大家可能只有银联和支付宝,很多人选择海外主机还需要代购。虽然如今很多人建站少了,而且大部分人都用云服务器。但是老鹰主机...

centos6.0为你推荐
摩根币摩根币到底是什么是不是骗局咏春大师被ko练咏春拳的杨师傅对阵散打冠军,注:是高龄级别被冠军级别打败了,那如果是咏春冠军叶问呢?更别说是李小梦之队官网NBA梦之队在哪下载?同ip网站查询我的两个网站在同一个IP下,没被百度收录,用同IP站点查询工具查询时也找不到我的网站,是何原因?www.jjwxc.net在哪个网站看小说?同一ip网站同一个IP不同的30个网站,是不是在一个服务器上呢?长尾关键词挖掘工具外贸长尾关键词挖掘工具哪个好用www.yahoo.com.hk香港的常用网站www.5any.com重庆哪里有不是全日制的大学?javbibinobibi的中文意思是?
免费域名注册 宿迁服务器租用 国外服务器 rackspace 美国便宜货网站 免费cdn加速 英文简历模板word 远程登陆工具 最好看的qq空间 铁通流量查询 骨干网络 cpanel空间 有益网络 合租空间 谁的qq空间最好看 1g空间 web服务器安全 免费ftp smtp服务器地址 个人免费邮箱 更多