leadcentos6.0

centos6.0  时间:2021-03-27  阅读:()
TheNewAlgorithmoftheItem-basedonMapReduceZHAOWei1,a1CollegesoftwareTechnologySchool,ZhengzhouUniversityZhengzhou450002,Chinaaiezhaowei@163.
comKeywords:RecommendationsystemparallelcomputingClusteringAbstract.
TraditionalcollaborativefilteringalgorithmbasedonitemandK-meansclusteringalgorithmarestudied,theparallelalgorithmofcollaborativefilteringItem-basedonMapReduceisproposedbyusingMapReduceprogrammingmodel.
Thealgorithmismainlydividedintotwosteps,onestepisK-Meansalgorithmclusteringforusers,anotherstepistheparallelItem-basedalgorithmforclusteringuserrecommendation.
Experimentalresultsshowthatthealgorithmhasobtainedverygoodeffect,improvedtherunningspeedandexecutionefficiency,theimprovedalgorithmismuchsuitableforprocessingbigdata.
IntroductionBigdatausuallyincludesdatasetswithsizesbeyondtheabilityofcommonlyusedsoftwaretoolstocapture,curate,manage,andprocessdatawithinatolerableelapsedtime.
Bigdataishighvolume,highvelocity,and/orhighvarietyinformationassetsthatrequirenewformsofprocessingtoenableenhanceddecisionmaking,insightdiscoveryandprocessoptimization.
Volumemeansbigdatadoesn'tsample;itjustobservesandtrackswhathappens;Velocitymeansbigdataisoftenavailableinreal-time;Varietymeansbigdatadrawsfromtext,images,audio,video;plusitcompletesmissingpiecesthroughdatafusion[1].
Therefore,thebigdatamustbethroughthecomputerstatistics,comparison,analysisofthedatacanbetheobjectiveresults.
Nowelectroniccommercesystemsofeverytransaction,everyinputandeverysearchcanasdata,datathroughthecomputersystemtodothescreening,sorting,analysis,sothattheanalysisresultsisnotonlyanobjectiveconclusion,moreabletohelpbusinessprovidedthedecision-makingofenterprisesandalsocollectedusefuldatacanalsobereasonableplanning,activelyguidethedevelopmentoflargerpowerconsumption,andmoreeffectivemarketingandpromotion.
Withtheincreasingamountofdataintheelectroniccommercesystem,theneedforalargenumberofdatadepthanalysisisincreasinglyurgent.
Therefore,theuseofasimpleandhighscalabilityoftheprogramfortheanalysisofproductrecommendationisparticularlyimportant.
Atpresentdomesticmanyecommercesitesusecollaborativefilteringalgorithm,suchasAmazon,Dangdang,collaborativefilteringalgorithmismainlydividedintobasedontheitemsofthecollaborativefilteringalgorithmanduserbasedcollaborativefilteringalgorithm.
Basedonitemsofcollaborativefilteringalgorithmistomeasurethesimilaritybetweenitemsaccordingtotheuser'spreferences,donotneedtoconsidertheitemspecificcontentfeatures,sothealgorithmismainlyusedine-commercerecommendationandmovierecommendationdomain,thealgorithmwhileinthefieldofelectroniccommercerecommendationhasbeenacertaindegreeofsuccess.
Butinmassivedataarerecommendedwhenthedataisrecommendedperformanceisnothighandthedatainformationlackofsharingandextendedtheleadtothehardwarerequirementscomparedhigherinherentshortcomingsmakeitdidnotreceiveapromotionandsupportofenterpriseelectroniccommerce[2].
SoifweuseMapReducetoachievedistributedparallelcomputing,itwillgreatlyimprovetheefficiencyandperformanceofthealgorithm,andpromotethefurtherdevelopmentofthealgorithm[3-4].
Basedontheitemsofthecollaborativefilteringalgorithmisaccordingtoitemsimilarityanduserhistoryaccessrecordrecommendedtotheusertogeneratealistofitems,buttherearesomesmallproblems,suchasdatasparsityproblemandwhenthemassofusersandthenumberofitems,theuserbehaviorandrecorddatawillgreatly,andthealgorithmforcomputingitemswithsimilarmatrixcostgreatly,algorithmefficiencyandperformancewillgreatlyreduce.
Aimingattheaboveproblems,theclusteringalgorithmhasalsobeenappliedtoacollaborativefilteringalgorithmbasedonitem,themassiveuserclusteringanalysis,soitcanavoidthequestioncarefully,foreachusertorecommendoperation.
Thefirstshoppinguserswithsimilarinterestsintoauserclass,withaclusterofuserrecommendedgoodsarethesame.
Thesecondistoreducethemassiveuserdimensionsbecomedozensofclusteringlimited,thetimecomplexityencounteredabottleneck,andtheparallelclusteringalgorithmusingMapReduceistheeffectivewaytosolvethebottleneck[5].
MapReduceisadistributedprogrammingmodelframeworkonHadoopplatform,intheconditionofnotfamiliarwiththeunderlyingdetailsofthedistributedimplementationoftheimplementationoftheprogram[6].
TheMapReduceasparallelcomputingprogrammingmodel,firstofalltousersofMapReducebasedparallelclusteringandaccordingtotheresultsofuserclustering,ineveryuserclassusingtheMapReduceparallelcollaborativefilteringrecommendation,eventuallygiveusersareasonablepersonalizedcommodityrecommendationlist.
Therunningtimeofdifferentnodesinthequantitativedataiscomparedwiththenewalgorithm.
Theresultsshowthatthedataprocessingperformanceoftheproposedalgorithmisgreatlyimproved.
TheprincipleofMapReduceprogrammingmodelMapReduceisinHadoopplatformbyusingparallelcomputingprogrammingmodel,thetechniqueisproposedbyGoogleforatypicaldistributedparallelprogrammingmodel,theuserintheMapReducemodeldevelopthemapandreducefunctions,canrealizetheparallelprocessing.
Mapwillberesponsiblefordatadispersion,Reduceisresponsiblefordataaggregation.
UsersonlyneedtoachieveMapandReducetwointerface,youcancompletethecalculationofTBleveldata.
BecauseoftheMapReducemodel,thedetailsoftheparallelandfault-tolerantprocessingareencapsulated,whichmakesprogrammingveryeasytoimplement.
MapReduceparallelcalculationisdividedintotwoparts,thefirststepisinitializingtheoriginalinputdatafileandthedatasetisdividedintoapluralityofacertainsizeofdatablock,facilitateparallelcomputing;thesecondstepistostartthemapandreducefunctionsalgorithmofparallelcomputing,finallyproducedthefinalresult.
Figure1ParallelflowchartofMapReduceKeytechnologyresearchandImplementation1.
ThebasicideaofthetraditionalcollaborativefilteringalgorithmbasedonItem-basedThetraditionalbasedonitemsofcollaborativefilteringalgorithmthebasicideaisdividedintothreeparts,thefirstpartistocomputethesimilaritybetweenitems,commonsimilaritycalculationmethodwithcosinesimilarity,Pearsoncorrelationcoefficient,Tanmotocoefficientcorrelationof.
ThispaperselectstheEuclideansimilarityalgorithm,asfollows:TheassumptionisthatthereisavectorXandavectorY:X=(1x,2x,3x),Y=(1y,2y,3y),UsingtheEuclideansimilarityalgorithmtocalculatethesimilaritybetweenXandYSvector(x,y)formulaisasfollows[7]:1(,)1(,)Sxydxy=+(1)Where(,)dxyisthedistancebetweenthevectorXandY,thecalculationformulaisasfollows:222231123(dxyxyyyxx2)Thesecondpartistocalculatetheuserratingsmatrixontheitemsofthegoodsaccordingtothesimilaritymatrix;thethirdpartistheitemsimilaritymatrixWandtheusersoftheitemscorematrixmultiplicationtoobtaintherecommendationresults.
TraditionalItem-Basedcollaborativefilteringrecommendationalgorithmbasedonitemisthestagethataffectstheperformanceofthealgorithm.
Ifthenumberofusersisn,thenumberofcommodityitemsism,thetimecomplexityoffindingalltheitemsinthenprojectisO(2m),thetotalsearchspaceisnusers,sothetimecomplexityofcomputingsimilarityisO(2nm).
Sowhencalculatingthesimilaritymatrixofitems,itisindependentofthesimilaritybetweenthecalculatedandtheotherpairofitemstoaproject,soitispossibletocalculatethesimilaritymatrix.
2.
AnewalgorithmofItem-basedbasedonMapReduceThenewalgorithmismainlydividedintotwosteps;thefirststepistheMapReduceimplementationofK-Meansalgorithmbasedonclusteringofusers.
ThesecondstepistoachievetheparallelrecommendationalgorithmofItem-basedonMapReduce,theproductofuserclusteringrecommendation.
2.
1ThenewalgorithmK-MeansbasedonMapReduceThebasicideaofthetraditionalK-meansclusteringalgorithm:fromMdataobjectsinarbitrarychoiceofKobjectsastheinitialclustercenters;fortherestoftheotherobjects,accordingtotheirdistanceandtheclustercenters,respectively,theyallocatedtoitsmostsimilarclustering;thencalculateeachreceivedanewclusteringalgorithmclusteringcenter;keeprepeatingtheprocessuntilnochangesinacore.
Inthek-meansalgorithmtocalculatethedistancebetweendataobjectsandclustercentersisthemosttime-consumingoperation.
ThedataobjectandKclustercenterdistancecomparisonatthesametime,datafromotherobjectscanalsobecomparedwiththeKdistanceofthecenterofcluster,sotheoperationcanbeparallelized[8]BasedonMapReduceparallelimplementationofK-meansalgorithmcanimprovethespeedoftheclusteringalgorithm,isdividedintothreesteps:thefirststep:themapfunction,foreverypointcalculationrecentlythecenterdistanceandthecorrespondingtothenearestclustercenter.
Thesecondstep:Combinefunction,justcompletedtheMapmachineonthemachinearecompletedwiththesamepointoftheclusterpointofsummation,reducetheamountofcommunicationandcomputationofReduceoperation.
ThisstepisthekeytotheuseofCombinefunctiononthemachineonthefirstofthesameclustermerge,reducedtotheReducefunctionofthetransferandtheamountofcomputation.
Thethirdstep:theReducefunction,theintermediatedataofeachclustercenterwillbeformedandthenewclustercentercanbeobtained.
Eachiterationisrepeatedonthethreestep.
Figure2ParallelFlowChartofK-meansAlgorithmbasedonMapReduce2.
2thecollaborativefilteringalgorithmbasedonMapReduceforparallelimplementationofItem-basedBasedonthesimilaritycalculationformulamentionedabove(1),thispaperpresentsacollaborativefilteringrecommendationalgorithmbasedonMapReduce.
Algorithm1ThecollaborativefilteringrecommendationalgorithmbasedonMapReduceINPUT:Userinformationfile,Iteminformationfile,IntendeduserOUTPUT:IntendeduserrecommendedlistTheprocessisasfollows:Step1:Transformingtheuservectorintoanitemvector;Step2:Parallelcalculationofthesimilaritybetweenitems;thecalculationofthesimilaritybetweenitemsaccordingtotheformula(2)tocalculate;Step3:Similaritymatrixofparallelcomputingobjects;Step4:Parallelcomputinguserratingmatrix;inthecalculationoftheuser'sscoringmatrix,iftheuserisnotontheitemstoomuch,thenthedefaultscoreis1;Step5:Theresultsobtainedbythemultiplicationofthesimilaritymatrixofparallelcomputingobjectsandtheuser'sscorematrixarerecommended.
Experimentalresultanalysis1.
experimentalenvironmentThesimulationexperimentusingVMware_Workstation_10.
0.
3,virtualizationsoftwaretovirtualHadoopcloudplatform.
EightvirtualmachinesareinstalledonthevirtualHadoopcloudplatform,andaHadoopclusterenvironmentisbuiltontheseeightvirtualmachines.
OneofthevirtualmachineasagoodJobTrackernodeNameNode,theothersevenvirtualmachinesdeployedTaskTrackerandDataNode.
Thesemachinesareinthesamelocalareanetwork.
Theexperimentuseseightsetsofvirtualmachinehardwareconfigurationandsoftwareconfigurationasshownintable1:Table1HadoopClusterConfigurationOSCentos6.
4JDKVersion1.
6.
0Hadoop1.
1.
2HardWare2GRAM100GHardDisk2.
ExperimentandanalysisBasedonMapReduceparallelimplementationofItem-basedcollaborativefilteringalgorithminparallelmodeexpansionrateperformancecomparisontest,selectthesizeofthedataset,respectively,intheefficiencyof1-8nodesrunning.
Theexperimentalresultsareshownbelow:Figure3PerformanceTestChartFigure3isbasedonMapReduceparallelimplementationofitembasedcollaborativefilteringalgorithmcantestchart,theXaxisisthenumberofclients,they-axisistheresponsetimeofthesystem.
TheexperimentalresultsshowthatbasedonMapReduceparallelimplementationofitembasedcollaborativefilteringalgorithmperformancecomparedtothetraditionalrecommendationalgorithmissignificantlyimproved.
ConclusionInthispaper,anewalgorithmofcollaborativefilteringalgorithmbasedonMapReduceisproposed.
Theexperimentresultsshowthatthenewalgorithmhashighefficiencyandcanachievehighperformanceatalowcost.
Butinthispaper,theuserclusteringiscompletedonthebasisoftheuserwithasmallnumberofattributes,forhighdimensionalattributesoftheusergroups,butalsotodofurtherresearch.
Inadditiontothenewalgorithminthispaperhasbeenputforward,wewillcontinuetoimprovetheexperimentalmethod,andconstantlyimprovetheaccuracyoftherecommendationalgorithm.
References[1]Chenruming,Challenges,valuesandcopingstrategiesintheeraofbigdata[J].
MobileCommunications.
2012(17):14-15.
[2]SunLingfang,ZhangJing.
ElectronicrecommendationmechanismbasedonRFMmodelandcollaborativefiltering[J].
JournalofJiangsuUniversityofScienceandTechnology(NaturalScienceEdition).
2010,24(3):285-289.
[3]LIGai,PANRong.
etCollaborativefilteringalgorithmparallelizeresearchbasedonlargedatasetsa[J].
ComputerEngineeringandDesign,2012,33(6):2437-2441.
[4]LIWenhai;XUShuren;DesignandimplementationofrecommendationsystemforE-commerceonHadoop[J].
ComputerEngineeringandDesign,2014(35):131-136.
[5]SUNTianhao,LIAnnenget.
ResearchonDistributedCollaborativeFilteringRecommendationAlgorithmBasedonHadoop[J].
ComputerEngineeringandApplications,2014,51(15):124:128[6]XieXuelian,LiLanyou.
ResearchonParallelK-meansAlgorithmBasedonCloundComputingPlatform[J].
ComputerMeasurement&Control,2014,22(5):1510-1512.
[7]YanCun,JiGenlin.
DesignandImplementationofItem-BasedParallelCollaborativeFilteringAlgorithm[J].
JOURNALOFNANJINGNORMALUNIVERSITY(NaturalScienceEdition),2014,37(1):71-75.
[8]WAGNFei,QinXiaolin.
Algorithmfork-meansBasedonDataStreaminCloudComputing[J].
ComputerScience,2015,42(11):235:239.

ParkinHost:俄罗斯离岸主机,抗投诉VPS,200Mbps带宽/莫斯科CN2线路/不限流量/无视DMCA/55折促销26.4欧元 /年起

外贸主机哪家好?抗投诉VPS哪家好?无视DMCA。ParkinHost今年还没有搞过促销,这次parkinhost俄罗斯机房上新服务器,母机采用2个E5-2680v3处理器、128G内存、RAID10硬盘、2Gbps上行线路。具体到VPS全部200Mbps带宽,除了最便宜的套餐限制流量之外,其他的全部是无限流量VPS。ParkinHost,成立于 2013 年,印度主机商,隶属于 DiggDigi...

旅途云(¥48 / 月),雅安高防4核4G、洛阳BGP 2核2G

公司成立于2007年,是国内领先的互联网业务平台服务提供商。公司专注为用户提供低价高性能云计算产品,致力于云计算应用的易用性开发,并引导云计算在国内普及。目前,旅途云公司研发以及运营云服务基础设施服务平台(IaaS),面向全球客户提供基于云计算的IT解决方案与客户服务,拥有丰富的国内BGP、双线高防、香港等优质的IDC资源。点击进入:旅途云官方网商家LOGO优惠方案:CPU内存硬盘带宽/流量/防御...

NameCheap新注册.COM域名$5.98

随着自媒体和短视频的发展,确实对于传统的PC独立网站影响比较大的。我们可以看到云服务器商家的各种促销折扣活动,我们也看到传统域名商的轮番新注册和转入的促销,到现在这个状态已经不能说这些商家的为用户考虑,而是在不断的抢夺同行的客户。我们看到Namecheap商家新注册域名和转入活动一个接一个。如果我们有需要新注册.COM域名的,只需要5.98美元。优惠码:NEWCOM598。同时有赠送2个月免费域名...

centos6.0为你推荐
急救知识纳入考试100%的大学生有学习现场急救知识的欲望吗对对塔为什么不能玩天天擂台?(对对塔)李子柒年入1.6亿宋朝鼎盛时期 政府财政收入有将近1亿贯铜钱,那么GDP是多少呢?www.7160.com电影网站有那些rawtools照片上面的RAW是什么意思,为什么不能到PS中去编辑www.78222.com我看一个网站.www.snw58.com里面好有意思呀,不知道里面的信息是不是真实的103838.com39052.com这电影网支持网页观看吗?bbs2.99nets.com让(bbs www)*****.cn进入同一个站www.toutoulu.comSEO行业外链怎么做?铂金血痕“斑斑的血痕”是什么意思?
greengeeks linode日本 cloudstack godaddy优惠码 免备案cdn 国外私服 英文简历模板word unsplash 服务器架设 镇江联通宽带 网站挂马检测工具 华为4核 架设服务器 空间论坛 河南m值兑换 100m空间 共享主机 shuang12 服务器防火墙 阿里云邮箱个人版 更多