1.5174xx53xx.com

xx53xx.com  时间:2021-04-07  阅读:()
CaspianJournalofAppliedSciencesResearch2(7),pp.
36-43,2013JournalHomepage:www.
cjasr.
comISSN:2251-9114EstimationofParametersforFrechetDistributionBasedonType-IICensoredSamplesKamranAbbas1,2,*,YincaiTang11SchoolofFinanceandStatistics,EastChinaNormalUniversity,Shanghai200241,China2DepartmentofStatistics,UniversityofAzadJammuandKashmir,Muzaffrabad,PakistanInthispaperweconsidermaximumlikelihoodestimatorsandleastsquaresestimatorsoftwo-parameterFrechetdistributionbasedontype-IIcensoredsample.
Themaximumlikelihoodestimatorsandleastsquaresestimatorsaredevelopedforestimatingtheunknownparameters.
TheobservedFisherinformationmatrixandconfidenceintervalsoftheparametersbasedonasymptoticnormalityarealsoderived.
Anextensivesimulationstudyiscarriedouttocomparetheperformancesofdifferentmethods.
2013CaspianJournalofAppliedSciencesResearch.
Allrightsreserved.
Keywords:Maximumlikelihoodestimator;Leastsquaresestimator;Rootmeansquarederror;Frechetdistribution;Type-IIcensoring1.
IntroductionThelengthofthelifetestsofitemscannotbeobservedfailuretimesexactly.
Generallythereareconstraintsonthelengthoflifetestsorotherreliabilitystudies.
Duringtheanalysisofhighlyreliableitems,thetestinghastobestoppedbeforealloftheitemshavefailedasthereislimitedavailabilityoftesttime.
Lifeteststerminatedafteraspecifiednumberoffailuresareknownastype-IIcensoringorfailurecensoring(MeekerandEscober1998).
Intype-IIcensoring,weobserve1,2,.
.
.
,rxxx,whererisspecifiedinadvance.
ThetestendsattimerXX=and()nrunitshavebeensurvived.
Inthisarticleweconsidertype-IIcensoredlifetimedata,whenthelifetimeoftheexperimentalunitfollowsaFrechetdistribution.
FrechetdistributionwasintroducedbyFrenchmathematicianMauriceFrechet(1878-1973)whoidentifiedpossiblelimitdistributionforthelargestorderstatisticduring1927.
TheFrechetdistributionhavebeenusedasanusefulmethodformodelingand*Correspondingaddress:SchoolofFinanceandStatistics,EastChinaNormalUniversity,Shanghai200241,ChinaE-mailaddress:kamiuajk@gmail.
com(KamranAbbas)2013CaspianJournalofAppliedSciencesResearch;www.
cjasr.
com.
Allrightsreserved.
analyzingseveralextremeeventssuchasacceleratedlifetesting,earthquake,flood,rainfall,seacurrentandwindspeed.
ThereforeFrechetdistributioniswellsuitedtocharacterizerandomvariablesoflargefeatures.
Inthispaper,thelifetimesofthetestitemsareassumedtofollowaFrechetdistributionwiththecumulativedistributionfunction(CDF)asfollows:()exp,0,,0Fxxxαβαβ=>>(1)Therefore,probabilitydensityfunction(PDF)oftheFrechetdistributionisgivenby1(,,)exp,0fxxxxααββααββ+=>(2)Wheretheparameterαdeterminestheshapeofthedistributionandβisthescaleparameter.
Thisdistributiondoesnotseemtohavereceivedenoughattention.
ItisworthnotingthatFrechetdistributionisequivalenttotakingthereciprocalofvaluesfromastandardWeibulldistribution.
ApplicationsoftheFrechetdistributioninvariousfieldsaregiveninKamranAbbas;YincaiTang/EstimationofParametersforFrechetDistributionBasedonType-IICensoredSamples2(7),pp.
36-43,201337Harlow(2002)reportedthatitisimportantformodelingthestatisticalbehaviorofmaterialspropertiesforavarietyofengineeringapplications.
NadarajahandKotz(2008)discussedthesociologicalmodelsbasedonFrechetrandomvariables.
Further,applicationsofFrechetdistributionaregiveninZaharimetal.
(2009),andMubarak(2012).
Severalestimationmethodshavebeenproposedtoestimatetheparametersofdistributions.
Amethodofestimationmustbechosenwhichminimizessamplingerrors.
Amethodissuitabletoestimatetheparametersofonedistributionmightnotnecessarilybeasefficientforanotherdistribution.
Moreover,amethodisefficientinestimatingtheparametersmaynotbeefficientinpredictingisgivenbyAl-BaidhaniandSinclair(1987).
Themethodofmaximumlikelihood(ML)isthemostpopularintermsofthetheoriticalprospectiveandtheleastsquares(LS)methodiscomputationallyeasier.
HossainandZimmer(2003)carriedoutastudyonthecomparisonofestimationmethodforcompleteandcensoredsamplebasedonWeibulldistribution.
Similarly,HossainandHowlader(1996)comparedLSEandMLEforcompletesamples.
Moreover,Gumbel(1965)estimatedtheparameterofFrechetdistribution.
Further,AbbasandTang(2012)studieddifferentestimationmethodsforFrechetdistributionwithknownshape.
Moreover,Mann(1984)discussedtheestimationproceduresfortheFrechetandthethree-parameterWeibulldistribution.
TherelationshipsbetweenFrechet,WeibullandtheGumbeldistributionwerealsodiscussed.
Further,themaximum-likelihoodandmomentestimatorsaswellaslinearlybasedestimatorsinvolvingonlyafeworderstatisticsandpropertiesforlargeandsmallsampleswerealsodiscussed.
Inthispaper,comparisonamongtheMLEandLSEaremadeforthecaseofcensoreddataintermsofthebiasandtherootmeansquarederror(RMSE)oftheestimates.
Theplanofthepaperisasfollows.
InSection2,theMLEsandtheobservedFisherinformationmatrixfortheparametersundertype-IIcensoredarederived.
InSection3ofthisarticle,wederivetheLSEs.
InSection4,simulationstudyisdiscussedandfinallyconclusionsaregiveninSection5.
2.
MaximumLikelihoodEstimationLet(),.
.
.
,12XXXXr<=<Thelikelihoodfunctionofrfailuresand()nrcensoredvaluesisgivenby11(,)exp1expnrriLiirXXXαααααβββββ+==∏Then,()11lnlnln(1)ln1explnrriiiLrrnrirXXXααααβαββ==TheMLE'sofαandβsayαandβcanbeobtainedasthesolutionsof()11explnlnlnln,1explnrrriiiinrrrLrrirXXXXXXXααααβββααββββ==(3)()11lnexp.
1expriLrnrirrrXXXXαααααααββββββββ=(4)KamranAbbas;YincaiTang/EstimationofParametersforFrechetDistributionBasedonType-IICensoredSamples2(7),pp.
36-43,201338From(3)and(4),themaximumlikelihoodestimatesare()11,explnlnln1explnrrriiiirnrrrrirXXXXXXXαααααβββββββ===+()11.
1expexprriirXrrXXnrXαααβαβββ==However,itisnoteasytoobtainaclosedformsolutionfortheaboveequations;thereforeweuseLaplaceapproximationtocomputeMLEs.
TheobservedFisherinformationmatrixisobtainedbytakingthesecondandmixedpartialderivativesoflnLlnLwithrespecttoαandβ.
So,theobservedFisherinformationmatrixcanbewrittenas:()222,222lnlnlnlnLLLLIαβααββαβ=Where22221expln11explnrirrLrUiirrXXXXXXαααααααββββββ=12()expln1expUnrrrrrXXXXαααββββ=And()221expln1(1)1exprirLVrWWWirXXXααααααααβββαβββ=KamranAbbas;YincaiTang/EstimationofParametersforFrechetDistributionBasedonType-IICensoredSamples2(7),pp.
36-43,201339()12,exp1expVWnrrrrXXXααααββββ==2111111lnln1expln11lnln1exp11rriiirrrrrLriirrWrrXXXXXXXXXXXXααααααααβααββββαβαββββββββ===+Atwosided()1001%γapproximateconfidencelimitsforαandβbasedontheasymptoticnormalitycanbeconstructedas,,LLzUUzLLzUUzαασααασαββσβββσβ==+==+3.
LeastSquaresEstimationFromtheFrechetCDFin(1),onecaneasilywrite[]lnln()lnlnyFxxαβαWhichislinearmodelinyversuslnxlnxwithaslopeofαandaninterceptoflnαβ.
Let()iXbetheithorderfailureandiYbetheestimateof()()iFX.
Theleastsquareestimatesarethenexpressedas()()()lnln122ln1()lnirYrXYirrXiiXXα===Where()()1lnlnriiXrX==and1riiYrY==,subsequentlyβisexplnYXβα=Inthepresentstudy,HerdJohnsonmethod(Nelson,1982)isusedtoestimatethefailureprobability()()iFXandiYcanbeestimatedas(1),1,2,.
.
.
,1iiiirRRirr==+and01,R=isthereliabilityattime0.
Moreover,iristhereverserankfortheithfailure.
Therefore,()()lnln1iiRY=4.
SimulationStudySimulationstudyisconductedinordertocomparetheperformanceofpresentedMLEsandLSEsusingvarioussamplesize()nandfailureofthefirstindividuals()r.
IncomputingtheestimatessamplesaregeneratedfromtheFrechetdistributionusingthetransformation1(ln)iiXUαβ=,whereiUisuniformlydistributedrandomvariableandwereplicatedtheprocess5000times.
Inthepresentstudysimulationswerecarriedoutfordifferentchoicesofthevaluesofparametersineachcase.
Onlyonevalueofscaleparameter()βneedstobeconsidered,becausechangingthevalueofβisequivalenttomultiplythesamplevaluesbyaconstant.
ComparisonaremadeintermsofmeansandRMSEs(withinparenthesis)andresultsarepresentedinTable1forcomparisonpurpose.
Further,confidenceintervalsofαandβbasedonmaximumlikelihoodestimatorsalongwithcoverageprobabilitiesareconstructedusingtheasymptoticnormality.
TheresultsaresummarizedinTables2-3.
CaspianJournalofAppliedSciencesResearch2(7),pp.
36-43,2013JournalHomepage:www.
cjasr.
comISSN:2251-9114Table1:AverageestimatesandRMSEs(withinparenthesis)ofαandβnrMLLSαβαβ1032.
4335(1.
5174)1.
9210(0.
7077)0.
9315(0.
8191)3.
4047(1.
9930)51.
4585(0.
5528)2.
0995(0.
6088)1.
1547(0.
4771)1.
9585(0.
7555)71.
2779(0.
3758)2.
1587(0.
5794)1.
4251(0.
3191)1.
4938(0.
6800)91.
1980(0.
2948)2.
1957(0.
5538)1.
8071(0.
2944)0.
9344(1.
0826)1532.
5265(1.
5998)1.
7451(0.
6976)0.
7716(0.
3917)4.
2614(2.
6135)51.
4873(0.
5821)1.
9736(0.
5531)0.
9167(0.
3233)2.
5364(0.
8996)71.
2786(0.
3744)2.
0482(0.
4922)1.
0689(0.
2989)2.
0389(0.
4919)91.
1871(0.
2837)2.
0958(0.
4798)1.
2627(0.
2344)1.
4786(0.
6209)2032.
5335(1.
6130)1.
7013(0.
7377)0.
6945(0.
3305)4.
7459(3.
0448)51.
4875(0.
5807)1.
9263(0.
5464)0.
8084(0.
2519)2.
9055(1.
1511)71.
2902(0.
3830)1.
9869(0.
4734)0.
9164(0.
1980)2.
4215(0.
7350)91.
1984(0.
2937)2.
0458(0.
4350)1.
0521(0.
1936)1.
8252(0.
4993)3032.
5633(1.
6423)1.
6239(0.
7817)0.
6029(0.
4039)5.
4807(3.
6743)51.
5095(0.
6029)1.
8462(0.
5608)0.
6851(0.
3219)3.
4519(1.
6455)71.
3019(0.
3955)1.
9403(0.
4756)0.
7670(0.
2561)2.
9275(1.
0522)91.
2164(0.
3074)1.
9640(0.
4067)0.
8503(0.
1966)2.
2920(0.
5826)5032.
8013(1.
6623)1.
5085(0.
8987)0.
5290(0.
4814)6.
5922(4.
3206)51.
5426(0.
6285)1.
7677(0.
6186)0.
5800(0.
4201)4.
1993(2.
2008)71.
3006(0.
3977)1.
8813(0.
5023)0.
6302(0.
3683)3.
5238(1.
5686)91.
2237(0.
3117)1.
9035(0.
4268)0.
6880(0.
3106)2.
8340(0.
9530)8032.
7524(1.
8364)1.
5585(0.
9706)0.
4592(0.
5417)7.
7469(5.
3026)51.
5543(0.
6502)1.
7729(0.
7015)0.
5084(0.
4941)4.
8078(2.
9205)71.
3126(0.
4064)1.
8413(0.
5508)0.
5464(0.
4531)4.
1234(2.
1406)91.
2322(0.
3239)1.
8748(0.
4736)0.
5868(0.
4058)3.
3405(1.
4061)10032.
5542(1.
6326)1.
5316(0.
9829)0.
4362(0.
5602)7.
5373(5.
7916)51.
5647(0.
6553)1.
7322(0.
7157)0.
4797(0.
5241)5.
1514(3.
0976)71.
3210(0.
4170)1.
8294(0.
5723)0.
5140(0.
4849)4.
3783(2.
4050)91.
2251(0.
3208)1.
8793(0.
4891)0.
5494(0.
4475)3.
5626(1.
6036)Table2:Confidenceintervalsandcoverageprobabilities(CP)forαKamranAbbas;YincaiTang/EstimationofParametersforFrechetDistributionBasedonType-IICensoredSamples2(7),pp.
36-43,201341nr90%CICP95%CICP103(0.
4832,4.
0239)0.
7760(0.
5385,4.
3285)0.
90645(0.
6871,2.
2299)0.
8520(0.
5393,2.
3776)0.
93387(0.
6946,1.
8612)0.
8654(0.
5828,1.
9729)0.
93809(0.
7089,1.
6870)0.
8728(0.
6152,1.
7807)0.
9378153(1.
1117,3.
4914)0.
6290(0.
8400,4.
2130)0.
77725(0.
7666,2.
2080)0.
7860(0.
6286,2.
3460)0.
89607(0.
7271,1.
8301)0.
8244(0.
6215,1.
9358)0.
92549(0.
7231,1.
6511)0.
8726(0.
6342,1.
7400)0.
9366203(1.
3038,3.
7632)0.
5144(1.
0682,3.
9987)0.
63505(0.
8367,2.
1382)0.
7240(0.
7120,2.
2629)0.
83537(0.
7710,1.
8095)0.
7992(0.
6715,1.
9090)0.
89369(0.
7526,1.
6441)0.
8382(0.
6672,1.
7295)0.
9128303(1.
5640,3.
5627)0.
3922(1.
7326,3.
7541)0.
48745(0.
9597,2.
0594)0.
5992(0.
8543,2.
1648)0.
71007(0.
8500,1.
7539)0.
7156(0.
7634,1.
8405)0.
81329(0.
8128,1.
6200)0.
7690(0.
7355,1.
6974)0.
8614503(1.
8145,3.
3485)0.
2700(1.
6675,3.
4955)0.
32005(1.
1099,1.
9752)0.
4544(1.
0271,2.
0581)0.
53727(0.
9479,1.
6533)0.
5544(0.
8803,1.
7208)0.
65069(0.
8976,1.
5498)0.
6336(0.
8351,1.
6123)0.
7306803(2.
1014,3.
4035)0.
2198(1.
9767,3.
5282)0.
27065(1.
2118,1.
8968)0.
3368(1.
1462,1.
9624)0.
40627(1.
0326,1.
5926)0.
4404(0.
9790,1.
6463)0.
52049(0.
9729,1.
4915)0.
5060(0.
9232,1.
5412)0.
59281003(2.
0109,3.
0975)0.
2088(1.
9068,3.
2016)0.
25205(1.
2550,1.
8743)0.
3070(1.
1957,1.
9337)0.
36727(1.
0689,1.
5731)0.
3790(1.
0206,1.
6214)0.
45069(0.
9955,1.
4547)0.
4448(0.
9515,1.
4987)0.
5292Table3:Confidenceintervalsandcoverageprobabilities(CP)forβnr90%CICP95%CICP103(1.
3164,2.
5256)0.
5032(1.
2006,2.
6415)0.
60065(1.
7683,2.
4306)0.
6777(1.
7049,2.
4941)0.
77407(1.
4463,2.
8712)0.
6912(1.
3098,3.
0076)0.
78909(1.
5342,2.
8573)0.
7358(1.
4074,2.
9841)0.
8054153(1.
0203,2.
4700)0.
5450(0.
8814,2.
6089)0.
63585(1.
4399,2.
5073)0.
5594(1.
3377,2.
6096)0.
64027(1.
7774,2.
3081)0.
5694(1.
7266,2.
3590)0.
65889(1.
6328,2.
5588)0.
6030(1.
5441,2.
6475)0.
6812203(1.
0225,2.
3801)0.
4996(0.
8925,2.
5106)0.
60865(1.
4220,2.
4306)0.
5372(1.
3254,2.
5272)0.
6324KamranAbbas;YincaiTang/EstimationofParametersforFrechetDistributionBasedonType-IICensoredSamples2(7),pp.
36-43,2013427(1.
3034,2.
6704)0.
6396(1.
1724,2.
8013)0.
72489(1.
5749,2.
5167)0.
7834(1.
4847,2.
6069)0.
8646303(1.
3566,1.
8911)0.
2186(1.
3054,1.
9423)0.
26705(1.
5278,2.
1646)0.
3234(1.
4668,2.
2256)0.
38547(1.
5464,2.
3342)0.
5162(1.
4709,2.
4097)0.
59889(1.
5143,2.
4137)0.
6334(1.
4281,2.
4998)0.
7224503(0.
3216,2.
7500)0.
2680(0.
0939,2.
2822)0.
34205(1.
1636,2.
3717)0.
5346(1.
0479,2.
4874)0.
64007(0.
9596,2.
8031)0.
5415(0.
7830,2.
9796)0.
57009(1.
5547,2.
2524)0.
8946(1.
4879,2.
3192)0.
9452803(0.
6953,2.
4218)0.
4448(0.
5299,2.
5872)0.
58185(1.
4257,2.
1201)0.
2684(1.
3592,2.
1866)0.
31907(1.
6525,2.
0300)0.
3140(1.
6164,2.
0661)0.
36849(1.
3686,2.
3966)0.
6178(1.
2701,2.
4951)0.
72001003(1.
3164,1.
7468)0.
1946(1.
2752,1.
7880)0.
23185(0.
8458,2.
6185)0.
2182(0.
6760,2.
7883)0.
26047(1.
6568,2.
0020)0.
2406(1.
6238,2.
0350)0.
28749(1.
6926,2.
0659)0.
2634(1.
6569,2.
1016)0.
31505.
ConclusionFromtheresultsofthesimulationstudypresentedinTables1-3,weobservethefollowing:1.
ItcanbeseenthatLSmethodtendstounderestimateαandMLmethodtendstooverestimateαforvarioussamplesizesandoveralllevelsofcensoring.
Forfixedleveloftype-IIcensoring,MLEsofαdecreasewithsamplesizesothatthebiastendstobeworseforthelargersamplesizes.
Withinfixedlevelsofcensoring,theRMSEdecreaseswithsamplesizeforallmethodsofestimationdiscussedinthisstudy.
ItisalsoobservedthatCPsareincreasingwithinthefixedlevelofcensoring.
Moreover,thelengthofconfidenceintervalsdecreaseassamplesizeincreasesforfixedlevelofcensoring.
2.
Forestimatingαincaseoftype-IIcensoringitisrecommendedthatoneshouldusetheLS(HerdJohnson)estimationbecauseitprovidesthesmallestRMSEforallsamplesizesandalllevelsoftype-IIcensoring.
3.
Forβ,MLEshavesmallerRMSEthanLSEsforallsamplesizesinfixedleveloftype-IIcensoring.
IncaseofMLEsofβwithinthefixedleveloftype-IIcensoring,assamplesizeincreasesthebiasesandRMSEoftheestimatesdecrease.
Thisindicatedthattheestimatorsareconsistentandapproachestrueparametervalueassamplesizeincreases.
IntermsoftheRMSE,theMLEisslightlybetterforalllevelsoftype-IIcensoringandallsamplesizes.
Finally,inthepresentstudyweconsiderMLandLSestimationofFrechetdistributionbasedontype-IIcensoredsamplesandMLestimatescannotbeobtainedinexplicitform.
ReferencesAbbasK,TangY(2012).
ComparisonofestimationmethodsforFrechetdistributionwithknownshape.
CaspianJournalofAppliedSciencesResearch.
1(10):58-64.
Al-BaidhaniFA,SinclairCD(1987).
ComparisonofmethodsofestimationofparametersoftheWeibulldistribution.
Commun.
Statist.
Simula.
16:373-384.
FrechetM(1927).
Surlaloideprobabilitedelecartmaximum.
Ann.
Soc.
Polon.
Math,6(93).
GumbelEJ(1965).
AquickestimationoftheparametersinFrechet'sdistribution.
ReviewoftheInternationalStatisticalInstitute.
33(3).
HarlowDG(2002).
ApplicationsoftheFrechetdistributionfunction.
InternationalJournalofMaterialandProductTechnology.
5(17):482-495.
KamranAbbas;YincaiTang/EstimationofParametersforFrechetDistributionBasedonType-IICensoredSamples2(7),pp.
36-43,201343HossainA,HowladerHA(1996).
UnweightedleastsquaresestimationofWeibullparameters.
JournalofStatisticalComputationandSimulation.
54:265-271.
HossainAM,ZimmerWJ(2003).
ComparisonofestimationmethodsforWeibullparameters:completeandcensoredsamples.
JournalofStatisticalComputationandSimulation.
73(2):145-153.
MannNR(1984).
StatisticalestimationofparametersoftheWeibullandFrechetdistributions.
StatisticalExtremesandApplication.
NATOASISeries,131,81-89.
MeekerWQ,EscobarLA(1998).
StatisticalMethodsforReliabilityData.
JohnWileyandSons,INC.
MubarakM(2012).
ParameterestimationbasedontheFrechetprogressivetype-IIcensoreddatawithbinomialremovals.
InternationalJournalofQuality,StatisticsandReliability,2012,ArticleID245910.
NadarajahS,KotzS(2008).
SociologicalmodelsbasedonFrechetrandomvariables.
QualityandQuantity.
42:89-95.
NelsonW(1982).
AppliedLifeDataAnalysis.
JohnWileyandSons,NewYork.
ZaharimA,NajidiSK,RazaliAM,SopianK(2009,February,24-26).
AnalyzingMalaysianwindspeeddatausingstatisticaldistribution.
Proceedingsofthe4thIASME/WSEASInternationalConferenceonEnergyandEnvironment.
UniversityofCambridge.

BGP.TO日本和新加坡服务器进行促销,日本服务器6.5折

BGP.TO目前针对日本和新加坡服务器进行促销,其中日本东京服务器6.5折,而新加坡服务器7.5折起。这是一家专门的独立服务器租售网站,提供包括中国香港、日本、新加坡和洛杉矶的服务器租用业务,基本上都是自有硬件、IP资源等,国内优化直连线路,机器自动化部署上架,并提供产品的基本管理功能(自助开关机重启重装等)。新加坡服务器 $93.75/月CPU:E3-1230v3内存:16GB硬盘:480GB ...

无忧云:洛阳BGP云服务器低至38.4元/月起;雅安高防云服务器/高防物理机优惠

无忧云怎么样?无忧云,无忧云是一家成立于2017年的老牌商家旗下的服务器销售品牌,现由深圳市云上无忧网络科技有限公司运营,是正规持证IDC/ISP/IRCS商家,主要销售国内、中国香港、国外服务器产品,线路有腾讯云国外线路、自营香港CN2线路等,都是中国大陆直连线路,非常适合免备案建站业务需求和各种负载较高的项目,同时国内服务器也有多个BGP以及高防节点。一、无忧云官网点击此处进入无忧云官方网站二...

LetBox:美国洛杉矶/新泽西AMD大硬盘VPS,10TB流量,充值返余额,最低3.3美元两个月

LetBox此次促销依然是AMD Ryzen处理器+NVME硬盘+HDD大硬盘,以前是5TB月流量,现在免费升级到10TB月流量。另外还有返余额的活动,如果月付,月付多少返多少;如果季付或者半年付,返25%;如果年付,返10%。依然全部KVM虚拟化,可自定义ISO系统。需要大硬盘vps、大流量vps、便宜AMD VPS的朋友不要错过了。不过LetBox对帐号审核严格,最好注册邮箱和paypal帐号...

xx53xx.com为你推荐
梦之队官网NBA梦之队在哪下载?丑福晋男主角中毒眼瞎毁容,女主角被逼当丫鬟,应用自己的血做药引帮男主角解毒的言情小说同一服务器网站同一服务器上的域名/网址无法访问51sese.com谁有免费电影网站百度指数词百度指数是指,词不管通过什么样的搜索引擎进行搜索,都会被算成百度指数吗?www.ijinshan.com驱动人生是电脑自带的还是要安装啊!?在哪里呢?没有找到www.175qq.com请帮我设计个网名www.1diaocha.com请问网络上可以做兼职赚钱吗?现在骗子比较多,不敢盲目相信。请大家推荐下鹤城勿扰非诚勿扰 怀化小伙 杨荣是哪一期龚如敏请问这张图片出自哪里?
查询ip 查域名 国外永久服务器 permitrootlogin 华为云主机 网通代理服务器 ibrs php空间申请 美国在线代理服务器 免费测手机号 太原网通测速平台 支付宝扫码领红包 双线asp空间 免费asp空间 中国linux 防cc攻击 免费蓝钻 国外网页代理 google搜索打不开 winds 更多