TheNewAlgorithmoftheItem-basedonMapReduceZHAOWei1,a1CollegesoftwareTechnologySchool,ZhengzhouUniversityZhengzhou450002,Chinaaiezhaowei@163.
comKeywords:RecommendationsystemparallelcomputingClusteringAbstract.
TraditionalcollaborativefilteringalgorithmbasedonitemandK-meansclusteringalgorithmarestudied,theparallelalgorithmofcollaborativefilteringItem-basedonMapReduceisproposedbyusingMapReduceprogrammingmodel.
Thealgorithmismainlydividedintotwosteps,onestepisK-Meansalgorithmclusteringforusers,anotherstepistheparallelItem-basedalgorithmforclusteringuserrecommendation.
Experimentalresultsshowthatthealgorithmhasobtainedverygoodeffect,improvedtherunningspeedandexecutionefficiency,theimprovedalgorithmismuchsuitableforprocessingbigdata.
IntroductionBigdatausuallyincludesdatasetswithsizesbeyondtheabilityofcommonlyusedsoftwaretoolstocapture,curate,manage,andprocessdatawithinatolerableelapsedtime.
Bigdataishighvolume,highvelocity,and/orhighvarietyinformationassetsthatrequirenewformsofprocessingtoenableenhanceddecisionmaking,insightdiscoveryandprocessoptimization.
Volumemeansbigdatadoesn'tsample;itjustobservesandtrackswhathappens;Velocitymeansbigdataisoftenavailableinreal-time;Varietymeansbigdatadrawsfromtext,images,audio,video;plusitcompletesmissingpiecesthroughdatafusion[1].
Therefore,thebigdatamustbethroughthecomputerstatistics,comparison,analysisofthedatacanbetheobjectiveresults.
Nowelectroniccommercesystemsofeverytransaction,everyinputandeverysearchcanasdata,datathroughthecomputersystemtodothescreening,sorting,analysis,sothattheanalysisresultsisnotonlyanobjectiveconclusion,moreabletohelpbusinessprovidedthedecision-makingofenterprisesandalsocollectedusefuldatacanalsobereasonableplanning,activelyguidethedevelopmentoflargerpowerconsumption,andmoreeffectivemarketingandpromotion.
Withtheincreasingamountofdataintheelectroniccommercesystem,theneedforalargenumberofdatadepthanalysisisincreasinglyurgent.
Therefore,theuseofasimpleandhighscalabilityoftheprogramfortheanalysisofproductrecommendationisparticularlyimportant.
Atpresentdomesticmanyecommercesitesusecollaborativefilteringalgorithm,suchasAmazon,Dangdang,collaborativefilteringalgorithmismainlydividedintobasedontheitemsofthecollaborativefilteringalgorithmanduserbasedcollaborativefilteringalgorithm.
Basedonitemsofcollaborativefilteringalgorithmistomeasurethesimilaritybetweenitemsaccordingtotheuser'spreferences,donotneedtoconsidertheitemspecificcontentfeatures,sothealgorithmismainlyusedine-commercerecommendationandmovierecommendationdomain,thealgorithmwhileinthefieldofelectroniccommercerecommendationhasbeenacertaindegreeofsuccess.
Butinmassivedataarerecommendedwhenthedataisrecommendedperformanceisnothighandthedatainformationlackofsharingandextendedtheleadtothehardwarerequirementscomparedhigherinherentshortcomingsmakeitdidnotreceiveapromotionandsupportofenterpriseelectroniccommerce[2].
SoifweuseMapReducetoachievedistributedparallelcomputing,itwillgreatlyimprovetheefficiencyandperformanceofthealgorithm,andpromotethefurtherdevelopmentofthealgorithm[3-4].
Basedontheitemsofthecollaborativefilteringalgorithmisaccordingtoitemsimilarityanduserhistoryaccessrecordrecommendedtotheusertogeneratealistofitems,buttherearesomesmallproblems,suchasdatasparsityproblemandwhenthemassofusersandthenumberofitems,theuserbehaviorandrecorddatawillgreatly,andthealgorithmforcomputingitemswithsimilarmatrixcostgreatly,algorithmefficiencyandperformancewillgreatlyreduce.
Aimingattheaboveproblems,theclusteringalgorithmhasalsobeenappliedtoacollaborativefilteringalgorithmbasedonitem,themassiveuserclusteringanalysis,soitcanavoidthequestioncarefully,foreachusertorecommendoperation.
Thefirstshoppinguserswithsimilarinterestsintoauserclass,withaclusterofuserrecommendedgoodsarethesame.
Thesecondistoreducethemassiveuserdimensionsbecomedozensofclusteringlimited,thetimecomplexityencounteredabottleneck,andtheparallelclusteringalgorithmusingMapReduceistheeffectivewaytosolvethebottleneck[5].
MapReduceisadistributedprogrammingmodelframeworkonHadoopplatform,intheconditionofnotfamiliarwiththeunderlyingdetailsofthedistributedimplementationoftheimplementationoftheprogram[6].
TheMapReduceasparallelcomputingprogrammingmodel,firstofalltousersofMapReducebasedparallelclusteringandaccordingtotheresultsofuserclustering,ineveryuserclassusingtheMapReduceparallelcollaborativefilteringrecommendation,eventuallygiveusersareasonablepersonalizedcommodityrecommendationlist.
Therunningtimeofdifferentnodesinthequantitativedataiscomparedwiththenewalgorithm.
Theresultsshowthatthedataprocessingperformanceoftheproposedalgorithmisgreatlyimproved.
TheprincipleofMapReduceprogrammingmodelMapReduceisinHadoopplatformbyusingparallelcomputingprogrammingmodel,thetechniqueisproposedbyGoogleforatypicaldistributedparallelprogrammingmodel,theuserintheMapReducemodeldevelopthemapandreducefunctions,canrealizetheparallelprocessing.
Mapwillberesponsiblefordatadispersion,Reduceisresponsiblefordataaggregation.
UsersonlyneedtoachieveMapandReducetwointerface,youcancompletethecalculationofTBleveldata.
BecauseoftheMapReducemodel,thedetailsoftheparallelandfault-tolerantprocessingareencapsulated,whichmakesprogrammingveryeasytoimplement.
MapReduceparallelcalculationisdividedintotwoparts,thefirststepisinitializingtheoriginalinputdatafileandthedatasetisdividedintoapluralityofacertainsizeofdatablock,facilitateparallelcomputing;thesecondstepistostartthemapandreducefunctionsalgorithmofparallelcomputing,finallyproducedthefinalresult.
Figure1ParallelflowchartofMapReduceKeytechnologyresearchandImplementation1.
ThebasicideaofthetraditionalcollaborativefilteringalgorithmbasedonItem-basedThetraditionalbasedonitemsofcollaborativefilteringalgorithmthebasicideaisdividedintothreeparts,thefirstpartistocomputethesimilaritybetweenitems,commonsimilaritycalculationmethodwithcosinesimilarity,Pearsoncorrelationcoefficient,Tanmotocoefficientcorrelationof.
ThispaperselectstheEuclideansimilarityalgorithm,asfollows:TheassumptionisthatthereisavectorXandavectorY:X=(1x,2x,3x),Y=(1y,2y,3y),UsingtheEuclideansimilarityalgorithmtocalculatethesimilaritybetweenXandYSvector(x,y)formulaisasfollows[7]:1(,)1(,)Sxydxy=+(1)Where(,)dxyisthedistancebetweenthevectorXandY,thecalculationformulaisasfollows:222231123(dxyxyyyxx2)Thesecondpartistocalculatetheuserratingsmatrixontheitemsofthegoodsaccordingtothesimilaritymatrix;thethirdpartistheitemsimilaritymatrixWandtheusersoftheitemscorematrixmultiplicationtoobtaintherecommendationresults.
TraditionalItem-Basedcollaborativefilteringrecommendationalgorithmbasedonitemisthestagethataffectstheperformanceofthealgorithm.
Ifthenumberofusersisn,thenumberofcommodityitemsism,thetimecomplexityoffindingalltheitemsinthenprojectisO(2m),thetotalsearchspaceisnusers,sothetimecomplexityofcomputingsimilarityisO(2nm).
Sowhencalculatingthesimilaritymatrixofitems,itisindependentofthesimilaritybetweenthecalculatedandtheotherpairofitemstoaproject,soitispossibletocalculatethesimilaritymatrix.
2.
AnewalgorithmofItem-basedbasedonMapReduceThenewalgorithmismainlydividedintotwosteps;thefirststepistheMapReduceimplementationofK-Meansalgorithmbasedonclusteringofusers.
ThesecondstepistoachievetheparallelrecommendationalgorithmofItem-basedonMapReduce,theproductofuserclusteringrecommendation.
2.
1ThenewalgorithmK-MeansbasedonMapReduceThebasicideaofthetraditionalK-meansclusteringalgorithm:fromMdataobjectsinarbitrarychoiceofKobjectsastheinitialclustercenters;fortherestoftheotherobjects,accordingtotheirdistanceandtheclustercenters,respectively,theyallocatedtoitsmostsimilarclustering;thencalculateeachreceivedanewclusteringalgorithmclusteringcenter;keeprepeatingtheprocessuntilnochangesinacore.
Inthek-meansalgorithmtocalculatethedistancebetweendataobjectsandclustercentersisthemosttime-consumingoperation.
ThedataobjectandKclustercenterdistancecomparisonatthesametime,datafromotherobjectscanalsobecomparedwiththeKdistanceofthecenterofcluster,sotheoperationcanbeparallelized[8]BasedonMapReduceparallelimplementationofK-meansalgorithmcanimprovethespeedoftheclusteringalgorithm,isdividedintothreesteps:thefirststep:themapfunction,foreverypointcalculationrecentlythecenterdistanceandthecorrespondingtothenearestclustercenter.
Thesecondstep:Combinefunction,justcompletedtheMapmachineonthemachinearecompletedwiththesamepointoftheclusterpointofsummation,reducetheamountofcommunicationandcomputationofReduceoperation.
ThisstepisthekeytotheuseofCombinefunctiononthemachineonthefirstofthesameclustermerge,reducedtotheReducefunctionofthetransferandtheamountofcomputation.
Thethirdstep:theReducefunction,theintermediatedataofeachclustercenterwillbeformedandthenewclustercentercanbeobtained.
Eachiterationisrepeatedonthethreestep.
Figure2ParallelFlowChartofK-meansAlgorithmbasedonMapReduce2.
2thecollaborativefilteringalgorithmbasedonMapReduceforparallelimplementationofItem-basedBasedonthesimilaritycalculationformulamentionedabove(1),thispaperpresentsacollaborativefilteringrecommendationalgorithmbasedonMapReduce.
Algorithm1ThecollaborativefilteringrecommendationalgorithmbasedonMapReduceINPUT:Userinformationfile,Iteminformationfile,IntendeduserOUTPUT:IntendeduserrecommendedlistTheprocessisasfollows:Step1:Transformingtheuservectorintoanitemvector;Step2:Parallelcalculationofthesimilaritybetweenitems;thecalculationofthesimilaritybetweenitemsaccordingtotheformula(2)tocalculate;Step3:Similaritymatrixofparallelcomputingobjects;Step4:Parallelcomputinguserratingmatrix;inthecalculationoftheuser'sscoringmatrix,iftheuserisnotontheitemstoomuch,thenthedefaultscoreis1;Step5:Theresultsobtainedbythemultiplicationofthesimilaritymatrixofparallelcomputingobjectsandtheuser'sscorematrixarerecommended.
Experimentalresultanalysis1.
experimentalenvironmentThesimulationexperimentusingVMware_Workstation_10.
0.
3,virtualizationsoftwaretovirtualHadoopcloudplatform.
EightvirtualmachinesareinstalledonthevirtualHadoopcloudplatform,andaHadoopclusterenvironmentisbuiltontheseeightvirtualmachines.
OneofthevirtualmachineasagoodJobTrackernodeNameNode,theothersevenvirtualmachinesdeployedTaskTrackerandDataNode.
Thesemachinesareinthesamelocalareanetwork.
Theexperimentuseseightsetsofvirtualmachinehardwareconfigurationandsoftwareconfigurationasshownintable1:Table1HadoopClusterConfigurationOSCentos6.
4JDKVersion1.
6.
0Hadoop1.
1.
2HardWare2GRAM100GHardDisk2.
ExperimentandanalysisBasedonMapReduceparallelimplementationofItem-basedcollaborativefilteringalgorithminparallelmodeexpansionrateperformancecomparisontest,selectthesizeofthedataset,respectively,intheefficiencyof1-8nodesrunning.
Theexperimentalresultsareshownbelow:Figure3PerformanceTestChartFigure3isbasedonMapReduceparallelimplementationofitembasedcollaborativefilteringalgorithmcantestchart,theXaxisisthenumberofclients,they-axisistheresponsetimeofthesystem.
TheexperimentalresultsshowthatbasedonMapReduceparallelimplementationofitembasedcollaborativefilteringalgorithmperformancecomparedtothetraditionalrecommendationalgorithmissignificantlyimproved.
ConclusionInthispaper,anewalgorithmofcollaborativefilteringalgorithmbasedonMapReduceisproposed.
Theexperimentresultsshowthatthenewalgorithmhashighefficiencyandcanachievehighperformanceatalowcost.
Butinthispaper,theuserclusteringiscompletedonthebasisoftheuserwithasmallnumberofattributes,forhighdimensionalattributesoftheusergroups,butalsotodofurtherresearch.
Inadditiontothenewalgorithminthispaperhasbeenputforward,wewillcontinuetoimprovetheexperimentalmethod,andconstantlyimprovetheaccuracyoftherecommendationalgorithm.
References[1]Chenruming,Challenges,valuesandcopingstrategiesintheeraofbigdata[J].
MobileCommunications.
2012(17):14-15.
[2]SunLingfang,ZhangJing.
ElectronicrecommendationmechanismbasedonRFMmodelandcollaborativefiltering[J].
JournalofJiangsuUniversityofScienceandTechnology(NaturalScienceEdition).
2010,24(3):285-289.
[3]LIGai,PANRong.
etCollaborativefilteringalgorithmparallelizeresearchbasedonlargedatasetsa[J].
ComputerEngineeringandDesign,2012,33(6):2437-2441.
[4]LIWenhai;XUShuren;DesignandimplementationofrecommendationsystemforE-commerceonHadoop[J].
ComputerEngineeringandDesign,2014(35):131-136.
[5]SUNTianhao,LIAnnenget.
ResearchonDistributedCollaborativeFilteringRecommendationAlgorithmBasedonHadoop[J].
ComputerEngineeringandApplications,2014,51(15):124:128[6]XieXuelian,LiLanyou.
ResearchonParallelK-meansAlgorithmBasedonCloundComputingPlatform[J].
ComputerMeasurement&Control,2014,22(5):1510-1512.
[7]YanCun,JiGenlin.
DesignandImplementationofItem-BasedParallelCollaborativeFilteringAlgorithm[J].
JOURNALOFNANJINGNORMALUNIVERSITY(NaturalScienceEdition),2014,37(1):71-75.
[8]WAGNFei,QinXiaolin.
Algorithmfork-meansBasedonDataStreaminCloudComputing[J].
ComputerScience,2015,42(11):235:239.
PIGYun是成立于2019年的国人商家,提供香港、韩国和美西CUVIP-9929等机房线路基于KVM架构的VPS主机,本月商家针对韩国首尔、美国洛杉矶CUVIP-AS29、GIA回程带防御等多条线路VPS提供6-8.5折优惠码,优惠后韩国首尔CN2混合BGP特惠型/美国洛杉矶GIA回程带10Gbps攻击防御VPS主机最低每月14.4元起。下面列出几款不同机房VPS主机配置信息,请留意不同优惠码。...
spinservers美国圣何塞机房的独立服务器补货120台,默认接入10Gbps带宽,给你超高配置,这价格目前来看好像真的是无敌手,而且可以做到下单后30分钟内交货,都是预先部署好了的。每一台机器用户都可以在后台自行安装、重装、重启、关机操作,无需人工参与! 官方网站:https://www.spinservers.com 比特币、信用卡、PayPal、支付宝、webmoney、Payssi...
vinahost怎么样?vinahost是一家越南的主机商家,至今已经成13年了,企业运营,老牌商家,销售VPS、虚拟主机、域名、邮箱、独立服务器等,机房全部在越南,有Viettle和VNPT两个机房,其中VNPT机房中三网直连国内的机房,他家的产品优势就是100Mbps不限流量。目前,VinaHost商家发布了新的优惠,购买虚拟主机、邮箱、云服务器、VPS超过三个月都有赠送相应的时长,最高送半年...
centos6.0为你推荐
渣渣辉商标渣渣辉传奇哪个职业好陈嘉垣陈浩民狼吻陈嘉恒是什么时候的事曹谷兰曹谷兰事件 有吧友知道吗丑福晋八阿哥胤禩有几个福晋 都叫啥名儿呀www.kk4kk.com猪猪影院www.mlzz.com 最新电影收费吗?mole.61.com摩尔庄园RK的秘密是什么?www.zjs.com.cn我的信用卡已经申请成功了,显示正在寄卡,怎么查询寄卡信息?103838.com39052.com这电影网支持网页观看吗?haole012.com012.com网站真的可以挂Q升级吗?机器蜘蛛有谁知道猎人的机械蜘蛛在哪捉的
新秒杀 全球付 lighttpd 创梦 百兆独享 柚子舍官网 中国网通测速 1美金 酷番云 绍兴电信 东莞服务器 电信托管 阿里云邮箱个人版 sonya winserver2008r2 godaddy中文 卡巴斯基免费版 达拉斯 cc攻击 kosskeb4 更多