describe703hh.com

703hh.com  时间:2021-04-09  阅读:()
Seediscussions,stats,andauthorprofilesforthispublicationat:https://www.
researchgate.
net/publication/7324329Lipid-basednanoparticlesforcontrast-enhancedMRIandmolecularimaging.
NMRBiomedArticleinNMRinBiomedicine·February2006ImpactFactor:3.
04·DOI:10.
1002/nbm.
1011·Source:PubMedCITATIONS386READS5955authors,including:GustavJStrijkersAcademischMedischCentrumUniversiteitv…253PUBLICATIONS6,338CITATIONSSEEPROFILEGeraldaAFvanTilborgUniversityMedicalCenterUtrecht20PUBLICATIONS1,305CITATIONSSEEPROFILEKlaasNicolayTechnischeUniversiteitEindhoven520PUBLICATIONS16,191CITATIONSSEEPROFILEAvailablefrom:KlaasNicolayRetrievedon:09May2016NMRINBIOMEDICINENMRBiomed.
2006;19:142–164PublishedonlineinWileyInterScience(www.
interscience.
wiley.
com).
DOI:10.
1002/nbm.
1011ReviewArticleLipid-basednanoparticlesforcontrast-enhancedMRIandmolecularimagingWillemJ.
M.
Mulder,1*GustavJ.
Strijkers,1GeraldaA.
F.
vanTilborg,1ArjanW.
Grifoen2andKlaasNicolay11BiomedicalNMR,DepartmentofBiomedicalEngineering,EindhovenUniversityofTechnology,P.
O.
Box513,5600MBEindhoven,TheNetherlands2AngiogenesisLaboratory,ResearchInstituteforGrowthandDevelopment,DepartmentofPathology,MaastrichtUniversityandUniversityHospital,P.
O.
Box5800,6202AZMaastricht,TheNetherlandsReceived18July2005;Revised13October2005;Accepted28October2005ABSTRACT:IntheeldofMRimagingandespeciallyintheemergingeldofcellularandmolecularMRimaging,exiblestrategiestosynthesizecontrastagentsthatcanbemanipulatedintermsofsizeandcompositionandthatcanbeeasilyconjugatedwithtargetingligandsarerequired.
Furthermore,therelaxivityofthecontrastagents,especiallyformolecularimagingapplications,shouldbeveryhightodealwiththelowsensitivityofMRI.
Lipid-basednanoparticles,suchasliposomesormicelles,havebeenusedextensivelyinrecentdecadesasdrugcarriervehicles.
ArelativelynewandpromisingapplicationoflipidicnanoparticlesistheiruseasmultimodalMRcontrastagents.
Lipidsareamphiphilicmoleculeswithbothahydrophobicandahydrophilicpart,whichspontaneouslyassembleintoaggregatesinanaqueousenvironment.
Intheseaggregates,theamphiphilesarearrangedsuchthatthehydrophobicpartsclustertogetherandthehydrophilicpartsfacethewater.
Inthelowconcentrationregime,awidevarietyofstructurescanbeformed,rangingfromsphericalmicellestodisksorliposomes.
Furthermore,amonolayeroflipidscanserveasashelltoencloseahydrophobiccore.
Hydrophobicironoxideparticles,quantumdotsorperuorocarbonemulsionscanbesolubilizedusingthisapproach.
MR-detectableanduorescentamphiphilicmoleculescaneasilybeincorporatedinlipidicnanoparticles.
Furthermore,targetingligandscanbeconjugatedtolipidicparticlesbyincorporatinglipidswithafunctionalmoietytoallowaspecicinteractionwithmolecularmarkersandtoachieveaccumulationoftheparticlesatdiseasesites.
Inthisreview,anoverviewofdifferentlipidicnanoparticlesforuseinMRIisgiven,withthemainemphasisonGd–basedcontrastagents.
Themechanismsofparticleformation,conjugationstrategiesandapplicationsintheeldofcontrast-enhanced,cellularandmolecularMRIarediscussed.
Copyright#2006JohnWiley&Sons,Ltd.
KEYWORDS:Lipid-basednanoparticles;contrast-enhancedmagneticresonanceimaging;molecularimaging;micelles;liposomes;microemulsionsINTRODUCTIONMagneticresonanceimaging(MRI)isthemostversatileimagingmethodavailableinbothclinicalandresearchsettings.
ThesignalofMRIisdependentonthelong-itudinal(T1)andtransverse(T2)protonrelaxationtimesofmainlywaterandthereforedifferencesinprotonrelaxationtimesresultindifferencesincontrastinMRimages(1).
Theintrinsicrelaxationtimesoftissuewateraredependentonthephysiologicalenvironmentandmaybealteredinpathologicaltissue.
Thischangemayshowlittlespecicityandoccuratalatestageofthedisease.
Therefore,amorespecicandearlierdetectionofpathologywithMRIishighlydesirable.
Therelaxationtimesoftissuecanbealteredwithcontrastagentsthatdecreasethelongitudinalandtransverserelaxationtime.
TheabilityofacontrastagenttoshortenT1andT2isdenedastherelaxivity(2),r1orr2,andisexpressedinmM1s1.
Ingeneral,therearetwoclassesofMRcontrastagents.
Ontheonehand,thereareagentsthathavealowr2/r1ratioandthereforegeneratepositivecontrastinT1-weightedimages.
Thesepositivecontrastagents(3)usuallyareparamagneticcomplexesofGd3orMn2ions.
Ontheotherhand,therearesuperpara-magneticcontrastagentswithahighr2/r1ratio,whichcausedarkspotsinT2-andT2*-weightedimagesandarethereforereferredtoasnegativecontrastagents(4).
Thesecontrastagentsareusuallybasedonironoxideparticles.
MRIapplicationsarebecomingmoreandmoredepen-dentoncontrastagents.
ThecombinationofMRIandcontrastagentsgreatlyenhancesthepossibilitiestodepictthevascularsystem(5),inamedtissueasinarthritis(6),tumorangiogenesis(7,8),atheroscleroticplaques(9,10)andthebreakdownoftheblood–brainbarrierrelatedtopathologiessuchasmultiplesclerosis(11).
WithintheemergingeldofcellularandmolecularMRI,contrastagentshavebecomeanessentialelementofthetechnique.
Copyright#2006JohnWiley&Sons,Ltd.
NMRBiomed.
2006;19:142–164*Correspondenceto:W.
J.
M.
Mulder,BiomedicalNMR,DepartmentofBiomedicalEngineering,EindhovenUniversityofTechnology,P.
O.
Box513,5600MBEindhoven,TheNetherlands.
E-mail:w.
j.
m.
mulder@tue.
nlTheaimofmolecularandcellularMRimagingistoimagenon-invasivelycellularandmolecularevents,usuallyre-latedtopathologyortransgeneexpression.
Differentimagingmethodshavealreadyshowntheircapabilitytofunctionasamolecularimagingmodality(12).
NuclearmethodssuchasPETandSPECTareespeciallyinterestingbecauseoftheirhighsensitivity.
Ontheotherhand,thespatialresolutionofthesemodalitiesislowandthedenitionofanatomyispoor.
MRIhasgoodspatialresolution,butinordertobecomesuitableasamolecularimagingmodalitytheinherentlylowsensitivityhastobedealtwith.
Thismayberealizedbyusingcontrastagentswithaveryhighrelaxivity,e.
g.
byusingnanoparticlescontainingahighpayloadofGdcomplexesorusingironoxideparticleswithahighpayloadofiron.
Roughly,MRcontrastagentscanbedividedintofourgroupsorclasses.
Therstgroupconsistsofnon-speciccontrastagentsandincludesboththelowmolecularweightcontrastagents,e.
g.
Gd–DTPA,andthehighmolecularweightbloodpoolagents(13),suchashigh-generationdendrimers(14).
TheseagentscanbeusedforMRangiographyandtomeasuretheperfusionandpermeabilitypropertiesoftissue.
Thesecondclassofmoleculesistargetedcontrastagents,whichareactivelydirectedtoaspecicmoleculartargetwithanappropriateligand.
AnearlyreportofsuchacontrastagentbySipkinsetal.
describedthedetectionoftumorangiogenesiswithanv3-specicantibodythatwasconjugatedtopoly-merizedparamagneticliposomes(15).
Thethirdgroupconsistsoftheso-calledsmartcontrastagents,alsoreferredtoasactivatedorresponsiveagents.
AnexampleofsuchanagentisEgadMe,acomplexwhichcontainsasugarmoietythatpreventswatertocoordinatewithGd3.
Enzymaticcleavageofthissugarby-galactosidaseimprovestheaccessibilityofwatertoGd3,whichresultsinanincreaseintherelaxivityofthecomplex(16).
Thefourthclassisthecelllabelingcontrastagents,suchasTAT–peptideconjugatedironoxideparticles(17)orGd–HPDO3A(18).
Inordertomeetthediverserequire-mentssketchedabove,highlypotent,innovative,specicandpreferablymultimodalcontrastagentsarerequired.
Lipid-basedcolloidalaggregates,suchasliposomes,micellesandmicroemulsions,havebeenusedextensivelyrecentdecadesasdrugcarrierstoimprovepharmacoki-neticpropertiesorthebioavailabilityofthedrug,toincreasethetarget-to-backgroundratioofthedrugortodeliverhydrophobicdrugs(19–23).
Theaboveparticlesarecomposedoflipidsand/orotheramphiphilicmole-cules.
Amphiphilesaremoleculeswithbothhydrophobicandhydrophilicpartsthatspontaneouslyassembleintoaggregatesinanaqueousenvironment.
Targetingligandscanbeconjugatedtothecolloidalparticlestoachievebindingtomolecularmarkersthatarespecicfordiseaseprocesses(24,25).
Fluorescentlabelscaneasilybein-corporatedforuorescencemicroscopy(26).
Arelatively,newapplicationsofnanoparticulatecol-loidslieintheemergingeldofcellularandmolecularMRimaging(27,28).
SmallGd-basedcomplexessuchasGd–DTPAandGd–DOTAarewidelyusedascontrastagentsforclinicalMRI(29).
Inordertoimprovephar-macokineticproperties,tointroducetargetspecicity,tomakethecontrastagentmultimodaland,mostimpor-tantly,toimprovetheT1andT2loweringcapability,lipidicaggregatescontainingMRIcontrastagentsareanattractiveoption.
Theaggregatemorphologycanvaryfrommicelles,throughmicroemulsionstoliposomes(30–35).
Colloidalparticlesincontrast-enhancedMRIhavemanyapplications.
Theycanbeusedasbloodpoolagentswithlongcirculationtimesformagneticresonancean-giography(MRA).
Anotherapplicationisthedetectionofpathologicaltissueswithenhancedvascularpermeability,whichoccursininammation,myocardialinfarction,atherosclerosis,breakdownoftheblood–brainbarrierandtumors.
Likelipidiccolloidsusedfordrugdelivery,theparticulatecontrastagentscanalsobeconjugatedtoligandstotargetthemtoamolecularmarkerofinterest,permittingindirectdetectionofmarkerdistributionbyMRI.
Furthermore,pH-andtemperature-sensitivelipo-somescanbeusedtovisualizeregionaldifferencesintheseparameterswithMRI.
Forcelllabelingpurposes,lipidicnanoparticlesalsoholdgreatpromise.
Inthisreview,wewillrstexplainthepropertiesofamphiphilicmoleculesandtheirassemblyintocolloidalaggregates.
Differentstrategiesforconjugationoftarget-ingligandsandpotentialbiologicaltargetswillbere-viewed.
ThefocusofthisreviewisonGd-containinglipidicnanoparticlesandtheiruseforcontrast-enhancedandmolecularMRI.
AMPHIPHILICAGGREGATESAmphiphilesAmphiphiles,alsoreferredtoassurfactants,aremole-culesthatcontainbothahydrophobic(non-polartail)andahydrophilic(polarhead)part[Fig.
1(A),I].
Becauseofthisdualcharacterandtheenergeticallyunfavorablecontactbetweenthenon-polarpartandwater,amphi-philesself-associateintoaggregatesofdifferentsizesandgeometries.
Thereisawidevariabilityinboththehydrophobicandhydrophilicpartsofamphiphilicmole-cules.
Thehydrophobicpartcanvaryinlengthandcanconsistofmultiplechains,creatingdifferentratiosbe-tweenthesizeofthehydrophobicandhydrophilicpart[Fig.
1(A)].
Forthepolarheadgroup,boththesizeandchargecanvary,dividingthesemoleculesintoionic(anionicorcationic)ornon-ionicamphiphiles.
ThesecharacteristicsandparameterssuchaspH,temperatureandconcentration,eventuallydeterminethegeometryoftheaggregatethatisformedinaqueoussolution.
Phos-pholipidsandcholesterol[Fig.
1(A)]arenaturallyoccur-ringamphiphilicmoleculesthatareimportantstructuralLIPID-BASEDNANOPARTICLESFORCONTRAST-ENHANCEDMRI143Copyright#2006JohnWiley&Sons,Ltd.
NMRBiomed.
2006;19:142–164elementsofbiologicalmembranes.
Inrecentyears,manyphospholipid-likestructureshavebeensynthesizedtobenetfromtheamphiphiliccharacterandusedtoachieveawidevarietyofaggregates.
AmphiphileaggregationThemajorforcesthatdirecttheself-assemblyofamphi-philicmoleculesintowell-denedstructuresinwaterderivefromthehydrophobicassociativeinteractionsofthetailsandtherepulsiveinteractionsbetweenthehydrophilicheadgroups(36,37).
Intheseaggregates,theamphiphilesareorganizedinsuchawaythatthehydro-phobicpartsclustertogetherandthehydrophilichead-groupsfacethewater.
Thelengthofthehydrophobicchain(s)andthesizeoftheheadgroupinrelationtothechaindeterminethecurvatureoftheaggregateandwhetheramicelle-likestructureorabilayer-likestructurewillbeformed.
Awidevarietyofstructuresarepossible.
Inthelowconcentrationrange,sphericalmicelles,cy-lindricalmicellesandbilayeredvesiclesareamongtheaggregatesformed.
Athigherconcentrations,cubic,la-mellarandhexagonalphasesmayoccur(36).
Further-more,microemulsionscanbeformedfromwater,oilandanamphiphile.
Thesearestableisotropicdispersionsofoilcoveredbyalipidmonolayer(38).
Anotherclassoflipidaggregatesisself-assembliesoflipidmono-orbilayersthatcontainasolidcore.
Hydrophobicnanopar-ticlessuchasironoxide(35)andquantumdots(39)canbeentrappedinamicellularshellofPEG–lipids,whileglass,silicaandmica,butalsoironoxidenanoparticles(40),canbecoveredbyalipidbilayer[Fig.
1(B),VI].
Forinvivoapplications,theamphiphilicaggregatesshouldbe(i)stableand(ii)biocompatibleand(iii)haveexcellentpharmacokineticproperties.
PossiblestructuresforinvivousearedepictedinFig.
1(B).
Inthecaseofmicellesthehydrophobicpartoftheamphiphilicmole-culesformsthecoreofthemicelleandthehydrophilicpartformsthemicellecorona.
Micellescanbeformedfromlipidswitharelativelylargeheadgroup,suchaslipidswithasinglefattyacylchain[Fig.
1(B),I].
Furthermore,phospholipidmixtureswithahighpropor-tionofPEG–lipidwillassembleintomicelles,owingtosterichindranceofthePEG–lipidheadgroups(41).
Lipo-somesarecreatedfrombilayer-forminglipids,whichareusuallycomprisedofapolarheadgroupandtwofattyacylchains[Fig.
1(B),II].
Thehydrophobicpartoftheselipidsoccupiesmorespacethanthatofmicelle-forminglipidsandthereforebilayerformationisenergeticallyfavorable.
Forstabilizationofthelipidbilayer,choles-terolisoftenincluded(42).
Inaddition,PEG–lipids(3–7%)maybeincorporatedinthebilayer[Fig.
1(B),III]toincreasecirculationhalf-livesinvivoandtoreduceFigure1.
(A)Schematicrepresentationofamphiphiliclipids.
(I)Amphiphilesconsistofahydrophilicheadandahydrophobictail.
(II)Micelle-forminglipidshavearelativelylargeheadcomparedwiththehydrophobicpart,whereas(III)bilayer-forminglipidsusuallyhavetwohydrophobictails.
(IV)PEG–lipidsareusedtoimprovepharmacokineticpropertiesand(V)cholesterolisusedtostabilizeliposomes.
(B)Possiblelipidaggregatesforinvivouse.
(I)MicellescanbepreparedfrommicellesforminglipidsandfromPEG–lipids.
(II)Aconventionalliposomeconsistsofaphospholipidbilayer.
(III)ImprovedstabilizationofliposomescanbeachievedbyincorporatingasmallamountofPEG–lipidsandcholesterol.
(IV)Microemulsionsconsistofasurfactant(amphiphile)monolayercoveringoil.
(V)Micellescancontainahydrophobicnanoparticle.
(VI)Bilayeronnanoparticlesofsilica,mica,glassorironoxide144W.
J.
M.
MULDERETAL.
Copyright#2006JohnWiley&Sons,Ltd.
NMRBiomed.
2006;19:142–164interactionsoftheliposomeswithplasmaproteins(42).
Microemulsionsorhydrophobicallycoatednanoparticles(e.
g.
ironoxideparticlesorquantumdots)inmicellesarealsounderinvestigationforinvivouse.
Drugtargeting/deliveryLiposomeshavebeenstudiedextensivelytoimprovethepharmacokineticpropertiesofmainlywater-solubledrugs,whilemicellesandmicroemulsionsmaybeusedtodeliverdrugswithpoorwatersolubility(43–47).
Thishasresultedintheapprovalofseveralliposomaldrugformulations(48,49),whichhaveprovenespeciallysuc-cessfulintumortargeting(50).
Doxorubicinisthemostcommonlyusedanticanceragentinliposomalformula-tions(51).
Encapsulatingthisdruginliposomeshasledtoimproveddeliverytothetumorandareducedexposureofothertissues.
Cisplatin,anotherdrugwhichisusedinthetreatmentofsolidtumors,hasalsobeenencapsulatedinliposomalformulations.
Liposomalcisplatinhasnotbeenshowntobeveryeffectivethusfar(52),whichispartlyascribedtothelowwatersolubilityofcisplatinthatcausesalowencapsulationefciency.
Recently,anovellipidformulationwithanimprovedcisplatin-to-lipidratioandimprovedcytotoxicityhasbeendescribed(53).
Accumulationofliposomesatthedesiredsitecanbeimprovedbyprolongingthecirculationtime.
Conven-tionalliposomesarerapidlyeliminatedfromthecircula-tionbycellsofthereticulo-endothelialsystemintheliver.
TheclearancerateisenormouslydecreasedwhenliposomalsystemsarecoatedwithahydrophilicpolymersuchasPEG(54,55),whichresultsinimprovedbioavail-ability(56).
Manydrugsarepoorlywatersoluble,whichresultsinalowbioavailability.
Micellesarecurrentlyunderinvesti-gationascarriervehiclesofsuchhydrophobicdrugs(57,58).
Micellessolubilizethesedrugsbyincorporatingthemintotheirhydrophobiccoreandthusincreasethebioavailability.
Microemulsionshavealsobeeninvesti-gatedfortheirpotentialtoserveasadrugcarriervehicle.
Theyareinteresting,sincetheoilphasecancontainahighpayloadofhydrophobicdrugs(38,59).
Specicityforthedesiredtargettissueorcellscanbeobtainedbyconjugatingthesystemsportrayedabovewithligandssuchasantibodies,antibodyfrag-mentsandpeptides(58,60–62).
Conjugationstrategiesand(potential)targetsaredescribedinthefollowingsections.
CONJUGATIONSTRATEGIESInthispart,conjugationstrategieswillbrieybehigh-lighted.
Formorein-depthinformationwerefertoexcellentreviewsdescribingdifferentconjugationmeth-ods(63–65).
Therearetwomainoptionsfortheconjugationofatargetingligandtolipidicparticles:non-covalentlinkage,suchastheavidin–biotininteraction,orcovalentbinding.
Lessfrequentlyusedmethodsaretheincorporationofamphiphilictargetingproteinsinthelipidbilayerofliposomes(66)ortheuseofamhiphileswithafunctionalmoiety,suchasapeptide(67)orapeptidomimetic(68,69).
Lipidicnanoparticlescanbepreparedcontainingawidevarietyoffunctionalizedlipids.
Forthatpurpose,phosphatidylethanolamine(PE)withthefunctionalmoi-etyattachedtothephosphategroupviaaspacerisoftenused.
ThespacercanvaryinlengthandlipidscontainingaPEGspacerwithadistalfunctionalmoietyarealsoavailable.
Amongthefunctionalgroupsarebiotin,mal-eimide,PDP,carboxylicacidandamine.
Viathesefunc-tionalgroups,severaltargetingligands,suchasmAb,Fab,proteinsandpeptides,canbeconjugatedusingdifferentcouplingstrategies.
Twopopularcouplingmeth-odswillbeexplainedinmoredetail.
Avidin-biotinlinkageTheavidin–biotinlinkageistypiedbyitseleganceandsimplicity.
Avidin,atetramericproteinwithamolecularweightof68kDa,iscapableofstronglybindingfourbiotins(KA%1.
71015M1).
Thebiotin–avidininterac-tionhasbeenexploitedforconjugatingliposomeswithbiotinylatedproteins.
ThisstrategyhasalsobeenusedtolinkMRcontrastagentstoantibodies(15,70–72).
ThisconjugationmethodisdepictedschematicallyinFig.
2(B).
Alipidicnanoparticlecarryingalipidwithadistalbiotinisrstincubatedwithavidin.
Inasecondstep,theparticle–avidinconjugateisincubatedwithabiotinylatedligand,e.
g.
apeptideorantibody.
Althoughthismethodissimpleandeffective,theintroductionofavidinintotheconjugatehascertaindrawbacks.
First,thesizeofavidinwillconsiderablyincreasethesizeoftheconjugate.
Moreimportantly,avidinisknown(73)tobeimmunogenicandtoberapidlyclearedbytheliver.
Infact,thispropertyofavidinhasbeenexploitedtochaseandclearantibodies(74)andMRIcontrastagentsfromthecirculation(8).
Covalentlylinkingtheligandtothelipidicparticledirectlywouldleadtoasmallerconjugate,whichhasmorefavorablepharmacokineticproperties.
CovalentbindingCovalentconjugationofligandstoalipidicparticlecanbeachievedwithseveralmethods.
Roughly,thesemeth-odscanbedividedintheformationof(i)anamidebond,betweenactivatedcarboxylgroupsandaminogroups,(ii)adisuldebondand(iii)athioetherbond,betweenmaleimideandthiol.
Thelastapproachwillbediscussedinmoredetail[Fig.
2(C)],sinceitisbroadlyapplicable.
LIPID-BASEDNANOPARTICLESFORCONTRAST-ENHANCEDMRI145Copyright#2006JohnWiley&Sons,Ltd.
NMRBiomed.
2006;19:142–164First,theligandshouldexposeafreethiolgroup,neces-saryforbondformation.
Proteins,antibody(fragments)andpeptidesexposingafreecysteinecandirectlybeusedforcouplingtomaleimide[Fig.
2(A),III].
Peptidessynthesizedwithaprotectiveterminalthioacetategroupcanbeactivatedupondeacetylationwithhydroxylamine[Fig.
2(A),II].
Thisresultsintheconversionofthethioacetateintoathiolgroup.
Thesamestrategyisusedforproteinsthatareactivatedwithsuccinimidyl-S-acetylthioacetate(SATA)[Fig.
2(A),I].
SATAiscoupledtofreeaminogroupspresentintheproteinandwithhydroxyla-minethethioacetatemoietyisconvertedintoafreethiolgroup.
Thethiolligandsreactwithmaleimide-containingparticlesandformacovalentthioetherlinkage,asde-pictedschematicallyinFig.
2(C).
RELAXIVITYOFMACROMOLECULARCONTRASTAGENTSTherelaxivity,i.
e.
thepotencytoshortentheT1andT2relaxationtimesofwater,ofanMRIcontrastagentisdenedbythechangeinlongitudinalortransversalrelaxationratesperunitconcentrationofthecontrastagent(2,3).
Theconstantofproportionalityiscalledtherelaxivity,r1orr2,andisexpressedinmM1s1.
Furthermore,theratiobetweenr2andr1determineswhetheracontrastagentissuitableforcontrast-enhancedT1-weightedimagingorwhetheritcanbetterbeusedforcontrast-enhancedT2-andT2*-weightedimaging.
Theso-calledT1agents,typicallychelatesofGd3ions,havealowratioofr2tor1(usuallybetween1.
1and2)andgeneratepositivecontrast(bright/hotspotsinT1-weightedMRI),whereastheT2agentshavealarger2andgeneratenegativecontrast(dark/coldspotsinT2-andT2*-weightedMRI).
TherelaxivityofparamagneticGd3chelatesisde-terminedbythecomplexinterplayofmanyparametersgoverningthedipolarinteractionsbetweenwaterandtheparamagneticGdentity.
Acompletetreatmentwouldbebeyondthescopeofthisreviewandwethereforerestrictourselvestoaqualitativedescriptionofsomecommonobservations.
Themostimportantparametersforunder-standingtherelaxivityofmacromolecularcontrastagentsaretheexchangeratem,thecoordinationnumberandtherotationalcorrelationtimer.
Thecoordinationnum-berandtheexchangeratemdeterminetheamountofwatermoleculesthatcaneffectivelycoordinatewithFigure2.
(A)Introducingthiolgroupsin(I)proteinsorantibodiesand(II)peptides.
(III)Proteinandpeptidewithfreecystein.
(IV)Targetingligandswithafunctionalgroup,i.
e.
thiolorbiotin.
(B)Schematicrepresentationofavidin–biotinlinkageofaligandtoalipidicnanoparticle.
(C)Schematicrepresentationofmaleimide–thiollinkageofaligandtoalipidicnanoparticle146W.
J.
M.
MULDERETAL.
Copyright#2006JohnWiley&Sons,Ltd.
NMRBiomed.
2006;19:142–164Gd3andtherebyincreasetherelaxationrate.
Therota-tionalcorrelationtimerisimportantbecausethelowertumblingratesofmacromoleculesareresponsiblefortheincreaseinr1thatisobservedinatypicalrangeofeldstrengths.
Ausefulwaytogaininsightintotherelaxationbehaviorofmacromolecularcontrastagentsistorecordther1relaxivityasfunctionoffrequency,so-callednuclearmagneticrelaxationdispersion(NMRD).
TheNMRDproleofamacromolecularcontrastagentshowsatypicalpeakathigherfrequencies,inagreementwiththeincreaseintherotationalcorrelationtimesascom-paredwithlow-molecularweightGd3chelates.
Lipid-basedcontrastagentscanbeconsideredmacromolecularcontrastagentsandthetumblingrateoftheGdchelatesinsuchstructuresisstronglydecreased.
Asanexample,Fig.
3showstheNMRDprolesofGd–DTPAandatypicalGd-basedliposomalandmicellularcontrastagent.
TheNMRDprolesoftheliposomesandmicellesdisplaythetypicalpeakathigherfrequencies.
Thismeansthatattheclinicallyrelevanteldstrengthsthesecontrastagentshavethehighestionicrelaxivity.
Furthermore,theamountofGdchelatesperparticleishigh(varyingfrom50forsmallmicellestoseveralhundredthousandforliposomes).
Thisenhancestherelaxivitypercontrastagentparticleenormously.
T2contrastagentsusuallyaresuperparamagneticironoxideparticles.
ThemagneticmomentsofsuchparticlesaremuchlargerthanthatofGd3-containingchelates,typicallyuptomorethanthreeordersofmagnitudedependingontheirsize.
Asaconsequence,superpara-magneticparticleshaveasubstantiallylargerr2relaxivitycomparedwithparamagneticcontrastagents.
Theoriginofthisenhancedrelaxivityliesinthestronglocaleldgradientssurroundingthesuperparamagneticparticles,whichgiverisetoacceleratedlossofphasecoherenceofthesurroundingwaterprotonspins(4).
Increasedrelax-ivitycanbeobservedataconsiderabledistancefromthenanoparticlesince,incontrasttothedipolarrelaxation,thissusceptibility-inducedrelaxationdoesnotdependonadirectphysicalcontactbetweenprotonsandthepara-magneticentity.
Foramorequantitativeinsightintotherelaxationcharacteristicsofdifferentlipidiccontrastagentsdescribedintheliteraturewehavecompiledaselectionofreportedvaluesofr1and/orr2(Table1).
Directcomparisonsbetweendifferentagentsaredifcultbecauseofdifferenteldstrengthsandtemperaturesused.
Therefore,wehavegiventherelaxivityofGd–DTPAmeasuredunderthesameconditionsasareference.
InsomestudiesGd–DTPAwasnotmeasuredasareference.
Asareferencerelaxivityforthesecontrastagents,thevalueofGd–DTPAat298KaspresentedbyAimeetal.
(3)isgiven.
IncaseswhereonlyanNMRDprolewasavailableforagivencontrastagent,wereporttherelaxivityat20and60MHz.
Furthermore,itshouldbetakenintoconsiderationthattherelaxivityisexpressedasfunctionoftheGdconcentration.
Therelaxivityperparticleismuchhigher,sincetheparticlesdepictedinthetablecarryhighpayloadsofGdorFe.
BIOLOGICALTARGETSInthissection,anumberofpathologieswillbebrieydiscussedforwhichMRIandstate-of-the-artcontrastagentscanbeusedtoimageinvivotheinltrationofcellsandtheexpressionofbiologicalmarkerstoimprovethediagnosisofdiseaseandtodeveloptherapeuticstrategies.
InammationInammationisthebody'sresponsetodamage,infection,allergyorchemicalirritation.
Manydisordersareasso-ciatedwithinammation.
Inammationiscausativeandsymptomaticinthedestructionofcartilageinrheumatoidarthritis,typeIdiabetesandlossofintestinalfunctioninCrohn'sdisease.
Inammatoryresponsesarealsoob-servedincancer,whichisaccompaniedbythemassiverecruitmentofleukocytesingrowingtumors(75).
Incardiovasculardiseasessuchasmyocardialinfarctionandatherosclerosis,chronicinammationiscausallyrelatedtothepathology(76,77).
Furthermore,multiplesclerosis,ischemia-reperfusioninjuryaftercerebralstrokeandAlzheimer'sdiseasearecausedbyorasso-ciatedwithinammatoryprocesses(78).
Theinammatoryresponseinvolvesthemigrationofleukocytes,thecellsoftheimmunesystemsuchasneu-trophils,monocytes/macrophagesandlymphocytes,intodamagedorinfectedtissues.
RecruitmentofleukocytesisFigure3.
NMRDprolesofGd–DTPA-andGd–DTPA-BSAcontainingliposomesandmicellesLIPID-BASEDNANOPARTICLESFORCONTRAST-ENHANCEDMRI147Copyright#2006JohnWiley&Sons,Ltd.
NMRBiomed.
2006;19:142–164intricatelyregulatedbyinammatorycytokinessuchasinterferon-,tumornecrosisfactor-andinterleukin-1.
Inresponsetothesecytokines,endothelialcellsoverexpresscellsurfaceadhesionmolecules,includingtheselectins(e.
g.
E-selectin)thatareinvolvedinrollingofleukocytesalongthevascularwall,immunoglobulin-likeadhesionmoleculessuchasintercellularadhesionmolecule-1(ICAM-1)andvascularcelladhesionmolecule(VCAM-1)thatsupportrmadhesionandextravasationofleukocytesintothetissue.
Imagingofinammatorysitescanbeachievedbymakinguseofseveraldifferentcharacteristicsofaffectedtissues.
First,thespecicoverexpressionofendothelialadhesionmoleculescausedbytheexposureTable1.
OverviewoftherelaxivitiesofseveraldifferentlipidicnanoparticulateMRIcontrastagentsaAggregateReferenceDescriptionFieldstrengthTemperature(K)r1Gd–DTPAbr1br2btypeLiposomesTilcocketal.
(112)Gd–DTPAinlumen1.
5T2.
790.
42liposomes400nmGd–DTPAinlumen1.
5T2.
791.
60liposomes70nmKimetal.
(130)MHE–DTTAin0.
47T4.
131.
9bilayerliposomesBME–DTTAin0.
47T4.
127.
1bilayerliposomesTilcocketal.
(132)Stearylester–DTPA–20MHzc30823GdinbilayerliposomesStearylamide–DTPA–20MHzc30813GdinbilayerliposomesStorrsetal.
(30)Polymerizedliposomes2.
0T4.
2412.
2longspacerPolymerized2.
0T4.
245.
7liposomesshortspacerGlogardetal.
(34)AmphiphilicGd20MHzc3004d47chelatesinbilayerAmphiphilicGd60MHzc3004.
5d25chelatesinbilayerBulteandDeMagnetoliposomes1.
5T3103210Cuyper(40)Stealth1.
5T3103240magnetoliposomesBertinietal.
(137)Paramagnetic20MHzc2984d12liposomesParamagnetic60MHzc2984.
5d12.
5liposomesStrijkersetal.
(149)Gd–DTPA–20MHz3103.
88.
2BSA-containingliposomesMicellesNicolleetal.
(193)Gadouorine20MHzc2984d22Gadouorine60MHzc2984.
5d12Hovlandetal.
(135)Amphiphilic20MHzc2984d26GdPCTA-[12]60MHzc2984.
5d28Accardoetal.
(156)Mixedmicellar20MHzc2984d18aggregates60MHzc2984.
5d18MulderandMicellulariron20MHzc2984d15200vanTilborgoxideMCIO(unpublisheddata)MicroemulsionWinteretal.
(194)NanoparticlesGd–1.
5T3134.
5d17.
725.
3DTPA–BOANanoparticles1.
5T3134.
5d33.
750Gd–DTPA–PEHigh-densityFriasetal.
(102)HDL-likenanoparticles65MHz2984.
5d10.
4lipoproteinaNotethattheionicrelaxivityisgiven.
Therelaxivityperparticleismuchhigher,sincetheparticlesdepictedinthetablecarryhighpayloadsofGdorFe.
br1Gd–DTPA:T1relaxivityofGd–DTPAexpressedinmM1s1.
r1:T1relaxivityofthecontrastagentreferredtoexpressedinmM1s1.
r2:T2relaxivityofthecontrastagentreferredtoexpressedinmM1s1.
cNMRDprolewasgiveninthereference.
dDatafromAimeetal.
(3).
148W.
J.
M.
MULDERETAL.
Copyright#2006JohnWiley&Sons,Ltd.
NMRBiomed.
2006;19:142–164toinammatorycytokinescanbeusedtotargetcontrastagents.
Second,becauseoftheenhancedpermeabilityofbloodvesselsduetoanongoingangiogenicresponse,injectionofanon-speciccontrastagent,preferablyalong-circulatingcontrastagentofrelativelyhighmole-cularweight,mayresultintheaccumulationofthecontrastagentattheinamedsite.
Furthermore,migra-tionofcellsinvolvedininammationcanbefollowedafterlabelingthecellswithanappropriatecontrastmaterial.
Thiscanbeachievedinvivo,whenacontrastagentistakenupbycells(79)(e.
g.
monocytes)inthecirculationorexvivo,whencellsarelabeledoutsidethebodyandsubsequentlyinjected(80).
Currently,mucheffortisbeingputintoresearchonthetargetedimagingofcelladhesionmoleculesinvolvedininammation.
Tar-getingoftheadhesionmoleculemaybedonewithantibodies,proteins,peptidesorsmallmoleculesconju-gatedtoanMRIcontrastagent.
Lipid-basedcontrastagentshavebeenusedforallthreestrategies(31,81).
AngiogenesisAngiogenesis,theformationofnewbloodvesselsfrompre-existingbloodvessels,isasequenceofeventsthatiskeyinmanypathologicalprocesses(14,82,83).
MRcontrastagentscancontributetothedetectionofangio-genicareasandvesselsviatwostrategies.
Intherststrategy,thepermeabilityoftheangiogenicvasculatureisdeterminedwithdynamiccontrast-enhancedMRI.
Re-cently,ithasbeendemonstratedthattheuseofcontrastagentsofhighmolecularweightgivesmostinsightintovasculaturepermeabilityinangiogenesis(14).
Asanexample,albumintriplylabeledwithauorescentlabel,Gd–DTPAandbiotinhasbeenusedtoinvestigateangio-genesisbymeasuringvascularpermeabilitywithacom-binationofuorescencemicroscopyandcontrast-enhancedMRI(8).
Therateofclearanceofthelatteralbumincontrastmaterialfromthecirculationcanbemanipulatedbyactivelyremovingitwithanavidinchase.
Lipid-basedcontrastagentscanbesynthesizedinawiderangeofsizes,usefulforprobingvascularpermeabilityandwithdifferentfunctionalmoieties,e.
g.
abiotinylatedlipidforanavidinchaseandauorescentlipidandthereforewouldbeverysuitablefortheapplicationsjustdescribed.
Thesecondstrategyistotargetcontrastagentstomarkersthatarespecicallyassociatedwithangiogenicallyactivatedendothelialcells.
Manycellsurfacereceptorsarestronglyexpressedonactivatedendothelialcellsofangiogenicvessels,ascomparedwithrestingendothelialcellsofbloodvesselsinnon-diseasedtissue.
Thesereceptorsincludev3-and1-integrins,vascularendothelialgrowthfactorreceptor(82),CD36andCD44(84).
Especiallythev3-integrinhasbeenshowntobeveryusefulasatargetfortherapiesandmolecularimagingcontrastagents.
Inadditiontov3-specicantibodies,thev3-specicRGDpeptideandpeptidomimeticshavebeenusedinseveralstudies.
Theexpressionofthisintegrinhasbeennon-invasivelyvisualizedintumor-bearingmicewithacombinationofradiolabeledRGDandpositronemissiontomography(85).
Genedeliverywithv3-targetedlipidicnanopar-ticlesintumor-bearingmiceresultedintumorcellapoptosisandsustainedregressionofthetumors(68).
ApoptosisApoptosis,orprogrammedcelldeath,isessentialfortissuedevelopmentandhomeostasis.
Deregulationoftheapoptoticprogramisoftenfoundtoplayacriticalroleintheetiologyofvariouspathologicalconditions,includingneurodegenerativediseases,autoimmunediseases,cardi-ovasculardiseases,tumordevelopmentandorgantrans-plantrejection.
Inaddition,chemotherapeuticdrugsorradiationtherapyoftenrelyontheinductionofapoptoticcelldeath.
Therefore,theinvivodetectionofapoptosiscouldbeofgreatimportancefortheevaluationofdiseaseprogressionordiseasetreatment.
Severalstudieshavebeenperformedinwhichthedetectionofapoptosiswasbasedontheexpressionofthelipidphosphatidylserine(PS)ontheouterlayeroftheapoptoticcellmembrane.
TheexpressionofthisphospholipidcanbedetectedwithannexinVorsynaptotagminIconjugates.
BothproteinsbindwithhighafnitytoPSinaCa2-dependentmanner.
Koopmanetal.
(86)werethersttodescribetheuseofFITC-conjugatedannexinVforthedetectionofapoptoticBcellswithowcytometry.
Therstinvivovisualizationofprogrammedcelldeathwascarriedoutwithradiola-beledannexinV(87)invariousanimalmodelsandthereafterinpatientswithacutemyocardialinfarction(88).
AnnexinV,conjugatedtouorescentdyes,hasbeenusedforinvivoopticalimaginginthebeatingmurineheart(89)andrecentlyseveralCy5.
5-conjugatedannexinVprobeshavebeenintroducedfornear-infrareduor-escentimaging(90).
AnnexinV-functionalizedcross-linkedironoxide(CLIO)wasdesignedasacontrastagentforMRI,whichwasadditionallylabeledwithCy5.
5toallowco-localizationwithopticalimagingtechniques(91).
Alternatively,conjugationofmultipleGd–DTPAmoleculesorsuperparamagneticironoxideparticles(SPIO)totheC2domainofsynaptotagminIwasshowntoallowthedetectionofapoptoticcellsinvitro(92).
Zhaoetal.
(93)werethersttoapplyaC2domain-functionalizedSPIOandshowedverypromisingresultsforfutureinvivoapplicationsofMRcontrastagentsforthedetectionofapoptoticsites.
TumorsAlthoughtheabove-describedprocessesofangiogenesis,apoptosisandinammationaretargetsthemselvesinthedevelopmentofanti-cancertherapies,alotofresearchisLIPID-BASEDNANOPARTICLESFORCONTRAST-ENHANCEDMRI149Copyright#2006JohnWiley&Sons,Ltd.
NMRBiomed.
2006;19:142–164currentlybeingperformedonthedevelopmentoftargetedtherapiesdirectedattumorcells.
Signaltransductionresearchhasshowntheimportanceofthehumanepider-malgrowthfactorreceptor(HER)familyoftransmem-branetyrosinekinasesinanumberofsolidtumortypes.
OnememberofthisfamilyisHER-2(ErbB-2),whichisoverexpressedinseveraltypesofcancers,includingbreast,lung,gastricandbladdercarcinomas.
HER-2expressionissimilarinprimarytumorsandcorrespond-ingmetastases(94).
Theexpressioninnormaltissuesisverylow,makingHER-2acandidatefortargetingstra-tegies.
Also,theepidermalgrowthfactorreceptor(EGFR,alsoknownasErbB-1orHER-1),animportantmoleculeintheproliferationandmetastasisoftumorcells,isfrequentlyoverexpressedincommonsolidtu-morsandhasbecomeafavoredtargetfortherapywithmonoclonalantibodiesdirectedattheextracellulardo-mainofthereceptorandfortherapywithsmallmoleculeinhibitorsofthereceptor'styrosinekinaseactivity(95).
Inadditiontotherapybasedonblockingthereceptorandtherebyachievinginhibitionoftumorcellgrowthandmetastaticpotential,thesereceptorscanalsobeusedfortargeteddeliveryofdrugsordiagnosticimagingagents(96).
TargetsexpressedattumorcellsaremoredifculttouseformolecularMRIsincetheycannotbereacheddirectlyviathecirculation,butrequirethecontrastagenttoleakfromthebloodvesselsintotheextravascularcompartment.
SincemostmolecularMRIcontrastagentsarenanoparticulatematerials,thisposesalimitonimagingsuchextravascularreceptors.
Nevertheless,mo-lecularMRIoftheHER-2/neureceptor,expressedattumorcells,withavidin–Gdcomplexesafterprelabelingthereceptorswithbiotinylatedanti-HER-2/neuantibodyhasbeendemonstrated(97).
Furthermore,HER-2/neu-targetedimmunoliposomeseffectivelyassociatewithtumorcellsandshowantitumorefcacy(98).
AtherosclerosisAtherosclerosisisaprogressivedisease,whichcanbeconsideredachronicinammationofthelargearteries(99,100).
Thediseasestartswithinammation-likeendothelialdysfunctioncausedbylocalinjuryorbytheretentionofatherogeniclipoproteins.
Theprocessisinitiatedbyoxidizedlipoproteinsinthevesselwall,e.
g.
oxLDL,whichtriggerstheendotheliumtoexpressmonocyterecruitingendothelialcellreceptorssuchasVCAM-1,P-selectin,E-selectinandICAM-1.
Mono-cytesaccumulateinthesubendothelialspaceanddiffer-entiateintomacrophagesthattakeupoxLDL.
Eventually,themacrophagesareconvertedintofoamcells.
Atthisstageofthediseasethelesioniscalledanearlylesionorafattystreak.
Withcontinuinglipoproteinaccumulationandfoamcellformation,theearlylesionprogressesintoanatheromatouscore.
Theatheroscleroticplaquethusformedisstabilizedbythemigrationofsmoothmusclecells,resultingintheformationofabrouscap.
Bloodsupplyintotheheavilythickenedvesselwallismain-tainedbyanangiogenicexpansionofthevasavasorum(vesselswithinthewalloflargerbloodvessels)(101).
Theadvancedplaque,orcomplexlesion,maybeatriskofrupture,whichtriggersthrombusformation.
Thisprocessisthemaincauseofacuteclinicalcomplicationssuchasstrokeandmyocardialinfarction.
Inthiscascadeofevents,severalmarkersareofinterestfortarget-specicMRI.
LDLorHDLcanbeparamag-neticallylabeled(102,103)foridenticationofathero-scleroticplaquesafteruptakeofthesecontrastagentsbytheplaque.
Allinammatorymarkers,e.
g.
E-selectin,P-selectinorVCAM-1,expressedontheendothelialcellarepotentialtargetsformolecularMRIofatherosclero-sis.
Fluorescentandsuperparamagneticironoxidenano-particleshavebeensuccessfullytargetedtoplaquesintransgenicmiceusingaVCAM-1-specicpeptide(104).
Furthermore,monocytesandothercellsrelatedtoinammationcanbemagneticallylabeled,invivoandexvivo,tofollowtheirfateinrelationtoatherosclerosis.
Sincestrongangiogenicactivitymayoccurinthevasavasorum,strategiessketchedinthesectionaboutangio-genesisalsohavepotentialinidentifyingandcharacter-izingatheroscleroticplaques.
Inadvancedstagesofplaqueformation,apoptoticactivityiscommonandcontributestoplaqueinstability.
DetectionofapoptoticplaqueswithMRIwouldthereforegivetheopportunitytodeterminetheriskofplaqueruptureinvivo.
Strategiestoimageapoptosisareoutlinedinthesectiononapoptosis.
Inthenalstageoftheatheroscleroticprogression,thrombi,e.
g.
formedasaresultofplaquerupture,canbetargetedwithbrinorplatelet-specicpeptides(105)orantibodies(72).
LIPID-BASEDMRICONTRASTAGENTS:APPLICATIONSLiposomalcontrastagentsInthissection,anoverviewofliposomalMRIcontrastagentsisgiven.
Abriefoutlineofhistoricaldevelopmentsisfollowedbyasummaryofwhathasbeendonethusfar.
Inthesecond,partanumberofinterestingandinnovativedevelopmentsarereviewedanddiscussedinmoredepth.
Liposomeswerediscoveredintheearly1960sbyBanghametal.
,whofoundthategglecithinphospho-lipidscombinedwithwaterself-organizedintospheresbecauseoftheamphiphiliccharacterofthelipids(106).
Liposomescanbedenedasspherical,self-closedstructuresformedbyoneorseveralconcentriclipidbilayerswithanaqueousphaseinsideandbetweenthelipidbilayers(107).
Liposomeshavebeenusedexten-sivelyasamodeltostudythepropertiesofbiologicalmembranes.
Theycanvaryinsizeandlamellarityandarethereforesubdividedintomultilamellarvesicles(MLV),consistingofseveralconcentricbilayers,large150W.
J.
M.
MULDERETAL.
Copyright#2006JohnWiley&Sons,Ltd.
NMRBiomed.
2006;19:142–164unilamellarvesicles(LUV),inthesizerange200–800nm),andsmallunilamellarvesicles(SUV),inthesizerange50–150nm.
Soonafterthediscoveryofliposomes,theyweresuggestedforuseasdrugcarriers,becauseoftheirstrikingbiologicalproperties.
First,liposomesarecomposedofnaturallyoccurringlipidsorcloselyrelatedsyntheticlipidsandthereforearebio-compatible.
Liposomescancarrywater-solublephar-maceuticalagentsintheaqueousinteriorandamphiphilicorhydrophobicagentsinthelipidbilayer.
Furthermore,liposomalpharmaceuticalagentsarepro-tectedfrominteractionswithplasmaproteinsanddeactivationandexhibitprolongedcirculationtimesandfavorablebiodistributionproperties.
Alteringtheirsurfacepropertiesmakespossibleimproveddeliveryofliposomestodiseasedtissueandintocells.
ThesepropertiesalsomakeliposomesexcellentcandidatestocarryordelivercontrastagentsforMRIandinthe1980stherststudiesabouttheuseofliposomesascarriersofMRcontrastagentsappearedintheliterature.
ThersttypeofliposomalMRIcontrastagentsde-scribedwereliposomesentrappingparamagneticagentsintheaqueouslumen.
ParamagneticagentssuchasMnCl2,(108,109)Gd–DTPA(110–112),Mn–DTPA(113),Gd–DTPA–BMA(114)andGd–HP–DO3A(115)andmacromolecularcontrastagentssuchasMn2boundtoserumproteins(116)canbepreparedinaliposomalformulation.
Contrastagentsofthistypehavebeenusedsuccessfullytoimprovethedetectionoftumorsintheliverofratswithhepaticmetastases(117–119).
Recently,gadodiamide-anddoxorubicin-containingliposomeswereusedtostudytheliposomaldistributionafterconvection-enhanceddeliverytobraintumorsinrats(120)andmice(121).
Furthermore,gadobutrol-containingliposomalcarriersequippedwithRGDligandsweretargetedtov3-integrin-expressingcellsinvitro(122).
Althoughtheliposomalformulationscontainingaparamagneticpayloadintheaqueouslumenhavebeenusedsuccess-fully,theutilityofthesecontrastagentsislimited.
First,therelaxivityoftheentrappedparamagneticspeciesislowered,becauseofthelimitedexchangeofbulkwaterwiththecontrastagents(112,123).
Thisexchangeisdependentonthepermeabilityoftheliposomalmem-branetowater(124).
Thepermeabilityoftheliposomalmembranedependsonthelipidcompositionandcanbealteredbyvaryingthesaturationlevelofthelipidchainsandthelengthofthelipidchainsandbyincorporationofcholesterol.
Themorepermeablethemembrane,thebetteristhewateruxacrossthebilayerandthebettertherelaxivity(112).
Furthermore,thecontrastefciencycanbeimprovedbyusingsmallerliposomes.
Thevo-lume-to-surfaceratioofsmallliposomesislowerandthereforetheexchangewithexternalbulkwaterisbetter(112,123).
Thisimpliesthatintermsofrelaxationproper-ties,anoptimalformationwouldbeliposomesofsmallsizewithapermeablebilayer.
Unfortunately,permeableliposomesusuallyarelessstableinserumthanliposomeswithamorerigidbilayer.
Aseconddrawbackisthatupondegradationtheliposomesmaylosetheirparamagneticcontent,whichmakestheinterpretationofobservedcontrastenhancementproblematic.
Nowadays,suchsys-temsarestillindevelopmentandthedrawbacksjustdescribedhavealsobeenusedbenecially,e.
g.
formonitoringdrugreleasefromliposomes(125)andtousemembranetransitionpropertiestomonitorlocaltissuetemperature(126)orpH(127).
Moreaboutthissubjectwillbediscussedinalatersectionaboutsmartcontrastagents.
Asecondclassofliposomalcontrastagentscarriestheparamagneticmoleculeinthelipidbilayer,whichmakestheamphiphilicparamagneticcomplexesanintegralpartoftheliposomalsurface(128,129).
Thisapproachresultsinanimprovedionicrelaxivityofthemetalcomparedwiththeapproachofencapsulatingtheparamagneticmoleculesintheaqueousinteriorandcomparedwithlowmolecularweightcomplexes(130).
TheamphiphilesusedcanconsistofGd–DTPAasthehydrophilicpartattachedtoahydrophobicpart.
DTPA–stearate(131,132)orDTPAattachedtoalkylchainsviaamidelinkersareexamplesofsuchmolecules(133,134).
Phosphatidy-lethanolamine(PE)hasbeenlinkedtoDTPAtoobtainPE–DTPA,whichcanformvesicleswhenmixedwithnaturalphospholipids(135).
TheNMRDproles,eld-dependentrelaxationmeasurements,closelyresemblethoseofmacromolecularcontrastagents,withatypicalpeakathighereldstrengths(34,132),becauseofthelongerrotationalcorrelationtime.
Theapplicabilityofsuchliposomalcontrastagentsisbroad.
Pegylatedlipo-someshavebeenusedasabloodpoolagent(136),forthedetectionoflymphnodes(136)andtoachievesustainedcontrastenhancementoftumors(137).
Regionsofen-hancedpermeabilitycanbedetecteduponinjectionofparamagneticliposomes,whichisusefule.
g.
aftermyo-cardialinfarction(138)andfortumordetection.
Re-cently,thebiodistributionoflipoplexes,cationicliposomesboundtoDNA,wasevaluatedovertimebyincorporatingaGd–lipidamphiphile(139).
Uponintra-tumorinjectionofthelipoplexes,astrongandpersistentT1-weightedMRIsignalincreasewasobserved.
Polymerizedliposomes.
In1995,Storrsetal.
intro-ducedanovelliposomalMRIcontrastagent(30).
ADTPA-basedlipid,amphiphiliccarrierlipidsandabio-tinylatedamphiphile,allcontainingadiacetylenetriplebondinthefattyacylchains,weresynthesized.
Fromtheselipids,liposomeswerepreparedandforfurtherstabilizationthetriplebond-containinglipidsinthelipo-someswereilluminatedwithUVradiationtoinducepolymerizationviathetriplebonds.
Thebiotingroupinthesepolymerizedvesicleswasusedforconjugationofbiotinylatedantibodiesviaanavidin–biotinlinkingpro-cedure.
Inrats,thehalf-lifeofthiscontrastagentisalmost20h(140).
Sipkinsetal.
usedthevesiclescoupledLIPID-BASEDNANOPARTICLESFORCONTRAST-ENHANCEDMRI151Copyright#2006JohnWiley&Sons,Ltd.
NMRBiomed.
2006;19:142–164tov3-specicLM609antibodiestodetectangiogen-esisintumor-bearingrabbits(15).
SinceMRIhasaninherentlylowsensitivitycomparedwithnuclearmeth-ods,thedetectionoftheexpressionofsparseepitopesshouldbedonewithapowerfultargetedcontrastagent.
Thepolymerizedliposomesusedinthisstudywere300–350nminsizeandcontained30%oftheGd–lipid.
Thismeansthattheseliposomeshaveanextremelyhighpayloadofgadoliniumperparticle,whichmakesthemverypotent.
Thecontrastagentwasappliedintravenouslyintumor-bearingrabbits,whichresultedinastatisticallysignicantsignalintensityenhancement24hafterinjec-tion.
Importantly,thesignalenhancementcorrelatedwiththeimmunohistochemicaldeterminationofv3-integrindistribution.
Inlaterstudies,thispolymerizedliposomalsystem,targetedtothev3-integrin,wasusedtodeliveramutantRafgene(ATPmu-Raf)toangiogenicbloodvesselsintumor-bearingmice(68).
ATPmu-Rafblocksendothelialsignalingandangiogen-esisinresponsetomultiplegrowthfactors.
Apoptosisofthetumor-associatedendotheliumwasinducedbysys-temicinjectionoftheliposomesintomice,whichre-sultedinsustainedregressionofthetumors.
TheaboveliposomalsystemwasalsousedtodetecttheexpressionofleukocyteadhesionmoleculeswithMRIinthebrainofmicewithexperimentalautoimmuneence-phalitis(EAE)(71),amousemodelofmultiplesclerosis.
Tothatend,thepolymerizedliposomeswereconjugatedtobiotinylatedantibodiesspecicforICAM-1.
MicewereinjectedwithICAM-1-specicliposomesandnon-specicliposomes.
Thebrainsoftheanimalswereremovedandscannedexvivowithhigh-resolutionMRI.
MarkeddifferenceswereobservedbetweenEAEmicethatwereinjectedwiththespeciccontrastagentandthecontrolcontrastagentandhealthymicethatwereinjectedwiththespeciccontrastagent(Fig.
4).
T1-weightedimagesoftheEAEmicethathadreceivedICAM-1specicliposomesdemonstratedwidespreadMRsignalintensityincreasesthroughoutthecentralnervoussys-tem,whichcorrelatedwiththepatternofICAM-1ex-pressionasdeterminedimmunohistochemically.
Magnetoliposomes.
Magnetoliposomesareliposomescontainingsolidironoxideparticlesintheliposomallumen(40).
Magnetoliposomeshavebeenusedoriginallytostudybiologicalmembranes(141)andforcellsorting(142).
Furthermore,theycanbeusedfortargeteddrugdelivery(usingaconstantmagneticeld)andcontrolledrelease(usinghigh-frequencymagneticeldoscillations)ofanentrappeddrug(143,144).
Twotypesofmagneto-liposomeshavebeenusedmostoften.
Thersttypecontainswater-solubleironoxideparticlesintheaqueouslumen(145,146).
Thesecondtype,developedbyDeCuyperandJoniau,(147),isanironoxideparticleof$15nmcoveredwithalipidbilayer.
Thelatterwillbediscussedinmoredetail,sinceithasbeenappliedasanMRIcontrastagentinvivo.
Theformationofthistypeofmagnetoliposomestartswiththesynthesisofamagneticuidofsuperparamagneticironoxideparticles.
Theironoxideparticlesarestabilizedandsolubilizedwithlaurate.
Whentheparticlesareincubatedwithanexcessofphospholipidvesiclesanddialyzedforanum-berofdays,thephospholipidsfromthevesiclestransferandabsorbonthesolidsurface,ultimatelyformingabilayerofphospholipidsaroundtheironoxideparticles.
Forimprovedpharmacokineticproperties,PEG–lipidscanbeintroducedbysimplymixingthemagnetolipo-someswithdonorvesiclescontainingtheselipids.
ThePEG–lipidstransferspontaneouslyfromthedonormem-branestothebilayerofthemagnetoliposomes.
Bulteetal.
demonstratedtheapplicabilityofthisnanoparticleasabonemarrowMRcontrastagent(148).
Furthermore,thepegylatedmagnetoliposomescanbefunctionalizedthroughincorporationofaPEG–lipidwithadistalfunc-tionalmoiety,whichcanbeusedforconjugationtoachievespecicityforthebiologicalmarkerofinterest.
Figure4.
High-resolutionMRimagesoftheEAEmousebrainwithanti-ICAM-1PVcontrastenhancementvscontrols.
(A)T2-weightedMRimageofexvivoEAEmousebrain.
T1-weightedMRimageofexvivomousebrain(B)withand(D)withoutEAEafterinjectionofanti-ICAM-1antibody-conjugatedparamagneticliposomes.
(C)EAEmousebrainafterinjectionofcontrolisotypeantibody-conjugatedparamagneticliposomes.
WidespreadMRsignalintensityenhance-mentthroughoutthebrainwithEAEcanbeobservedfor(B)only.
AdaptedfromFig.
4ofSipkinsetal.
,ICAM-1expressioninautoimmuneencephalitisvisualizedusingmagneticresonanceimaging.
J.
Neuroimmunol.
2000;104:1–9,withpermissionfromElsevierScience152W.
J.
M.
MULDERETAL.
Copyright#2006JohnWiley&Sons,Ltd.
NMRBiomed.
2006;19:142–164Bimodalliposomes.
Mulderetal.
introducedabimo-daltargetedliposomalcontrastagentforthedetectionofmolecularmarkerswithbothMRIanduorescencemicro-scopy(31,149).
TheliposomesconsistofGd–DTPAat-tachedtotwostearylchains,auorescentlipid,DSPC,cholesterolandPEG–DSPE.
Thelastcomponentprovidestheliposomeswithahydrophiliccoatingforimprovedstabilityinvivo.
Invitro,thiscontrastagentconjugatedwithE-selectin-specicantibodieswastestedonhumanen-dothelialcells(HUVEC)stimulatedwithtumornecrosisfactor(TNF).
Apronouncedcontrastagentassociationwasobservedwithuorescencemicroscopyatthesubcel-lularlevelandwithMRIoncellpellets(31).
Furthermore,apoptoticjurkatcellsweresuccessfullytargetedandimagedinvitrowiththebimodalliposomalcontrastagentconjugatedwithAnnexin-V(150).
Follow-ingincubationwiththecontrastagent,pelletsofapopto-ticcellsshowedincreasedsignalsinT1-weightedimages,whereasitwasrevealedwithconfocallaserscanninguorescencemicroscopythatthecontrastagentwasboundtothecellsurface.
TheliposomalcontrastagentconjugatedwithcyclicRGD–peptideswasusedtoidentifytheangiogenicendotheliumintumorbearingmicewithinvivoMRIandexvivouorescencemicroscopy(151,152).
ThecyclicRGD–peptidehashighafnityforthev3-integrin,whichisupregulatedatendothelialcellsofangiogenicbloodvessels.
MRIrevealedthatuponintravenousinjectionofthecontrastagent,theRGD–liposomeslocalizedtoalargeextentinthetumorrim,whichisknowntohavethehighestangiogenicactivity[Fig.
5(A)].
Non-specicRAD-liposomesalsotargetedthetumor,butshowedadiffusedistributionpattern[Fig.
5(B)].
Thedifferentmechanismsofaccumulationwereestablishedwithuorescencemicroscopy,whichrevealedthatRGD–LNPwereexclusivelyassociatedwithtumorbloodves-sels[Fig.
5(C)]whereasRAD–LNPwere,toalargeextent,localizedintheextravascularcompartment[Fig.
5(D)].
ThisstudydemonstratedthecriticalimportanceofvalidatingtheMRIndingswithacomplementarytech-niquesuchasuorescencemicroscopy.
MicellularcontrastagentsMicellesareinparticularinterestingforcarryingpoorlysolublepharmaceuticalagents(153).
Furthermore,theyFigure5.
MRimagesoftumorsofmiceaftertheywereinjectedwith(A)paramagneticv3-specicRGD–liposomesand(B)non-specicparamagneticRAD–liposomes.
Fluor-escencemicroscopyof10msectionsfromdissectedtumorsrevealedadistinctdifferencebetweentumorsofmicethatwereinjectedwithRGD–liposomes(C)orRAD–liposomes(D).
Vesselstainingwasdonewithanendothelialcell-specicFITC–CD31antibody.
Thereduorescencerepresentstheliposomes(C)andthegreenuorescencerepresentsbloodvessels.
RGD–liposomeswereexclusivelyfoundwithinthevessellumenorassociatedwithvesselendothelialcells(C),whereasRAD–liposomes(D)werealsofoundoutsidebloodvesselswithinthetumorLIPID-BASEDNANOPARTICLESFORCONTRAST-ENHANCEDMRI153Copyright#2006JohnWiley&Sons,Ltd.
NMRBiomed.
2006;19:142–164canbepreparedfromlipidsthatcontainaPEGmoietytomakethesurfaceofthemicelleinerttobloodcompo-nents.
Thisletsmicellescirculateinthebloodforafairlylongtimewithoutbeingrecognizedbycertainplasmaproteinsand/orphagocyticcells.
Inthisway,theycanbeusedaslong-circulatingbloodpoolagents,whichnon-specicallytargettoareaswithaleakyvasculature.
Ligandscanalsobecoupledtothesurfaceofthemicellesfortargetingtospecicsites(154).
ThesepropertiesmakemicellesexcellentcandidatestofunctionasMRIcontrastagents.
Themostcommonstrategytopreparemicelleswithparamagneticpropertiesistouseamphi-philicmoleculeswithaGd3chelatingandhydrophilicheadgroupandonehydrophobicchain.
AmixtureofparamagneticamphiphilicmoleculesandphospholipidsorPEG–lipidsmayalsobeemployed.
TheNMRDproleofamicellularcontrastagentshowsthetypicalpeakintheT1relaxivityr1athighereldstrengths(155),sincemicelleshavearelativelylongrotationalcorrelationtime,typicalformacromolecularcontrastagents.
TheionicrelaxivityofGd-basedmicellularcontrastagentsatclinicallyrelevanteldstrengthsisthereforesuperiortothatoflowmolecularweightcomplexes.
Recently,Accardoetal.
describedthesynthesisandphysiochem-icalcharacterizationofatarget-specicmicellularcon-trastagentwhichwascomposedofamixtureoftwoamphiphilicmolecules(156).
TherstmoleculeisaC18hydrophobicmoietyboundtoanoctapeptide.
ThesecondmoleculecontainsthesameC18moiety,butiscoupledtoDTPA.
Thepeptidesequenceuseddisplayshighafnityforcholecystokininreceptors,whicharelocalizedinthecellmembraneandoverexpressedinmanytumors.
Theauthorsinferredthatthistypeofmixedmicellularcon-trastagentisapromisingtoolfortarget-specicMRimaging.
Micellescomposedofphospholipids,asurfactantandanamphiphilicGdcontrastagentwererecentlyusedfordetectingmacrophages(157).
Macrophagesareknowntoplayacentralroleinthepathogenesisandevolutionofatheroscleroticplaques.
Thecontrastagentwasemployedtomacrophagesinvitroandinvivoinamousemodelofatherosclerosisandshowedmacrophage-specicuptake.
Immunomicelleswerepreparedbycouplingbiotinylatedantibodies,specicforthemacrophagescavengerrecep-tor,tothemicellesviaanavidin–biotinlinkage.
Animproveduptakeoftheantibodyconjugatedmicellescomparedwithbaremicelleswasobserved,whichwasestablishedwithMRIanduorescencemicroscopy.
Gadouorine.
GadouorineisamicellularcontrastagentcomposedofasurfactantwithahighlyhydrophobicperuoroalkyltailandahydrophilicGd3chelatingheadgroupandhasbeenshowntobeespeciallysuccessfulforMRlymphography(158–160)andimproveddetectionofatheroscleroticplaques(81,161).
Barkenhausenetal.
studiedtheaorticarchofhyperlipidemicrabbitswithMRIbeforeandaftertheadministrationofgadouorine(81).
Enhancementoccurredintheaorticwallofallhyperlipidemicrabbits.
InFig.
6,imagesbefore(AandB)and48hafter(CandD)applicationofthecontrastagentaredepicted.
Aring-shapedcontrastenhancementoftheaorticwallwasobserved.
TheMRIndingswerevalidatedwithSudanRedstainingandmatchedwithexvivoMRscansofthesamespecimen.
Siroletal.
demonstratedthatgadouorineisespeciallyusefulfordetectinglipid-richplaques(162).
Furthermore,usinganimprovedscanningprotocoltheauthorswereabletodetectatheroscleroticplaquewithin1haftergadouorineinjection.
AnotherstudybySiroletal.
demonstratedthatearlyandadvancedlesionscanbediscriminatedbygadouorine-enhancedimaging(163).
Uponinjectionofgadouorine,earlylesionsshowedlowerenhancementthanmoreadvancedlesions.
Thiscorrelatedwiththedensityofthevasavasorum,suggestingthatplaqueenhancementwithgadouorineisdependentonneoves-seldensity.
Gadouorinehasalsobeenshowntobeusefulfortheassessmentofnervedegeneration,sinceitselec-tivelyaccumulatedandretainedinnervebersunder-goingWalleriandegenerationinthelegofratscausingbrightcontrastonT1-weightedMRimages(164).
Nanoparticle-containingmicelles.
Nanoparticles,suchasironoxideparticlesandquantumdots,aremostlysynthesizedinnon-polarorganicsolventsandcappedFigure6.
HASTE(A,C)andIRturboFLASH(B,D)imagesbefore(A,B)and48hafter(C,D)applicationofgado-uorinetoan18-month-oldWHHLrabbitatidenticalslicepositions.
Wallofdescendingaorta(arrows)showsmarkedenhancementaftercontrastinjection(D).
AdaptedfromFig.
2ofBarkhausenetal.
,Detectionofatheroscleroticplaquewithgadouorine-enhancedmagneticresonanceimaging.
Circulation2003;108:605–609,withpermissionfromLippincottWilliams&Wilkins154W.
J.
M.
MULDERETAL.
Copyright#2006JohnWiley&Sons,Ltd.
NMRBiomed.
2006;19:142–164withasurfactant.
Iftheyaretobesolubilizedinaqueousbuffers,theirhydrophobicsurfacecomponentsmustbereplacedbyamphiphilicones.
AnalternativestrategywasdevelopedbyDubertretetal.
forTOPO-coatedquantumdots(39).
Thehydrophobicparticlesweredissolvedinchloroformtogetherwithpegylatedphospholipids.
Afterevaporatingthesolventandhydratingthemixedlmofquantumdotsandlipids,quantumdot-containingmicelleswereformed.
Thesamemethodcanbeusedforencapsulatinghydrophobicironoxideparticlesinmicelles.
Withthiselegantlysimpleprocedure,oneobtainsawater-solubleparticleofsmallsize,whichcaneasilybefunctionalizedbyjustmixingtheappropriatelipids.
Furthermore,uorescentlipidscanalsobeincor-poratedforopticalimaging.
InFig.
7,theprocedureisdescribedschematically.
VanTilborgetal.
functionalizedthemicellularironoxideparticleswithAnnexinVforthedetectionofapoptoticcells.
Invitro,theAnnexinV-conjugatedparticlesshowedahighafnityforapopto-ticcells,whichresultedinalargedecreaseinT2ofapelletofthesecells,whereasthecontrolcellsshowedalmostnoT2decrease(165).
Invivo,thiscontrastagentmightbeveryusefulfordetectingapoptoticcellsinpathologicalprocessessuchasischemicreperfusionin-jury,atherosclerosisandtumors.
Nitinetal.
developedasimilarapproachtosolubilizeironoxide(35).
TheyconjugatedTAT–peptidesandauorescentlabeltothedistalendofthePEGchainsofthephospholipidstocoattheironoxideparticles.
TheTAT–peptidehasbeenshowntodelivernanoparticlesintocells,makingitattractiveforintracellularlabeling.
TheuptakeofthisconjugatewasdemonstratedinvitrowithbothMRIanduorescencemicroscopy.
MicroemulsionsMicroemulsionsaremixturesofwater,oilandanamphi-phile,whichresultinanopticallyisotropicandthermo-dynamicallystablesolution(38).
TheusefulnessofmicroemulsionsasMRIcontrastagentwasrecognizedbyLanzaandWickline.
Theirnanoparticlehasaper-uorocarboncore,whichiscoveredwithamonolayeroflipids.
Initiallytheyusedtheirtechnologyincombinationwithultrasound,becauseoftheacousticpropertiesofthecontrastagent.
Intheirrststudy,athree-stepapproachtotargetthrombuswasutilized(166).
Firstabiotinylatedantibrinmonoclonalantibodywasusedtotargetbrin,amaincomponentofthrombus.
Next,avidinwasadminis-teredtobindtotheantibrinantibodiesviaabiotin–avidinlinkage.
Sinceavidinhasfourbindingsitesforbiotinthenon-boundsitesofavidincouldnextbeusedfortargetingthebiotinylatedperuorocarbonnanoparti-cles.
Inthismanner,thrombiweredetectedwithultra-sound.
AsimilarapproachwasusedfordetectingbrinindogswithMRI(72).
Withthataim,Lanzaetal.
slightlymodiedtheirproceduresbyalsoincorporatingparamag-neticlipids(Gd–DTPA–BOA)inthelipidmonolayerofthenanoparticles.
Becauseofthesizeofthenanoparticle,thepayloadofGd–DTPA–BOAwasashighas50000perparticle.
Thisdramaticallyincreasestherelaxivityperparticle,whichisnecessaryfordetectingsparseepitopeswithMRI.
ScanningelectronmicrographsofcontrolbrinclotsandbrinclotstargetedwiththeparamagneticnanoparticlesaredepictedinFig.
8(A)and(B).
Anextensiveassociationofthecontrastagentwiththeclotscanbeobserved.
AninvivoMRimageofadogwiththrombus(intheexternaljugularvein)afterincubationwiththecontrastagentshowsapronouncedcontrastenhancementofthethrombusonT1-weightedimages[Fig.
8(C)and(D)].
Inapaperpublishedin2002,theseauthorsextendedtheirtechnologyforsimultaneousima-ginganddeliveryofanantiproliferativedrugtosmoothmusclecells(167).
Furthermore,theperuorocarboncoreofthenanoparticlesallowsparticledetectionwith19FNMRspectroscopy,whichmakesquanticationofdrugdeliverypossible.
Morawskietal.
usedculturesofFigure7.
Schematicrepresentationoftheencapsulatingprocedureofhydrophobicnanoparticlesinmicelles.
Lipidsaremixedwiththenanoparticlesinanapolarsolvent.
Themixedlmobtainedishydrated.
Thereafter,thenanoparticle-containingmicellesandemptymicellesareseparatedbycentrifugationLIPID-BASEDNANOPARTICLESFORCONTRAST-ENHANCEDMRI155Copyright#2006JohnWiley&Sons,Ltd.
NMRBiomed.
2006;19:142–164smoothmusclecellmonolayerstomodelandvalidatetheMRIdetectionlimitofsparsemolecularepitopeswhentargetedwiththiscontrastagent(168).
Theyshowedthatimagingofcellmonolayerswaspossibleat1.
5Tusingperuorocarbonnanoparticlesof250nm,containing90000Gd–DTPA–BOA,targetedtotissuefactor-expres-singcells.
Furthermore,quanticationwasachievedandpicomolarconcentrationsofthenanoparticlesweresuf-cienttogenerateasignicantchangeincontrasttonoiseratio.
Theperuoronanoparticlestargetedtothev3-integrinhavebeenusedfordetectingangiogenesisinarabbitmodelofatherosclerosis(169)andintumorsimplantedinrabbits(69).
Angiogenesisplaysanimpor-tantroleinprovidingthetumorwithnutrients.
Anti-angiogenictherapiesarethereforebelievedtoprovideapowerfultreatmentoptionforcancer.
Inatherosclerosistheplaquescontainangiogenicmicrovessels,whicharebelievedtoplayanimportantroleinplaquedevelopment.
Imagingplaquesandtumorswithanv3-speciccon-trastagentisthereforeofimportanceforearlydetection,deningtheseverityofthediseaseandfollowingtheeffectoftherapy.
Recently,Winteretal.
presentedresultsofacombinatoryapproachofMRmolecularimaginganddrugtargetingofatherosclerosiswiththiscontrastagent(170).
Tothatendtheyusedthev3-specicnanopar-ticlestotargettheaorticvesselwallafterballooninjury.
Fortherapeuticpurposestheyincludedfumagillininthelipidmonolayerofthenanoparticlesandobservedananti-angiogeniceffectwithMRIthatwasconrmedhistologically.
LipoproteinsLow-densitylipoprotein(LDL)andhigh-densitylipopro-tein(HDL)playanimportantroleinthetransportofcholesterol.
LDLconsistsofalipidcoreofcholesterolestersandtriglyceridescoveredbyaphospholipidmono-layerwhichcontainsalargeapolipoprotein.
LDLbindstotheLDLreceptorexclusivelyviathisapolipoproteinandissubsequentlyinternalized.
TheoverexpressionoftheLDLreceptorisassociatedwithseveralpathologies,includingatherosclerosisandcancer.
Huietal.
labeledLDLbyincubatingitwithPTIR267molecules(171),acontrastagentwithaGd–DTPAmoietyandauorescentlabel.
Invitrouptakeofthiscontrastagentbymelanomacellswasdeterminedwithuorescencemicroscopy.
InvivotheyobservedincreasedcontrastinthemouseB16melanomatumorsandinthemouseliver,whereastheuptakeintheliverofLDLreceptorknockoutmicewasverylow.
AnHDL-likeparticlewasdevelopedbyFriasetal.
forbimodalimaging(102).
Theyconstructedtheparticlefromapo-HDLproteinsandphospholipids,withorwith-outunesteriedcholesterol.
Aparamagneticphospholi-pid,Gd–DTPA–DMPEandauorescentphospholipidwereincorporated(Fig.
9)forimagingpurposes.
Thiscontrastagentwastestedonamousemodelofathero-sclerosisthatwasimagedinvivowithMRI.
Thevesselwalloftheabdominalaortashowedstrongsignalen-hancementwithamaximum24hpost-injection.
Follow-ingaortaexcision,itwasestablishedwithpostmortemconfocaluorescencemicroscopythatthecontrastagentwasmainlylocalizedintheintimallayer.
Thelipoproteincontrastagentsmaybeofgreatuseforthenon-invasivecharacterizationofcancerandatherosclerosis.
SmartcontrastagentsSmartcontrastagents,alsoreferredtoasresponsiveoractivatedcontrastagents,areagentsthatundergoalargechangeinrelaxivityuponactivation.
AkeystudyinthiseldwaspublishedbyLouieetal(16).
TheydevelopedaGd3chelatingcomplex,which,inthepresenceoftheenzyme-galactosidase,undergoesasizableincreaseinFigure8.
Scanningelectronmicrographsofcontrolbrinclot(A)andbrin-targetedparamagneticnanoparticlesboundtoclotsurface(B).
Arrowsindicate(A)brinbriland(B)brin-specicnanoparticle-boundbrinepitopes.
Thrombusinexternaljugularveintargetedwithbrin-specicparamagneticnanoparticlesdemonstratingdramaticT1-weightedcontrastenhancementingradient-echoimage(C)withowdecit(arrow)ofthrombusincorrespond-ingphase-contrastimage(D).
AdaptedfromFigs1and5ofFlackeetal.
,NovelMRIcontrastagentformolecularimagingofbrin:implicationsfordetectingvulnerableplaques.
Circulation2001;104:1280–1285,withpermissionfromLippincottWilliams&Wilkins156W.
J.
M.
MULDERETAL.
Copyright#2006JohnWiley&Sons,Ltd.
NMRBiomed.
2006;19:142–164relaxivity.
InitsinactiveformwaterisnotaccessibletoGd3becauseofblockagewithasugarmoiety.
Whentheenzymecleavesoffthesugarwatercandirectlycoordi-natewithGd3explainingther1increase.
PeroxidaseactivityhasbeendetectedwithMRIbyusingironoxidenanoparticlesconjugatedwithphenolicmoleculesthatcrosslinkinthepresenceofperoxidases.
Thisleadstotheself-assemblyofthenanoparticles(172),whichresultsinaconcentration-dependentdecreaseofT2.
Liposomeshavealsobeenusedassmartcontrastmaterial.
Liposomescan,forexample,bepreparedtoundergoaphasetransitionofthebilayerfollowingaphysiologicaltrigger.
Whenthebilayerisinarigid,gel-likestate,itispoorlypermeabletowater.
Afterthephasetransition,themembranebecomesmoreuidandhencemorepermeabletowater.
Thephasetransitioncanbecausedby,e.
g.
,pHchangesortemperaturechanges.
Gd–DTPA–BMAencapsulatedbypH-sensitiveliposomescomposedofphosphatidylethanolamineandpalmiticacidwerestudiedbyLoklingetal.
(127).
Theuseoftheseliposomeswasinitiallylimitedbecauseoftheirlowstabilityinblood(173).
Exchangingpalmiticacidforthedouble-chainedamphiphiledipalmitoylglycerosuccinateresultedinaformulationwithincreasedstabilityandgoodpHsensitivity(174).
ThiscontrastagentmightbeusefulforpHquantication,whichisclinicallyrelevantforcharacterizingtumors.
Similarliposomalsystemshavebeenusedinseveralstudiesforthenon-invasivedeterminationoflocaltemperature(114).
Therelaxivityoftheseliposomesincreaseswhenthetemperatureisabovethegel-to-liquidcrystallinephasetransition.
Frichetal.
usedthermosensitiveliposomesforimage-guidedthermalablationofrabbitliver(126).
Uponheating,anincreaseintissuesignalwasobservedinT1-weightedimages(Fig.
10),thusallowingon-linemonitoringofthermalablation.
AnotherexampleofasmartimagingstrategyistodeterminedrugreleasefromliposomesusingMRI(125).
MnSO4-anddoxorubicin-loadedliposomeswereusedformonitoringthereleaseofthedrugfromtheliposomeswithMRI.
Mn2isaparamagneticionwhichshortenstheT1ofwater.
However,whenMn2isencapsulatedinliposomestherelaxivitydecreasesdramatically.
Thereleaseofcontentfromtemperature-sensitiveliposomescouldbefollowedbytheincreaseintheMRIsignalinT1-weightedimages.
Aliposomalcontrastagentresponsivetoradicalshasalsobeendescribed(175).
Inthisagent,Gd3chelatesareconjugatedtotheliposomeviaadisuldelinker.
Therotationalcorrelationtimeofthisconjugateislong,resultinginahighrelaxivity.
Whenthecontrastagentisexposedtoradicals,theparamagneticchelatesarecleavedoff,leadingtofastertumblingandacorrespond-ingdecreaseintherelaxivity.
CelllabelingMRIasacellularimagingmodalitydependsonmeth-odstolabelmagneticallycellsofinterestinordertomonitortheirtrafckingaspartofcell-basedrepair,replacementandtreatmentstrategies.
Efcientmag-neticlabelingofthecellstobetrackedwithMRIisofgreatimportanceforkeepingthedetectionlimitofthecellsaslowaspossible.
Themigrationofmagne-tically-labeledimplantedstemcellswassuccessfullymonitoredinthebrainofexperimentalstrokeratsbyHoehnetal.
(176)andinamyocardialinfarctionpigmodelbyKraitchmanetal.
(177)Differentstrategieshavebeendescribedthatmainlyfocusonloadingcellswithironoxideparticles.
InanearlystudyperformedbyBulteetal.
,liposomescontain-ingdextran-coatedironoxideparticleswereusedforlabelingofhumanperipheralbloodmononuclearcellswithironoxideparticles(145).
Forefcientincorpora-tion,transfectionagents,originallydevelopedtotransfectnon-viralDNA,maybeused.
Amongthedifferenttransfectionagents,asubgrouparethelipid-basedtrans-fectionagents,usuallycationicliposomes.
Labelingcellswithmagneticironoxideparticlescanbedonewithhighefciencyusingtheselipid-basedtransfectionagents.
VandenBosetal.
,forexample,reportedthattheuseofcationicliposomesforironoxidestemcelllabelingincreasedthelabelingefciencyapproximately100-fold(178).
Theabovemethodsintroducesuperparamagneticpropertiestothecells.
Efcientparamagneticlabelingofcellscanbedonewithcationicliposomes(179)ormicroemulsionscontainingahighpayloadofanamphi-philicparamagneticmoiety.
Thesesystemscanalsocarryauorescentlipidforsimultaneousdetectionwithuorescencemicroscopy.
Recently,peruoropolyether-containingmicroemulsionshavebeenusedtolabeldendriticcells(180).
ThecellsweretrackedinmiceFigure9.
DifferentcomponentsoftherecombinantHDL-likeMRIcontrastagent.
AdaptedfromScheme1ofFriasetal.
,RecombinantHDL-likenanoparticles:aspeciccontrastagentforMRIofatheroscleroticplaques.
J.
Am.
Chem.
Soc.
2004;126:16316–16327,withpermissionfromtheAmericanChemicalSocietyLIPID-BASEDNANOPARTICLESFORCONTRAST-ENHANCEDMRI157Copyright#2006JohnWiley&Sons,Ltd.
NMRBiomed.
2006;19:142–164invivousing19FMRI.
Themainadvantageofthistechniqueisthatitallowsimagingofthecellswithoutanybackground,so-calledhot-spotimaging,sincetherearenoendogenousuorineatomspresentinthebody.
Theinformationobtainedwith19FMRIcanbesuper-imposedonhigh-resolutionanatomical1HMRimages,allowingaccuratelocalizationofthecontrastmaterial.
RECENTDEVELOPMENTSInadditiontoMRI,lipidicnanoparticleshavealsobeenemployedascontrastagentsforotherimagingmodal-ities.
Liposomeswithappropriateradiolabelshavebeenusedforpositronemissiontomography(PET)(181),singlephotonemissioncomputedtomography(SPECT)(182)andscintigraphyimaging(183).
Forcomputedtomography(CT),liposomescancarryheavilyiodinatedorganiccompounds,whereasforultrasoundthelipo-somesshouldbeechogenic(184).
Micelleswithanamphiphilicindium-111-labeledmoietyhavebeenap-pliedforlymphography(33).
Inadditiontotheestab-lishedutilityofperuorocarbonnanoparticlesasultrasonicandMRIcontrastagents,thistechnologyhasbeenfurthermodiedforotherimagingmethodssuchasCT(185)andnucleartechniques.
Suchmultimodalnanoparticlesmaybeofuseinchoosingtheoptimaldetectionorimagingmethodwiththesamenanoparticu-lateprobe.
Furthermore,acombinatoryapproachmaybebenecialforimproveddetection.
Asensitiveandlow-resolutiontechnique,suchasthenucleartechniques,canprovideinformationonthebiodistributionofthenano-particles.
Awholebodycanbescannedandareasofinterestcanthusbeidentiedrelativelyrapidly.
There-after,theseareasmaybeinvestigatedinmoredetailwithhigh-resolutionandlow-sensitivitytechniquessuchasCTandMRI.
ThecombinationmayalsobeofusetomergeanatomicalinformationfromMRIorCTwiththesensitivedetectionofthecontrastagentwithnuclearmethods.
Quantumdots,semiconductornanocrystalsafewnan-ometersinsize,haverecentlyattractedmuchattentionforbiologicalimagingpurposes(186)becauseoftheirex-cellentuorescentproperties,buttheirusehasbeenlimitedbydifcultiesinobtainingquantumdotsthatarebiocompatible.
Quantumdotscappedinphospholipidmicelles(39)wereamongthersttobeappliedinvivo.
Mulderetal.
recentlyextendedthisapproachbyapplyingaparamagneticlipidiccoatingtoquantumdotsforsimultaneousdetectionwithMRI(187).
Anotherpromisingapplicationofnanoparticlesistheiruseforcombineddiagnosticsandtreatment.
Asdiscussedpreviously,extensiveresearchhasbeendonewithlipidicaggregatesaspharmaceuticalcarriers,whichmakestheimplementationofcombiningaMRIcontrastagentwithatherapeuticagentrelativelyeasy.
CEST(chemicalexchangesaturationtransfer)agentsareagentsthatcontainatleastonepoolofexchangeableprotons,whichuponirradiationattheirresonancefre-quencytransfermagnetizationtothestrongsignalfrombulkwater.
CESTagentsareinterestingbecausetheycanbeswitchedonandoff,butarelimitedbecauseoftheirlowsensitivity.
Creatingparticleswithalargenumberofexchangeableprotonsmaybedonewithliposomes.
Thisso-calledLIPOCESTapproach,whichwasrecentlypro-posedbyAimeetal.
(188),reliesontheincorporationofanMRshiftreagentintheliposomallumen.
Thiscausestheresonancefrequencyofwaterprotonsinsidetheliposomestobeshiftedfromthatoftheexternalwater.
Inaphantomstudy,theauthorswereabletodetectthecontrastagentataconcentrationaslowas90pM.
Terrenoetal.
presentedinitialresultsofinvitrotargetingofthisLIPOCESTagent(189).
Inthatstudy,theliposomeswerecoatedwithPEGandcoupledtopeptidesviaavidin–biotinbonding.
Inaddition,MRIvisualizationofthepassiveaccumulationofpegylatedLIPOCESTintumor-bearingmicewasdemonstrated.
Figure10.
T1-weightedimagesofradiofrequencyablationinrabbitliverafterinjectionofliposomalcontrast.
Priortoheating(t0),duringheating(t1),afternormalizationoftissuetemperature(t2)and15–20minafternormalizationoftissuetemperature(t3).
Notetheincreasingsignalintensityintheperipheryofthethermallesionintherightliverlobe(whitearrows).
Theradiofrequencyelectrodehasbeenrepositionedintheleftliverlobeatt3(whitearrowhead).
AdaptedfromFig.
4ofFrichetal.
,Experimentalapplicationofthermosensitiveparamagneticliposomesformonitoringmagneticresonanceimagingguidedthermalablation.
Magn.
Reson.
Med.
2004;52:1302–1309,withpermissionfromJohnWiley&Sons,Inc158W.
J.
M.
MULDERETAL.
Copyright#2006JohnWiley&Sons,Ltd.
NMRBiomed.
2006;19:142–164CONCLUSIONSInthisreview,wehaveshownthevarietyofpossibilitiesofusinglipidsandotheramphiphilesasbuildingblocksofnanoparticulateMRIcontrastagents.
Phospholipidsarethemostcommonlyusedamphiphilesforbiomedicalapplications,whichhasresultedinthecommercialavailabilityofmanydifferentlipidsandphospholipid-likestructures.
Magneticresonanceisaleadingdiagnosticimagingmodality,sinceitexcelsindepictingsofttissuewithhighspatialresolution.
Nevertheless,toimprovetheapplicabilityofcontrast-enhancedMRI,thelimitationsofthetechniquehavetobetakenintoconsideration.
First,therelativelylowsensitivityofMRcanbecompensatedbycreatinghighlypotentcontrastagents,whichispossiblebyusinglipidicparticleswithahighpayloadofcontrastmaterial.
Second,althoughthespatialresolutionofMRIissuperiortothatofothernon-invasiveinvivoimagingmodalities,thelevelofdetailthatisobtainedwithimmunohistochemicaltechniqueswillnotbeachieved.
Therefore,intheinitialphaseMRIshouldbecombinedwithacomplementaryimagingtechniquetogainmoreinsightintothepathologystudiedandintothemechanismsofuptakeandfateofthecontrastagent.
Fluorescencemicroscopyissuchatechnique,whichiscapableofstudyingprocesseswithsubcellularresolution.
Fluorescencemicroscopyismainlyappliedpostmortemonsmalltissuesections,becauseofthelimitedpenetrationdepthoflight.
TheavailabilityofuorescentlipidsprovidesopportunitiestocreateeasilybimodalcontrastagentsthatcanbedetectedwithbothMRIanduorescencemicroscopy.
Muchisexpectedfromthisbimodalimagingapproachandinitialstudieshavealreadyrevealedpromisingpossibilities.
Gd3asanMRIcontrastagenthastobechelatedinacomplexwithahighbindingconstant,becauseofitstoxicity.
ThetoxicityofGd–DTPAislowandwelldocumented.
Gd–DTPAthereforeisFDAapprovedandthemostcommonlyusedagent.
Ithasalowmolecularweightandisrapidlysecretedbythekidneys.
Gd–DTPA-basedcontrastagentsofhighmolecularweighthaveprolongedcirculationtimesandaccumulateatspecicsites.
Futurestudieshavetorevealwhetherthiscausesanyadversehealtheffectsandwhetherlipidicnanoparti-culatecontrastagentscanbeusedsafelyandcost-effectivelyinhumans.
Theeaseofpreparation,theexibilityand,mostimportantly,thebiocompatibilityoflipidicnanoparticlesmakethemusefultoolsforbiomedicalimagingpurposes.
Lipidicnanoparticlesalsoprovideanexcellenttemplateforanynew(molecular)MRInanoparticle.
Ongoingdevelopmentsinnanotechnology(190–192)mayleadtothedevelopmentofnanoparticlesforMRIwithbetterrelaxationproperties,improvedstabilityandamoredenedsizeandstructure.
REFERENCES1.
HaackeEM,BrownRW,ThompsonMR,VenkatesanR.
Mag-neticResonanceImaging:PhysicalPrinciplesandSequenceDesign.
Wiley:NewYork,1999.
2.
CaravanP,EllisonJJ,McMurryTJ,LaufferRB.
Gadolinium(III)chelatesasMRIcontrastagents:structure,dynamicsandapplica-tions.
Chem.
Rev.
1999;99:2293–2352.
3.
AimeS,BottaM,FasanoM,TerrenoE.
Lanthanide(III)chelatesforNMRbiomedicalapplications.
Chem.
Soc.
Rev.
1998;27:19–29.
4.
BulteJW,KraitchmanDL.
IronoxideMRcontrastagentsformolecularandcellularimaging.
NMRBiomed.
2004;17:484–499.
5.
LorenzCH,JohanssonLO.
Contrast-enhancedcoronaryMRA.
J.
Magn.
Reson.
Imaging1999;10:703–708.
6.
LutzAM,SeemayerC,CorotC,GayRE,GoepfertK,MichelBA,MarincekB,GayS,WeishauptD.
Detectionofsynovialmacrophagesinanexperimentalrabbitmodelofantigen-inducedarthritis:ultrasmallsuperparamagneticironoxide-enhancedMRimaging.
Radiology2004;233:149–157.
7.
PadhaniAR.
Dynamiccontrast-enhancedMRIinclinicalon-cology:currentstatusandfuturedirections.
J.
Magn.
Reson.
Imaging2002;16:407–422.
8.
DafniH,GileadA,NevoN,EilamR,HarmelinA,NeemanM.
Modulationofthepharmacokineticsofmacromolecularcon-trastmaterialbyavidinchase:MRI,opticalandinductivelycoupledplasmamassspectrometrytrackingoftriplylabeledalbumin.
Magn.
Reson.
Med.
2003;50:904–914.
9.
RuehmSG,CorotC,VogtP,KolbS,DebatinJF.
Magneticresonanceimagingofatheroscleroticplaquewithultrasmallsuperparamagneticparticlesofironoxideinhyperlipidemicrabbits.
Circulation2001;103:415–422.
10.
WinterPM,MorawskiAM,CaruthersSD,FuhrhopRW,ZhangH,WilliamsTA,AllenJS,LacyEK,RobertsonJD,LanzaGM,WicklineSA.
Molecularimagingofangiogenesisinearly-stageatherosclerosiswithalpha(v)beta3-integrin-targetednanoparti-cles.
Circulation2003;108:2270–2274.
11.
VeldhuisWB,FlorisS,vanderMeidePH,VosIM,deVriesHE,DijkstraCD,BarPR,NicolayK.
Interferon-betapreventscytokine-inducedneutrophilinltrationandattenuatesblood-brainbarrierdisruption.
JCerebBloodFlowMetab.
2003;23:1060–1069.
12.
WeisslederR,MahmoodU.
Molecularimaging.
Radiology2001;219:316–333.
13.
KroftLJ,deRoosA.
Bloodpoolcontrastagentsforcardiovas-cularMRimaging.
J.
Magn.
Reson.
Imaging1999;10:395–403.
14.
deLussanetQG,LangereisS,Beets-TanRG,vanGenderenMH,GrifoenAW,vanEngelshovenJM,BackesWH.
Dy-namiccontrast-enhancedMRimagingkineticparametersandmolecularweightofdendriticcontrastagentsintumorangio-genesisinmice.
Radiology2005;235:65–72.
15.
SipkinsDA,ChereshDA,KazemiMR,NevinLM,BednarskiMD,LiKC.
DetectionoftumorangiogenesisinvivobyalphaVbeta3-targetedmagneticresonanceimaging.
Nat.
Med.
1998;4:623–626.
16.
LouieAY,HuberMM,AhrensET,RothbacherU,MoatsR,JacobsRE,FraserSE,MeadeTJ.
Invivovisualizationofgeneexpressionusingmagneticresonanceimaging.
Nat.
Biotechnol.
2000;18:321–325.
17.
LewinM,CarlessoN,TungCH,TangXW,CoryD,ScaddenDT,WeisslederR.
Tatpeptide-derivatizedmagneticnanoparti-clesallowinvivotrackingandrecoveryofprogenitorcells.
Nat.
Biotechnol.
2000;18:410–414.
18.
CrichSG,BianconeL,CantaluppiV,DuoD,EspositoG,RussoS,CamussiG,AimeS.
ImprovedrouteforthevisualizationofstemcellslabeledwithaGd-/Eu-chelateasdual(MRIanduorescence)agent.
Magn.
Reson.
Med.
2004;51:938–944.
19.
LukyanovAN,TorchilinVP.
Micellesfromlipidderivativesofwater-solublepolymersasdeliverysystemsforpoorlysolubledrugs.
Adv.
DrugDeliv.
Rev.
2004;56:1273–1289.
20.
TorchilinVP.
Targetedpolymericmicellesfordeliveryofpoorlysolubledrugs.
Cell.
Mol.
LifeSci.
2004;61:2549–2559.
LIPID-BASEDNANOPARTICLESFORCONTRAST-ENHANCEDMRI159Copyright#2006JohnWiley&Sons,Ltd.
NMRBiomed.
2006;19:142–16421.
AllenTM.
Long-circulating(stericallystabilized)liposomesfortargeteddrugdelivery.
TrendsPharmacol.
Sci.
1994;15:215–220.
22.
StormG,CrommelinDJA.
Colloidalsystemsfortumortarget-ing.
Hybridoma1997;16:119–125.
23.
TorchilinVP.
Recentadvanceswithliposomesaspharmaceu-ticalcarriers.
Nat.
Rev.
DrugDiscov.
2005;4:145–160.
24.
TorchilinVP,LukyanovAN,GaoZ,Papahadjopoulos-SternbergB.
Immunomicelles:targetedpharmaceuticalcar-riersforpoorlysolubledrugs.
Proc.
Natl.
Acad.
Sci.
USA2003;100:6039–6044.
25.
AllenTM.
Ligand-targetedtherapeuticsinanticancertherapy.
Nat.
Rev.
Cancer2002;2:750–763.
26.
TorchilinVP.
Fluorescencemicroscopytofollowthetargetingofliposomesandmicellestocellsandtheirintracellularfate.
Adv.
DrugDeliv.
Rev.
2005;57:95–109.
27.
WeisslederR,MahmoodU.
Molecularimaging.
Radiology2001;219:316–333.
28.
LanzaGM,WinterPM,CaruthersSD,MorawskiAM,Schmie-derAH,CrowderKC,WicklineSA.
Magneticresonancemolecularimagingwithnanoparticles.
J.
Nucl.
Cardiol.
2004;11:733–743.
29.
RaymondKN,PierreVC.
Nextgeneration,highrelaxivitygadoliniumMRIagents.
Bioconjug.
Chem.
2005;16:3–8.
30.
StorrsRW,TropperFD,LiHY,SongCK,KuniyoshiJK,SipkinsDA,LiKCP,BednarskiMD.
Paramagneticpolymer-izedliposomes–synthesis,characterizationandapplicationsformagnetic-resonance-imaging.
J.
Am.
Chem.
Soc.
1995;117:7301–7306.
31.
MulderWJ,StrijkersGJ,GrifoenAW,vanBlooisL,MolemaG,StormG,KoningGA,NicolayK.
Aliposomalsystemforcontrast-enhancedmagneticresonanceimagingofmoleculartargets.
Bioconjug.
Chem.
2004;15:799–806.
32.
MorawskiAM,WinterPM,YuX,FuhrhopRW,ScottMJ,HockettF,RobertsonJD,GaffneyPJ,LanzaGM,WicklineSA.
Quantitative'magneticresonanceimmunohistochemistry'withligand-targetedF-19nanoparticles.
Magn.
Reson.
Med.
2004;52:1255–1262.
33.
TorchilinVP.
PEG-basedmicellesascarriersofcontrastagentsfordifferentimagingmodalities.
Adv.
DrugDeliv.
Rev.
2002;54:235–252.
34.
GlogardC,StensrudG,HovlandR,FossheimSL,KlavenessJ.
Liposomesascarriersofamphiphilicgadoliniumchelates:theeffectofmembranecompositiononincorporationefcacyandinvitrorelaxivity.
Int.
J.
Pharm.
2002;233:131–140.
35.
NitinN,LaconteLEW,ZurkiyaO,HuX,BaoG.
Functiona-lizationandpeptide-baseddeliveryofmagneticnanoparticlesasanintracellularMRIcontrastagent.
J.
Biol.
Inorg.
Chem.
2004;9:706–712.
36.
DegiorgioV.
Physicsofamphiphiles:micelles,vesiclesandmicroemulsions.
Amsterdam,1985.
37.
PhospholipidsHandbook.
MarcelDekker:NewYork,1993.
38.
LawrenceMJ,ReesGD.
Microemulsion-basedmediaasnoveldrugdeliverysystems.
Adv.
DrugDeliv.
Rev.
2000;45:89–121.
39.
DubertretB,SkouridesP,NorrisDJ,NoireauxV,BrivanlouAH,LibchaberA.
Invivoimagingofquantumdotsencapsulatedinphospholipidmicelles.
Science2002;298:1759–1762.
40.
BulteJW,DeCuyperM.
Magnetoliposomesascontrastagents.
MethodsEnzymol.
2003;373:175–198.
41.
JohnssonM,EdwardsK.
Liposomes,disksandsphericalmicelles:aggregatestructureinmixturesofgelphasephospha-tidylcholinesandpoly(ethyleneglycol)–phospholipids.
Bio-phys.
J.
2003;85:3839–3847.
42.
DrummondDC,MeyerO,HongK,KirpotinDB,Papahad-jopoulosD.
Optimizingliposomesfordeliveryofchemo-therapeuticagentstosolidtumors.
Pharmacol.
Rev.
1999;51:691–743.
43.
LukyanovAN,TorchilinVP.
Micellesfromlipidderivativesofwater-solublepolymersasdeliverysystemsforpoorlysolubledrugs.
Adv.
DrugDeliv.
Rev.
2004;56:1273–1289.
44.
TorchilinVP.
Targetedpolymericmicellesfordeliveryofpoorlysolubledrugs.
Cell.
Mol.
LifeSci.
2004;61:2549–2559.
45.
AllenTM.
Long-circulating(stericallystabilized)liposomesfortargeteddrugdelivery.
TrendsPharmacol.
Sci.
1994;15:215–220.
46.
ParkJW.
Liposome-baseddrugdeliveryinbreastcancertreat-ment.
BreastCancerRes2002;4:95–99.
47.
O'ShaughnessyJA.
Pegylatedliposomaldoxorubicininthetreatmentofbreastcancer.
ClinBreastCancer2003;4:318–328.
48.
TorchilinVP.
Recentadvanceswithliposomesaspharmaceu-ticalcarriers.
Nat.
Rev.
DrugDiscov.
2005;4:145–160.
49.
AllenTM.
Liposomes.
Opportunitiesindrugdelivery.
Drugs1997;54(Suppl.
4):8–14.
50.
StormG,CrommelinDJ.
Colloidalsystemsfortumortargeting.
Hybridoma1997;16:119–125.
51.
TardiPG,BomanNL,CullisPR.
Liposomaldoxorubicin.
J.
DrugTarget.
1996;4:129–140.
52.
KimES,LuC,KhuriFR,TondaM,GlissonBS,LiuD,JungM,HongWK,HerbstRS.
AphaseIIstudyofSTEALTHcisplatin(SPI-77)inpatientswithadvancednon-smallcelllungcancer.
LungCancer2001;34:427–432.
53.
BurgerKN,StaffhorstRW,deVijlderHC,VelinovaMJ,Bo-mansPH,FrederikPM,deKruijffB.
Nanocapsules:lipid-coatedaggregatesofcisplatinwithhighcytotoxicity.
Nat.
Med.
2002;8:81–84.
54.
KlibanovAL,MaruyamaK,TorchilinVP,HuangL.
Amphi-pathicpolyethyleneglycolseffectivelyprolongthecirculationtimeofliposomes.
FEBSLett.
1990;268:235–237.
55.
AllenTM,HansenC,MartinF,RedemannC,Yau-YoungA.
Liposomescontainingsyntheticlipidderivativesofpoly(ethy-leneglycol)showprolongedcirculationhalf-livesinvivo.
Biochim.
Biophys.
Acta1991;1066:29–36.
56.
AllenTM,HansenC.
Pharmacokineticsofstealthversuscon-ventionalliposomes:effectofdose.
Biochim.
Biophys.
Acta1991;1068:133–141.
57.
TorchilinVP.
Targetedpolymericmicellesfordeliveryofpoorlysolubledrugs.
Cell.
Mol.
LifeSci.
2004;61:2549–2559.
58.
JonesM,LerouxJ.
Polymericmicelles–anewgenerationofcolloidaldrugcarriers.
Eur.
J.
Pharm.
Biopharm.
1999;48:101–111.
59.
BagweRP,KanickyJR,PallaBJ,PatanjaliPK,ShahDO.
Improveddrugdeliveryusingmicroemulsions:rationale,recentprogressandnewhorizons.
Crit.
Rev.
Ther.
DrugCarrierSyst.
2001;18:77–140.
60.
MastrobattistaE,KoningGA,StormG.
Immunoliposomesforthetargeteddeliveryofantitumordrugs.
Adv.
DrugDeliv.
Rev.
1999;40:103–127.
61.
KoningGA,SchiffelersRM,StormG.
Endothelialcellsatinammatorysitesastargetfortherapeuticintervention.
En-dothelium2002;9:161–171.
62.
TorchilinVP,LukyanovAN,GaoZ,Papahadjopoulos-SternbergB.
Immunomicelles:targetedpharmaceuticalcar-riersforpoorlysolubledrugs.
Proc.
Natl.
Acad.
Sci.
USA2003;100:6039–6044.
63.
SapraP,AllenTM.
Ligand-targetedliposomalanticancerdrugs.
Prog.
LipidRes.
2003;42:439–462.
64.
TorchilinVP.
Recentadvanceswithliposomesaspharmaceu-ticalcarriers.
Nat.
Rev.
DrugDiscov.
2005;4:145–160.
65.
KlibanovAL,MaruyamaK,TorchilinVP,HuangL.
Amphi-pathicpolyethyleneglycolseffectivelyprolongthecirculationtimeofliposomes.
FEBSLett.
1990;268:235–237.
66.
RensenPC,SchiffelersRM,VersluisAJ,BijsterboschMK,Kuijk-MeuwissenME,VanBerkelTJ.
HumanrecombinantapolipoproteinE-enrichedliposomescanmimiclow-densitylipoproteinsascarriersforthesite-specicdeliveryofanti-tumoragents.
Mol.
Pharmacol.
1997;52:445–455.
67.
HoligP,BachM,VolkelT,NahdeT,HoffmannS,MullerR,KontermannRE.
NovelRGDlipopeptidesforthetargetingofliposomestointegrin-expressingendothelialandmelanomacells.
ProteinEng.
Des.
Sel.
2004;17:433–441.
68.
HoodJD,BednarskiM,FraustoR,GuccioneS,ReisfeldRA,XiangR,ChereshDA.
Tumorregressionbytargetedgenedeliverytotheneovasculature.
Science2002;296:2404–2407.
69.
WinterPM,CaruthersSD,KassnerA,HarrisTD,ChinenLK,AllenJS,LacyEK,ZhangHY,RobertsonJD,WicklineSA,LanzaGM.
Molecularimagingofangiogenesisinnascentvx-2rabbittumorsusinganovelalpha(v)beta(3)-targetednanopar-ticleand1.
5teslamagneticresonanceimaging.
CancerRes.
2003;63:5838–5843.
160W.
J.
M.
MULDERETAL.
Copyright#2006JohnWiley&Sons,Ltd.
NMRBiomed.
2006;19:142–16470.
BulteJW,HoekstraY,KammanRL,MaginRL,WebbAG,BriggsRW,GoKG,HulstaertCE,MiltenyiS,TheTH.
SpecicMRimagingofhumanlymphocytesbymonoclonalantibody-guideddextran-magnetiteparticles.
Magn.
Reson.
Med.
1992;25:148–157.
71.
SipkinsDA,GijbelsK,TropperFD,BednarskiM,LiKC,SteinmanL.
ICAM-1expressioninautoimmuneencephalitisvisualizedusingmagneticresonanceimaging.
J.
Neuroimmu-nol.
2000;104:1–9.
72.
FlackeS,FischerS,ScottMJ,FuhrhopRJ,AllenJS,McLeanM,WinterP,SicardGA,GaffneyPJ,WicklineSA,LanzaGM.
NovelMRIcontrastagentformolecularimagingofbrinimplicationsfordetectingvulnerableplaques.
Circulation2001;104:1280–1285.
73.
PhillipsNC,GagneL,TsoukasC,DahmanJ.
ImmunoliposometargetingtomurineCD4leucocytesisdependentonimmunestatus.
J.
Immunol.
1994;152:3168–3174.
74.
PaganelliG,PervezS,SiccardiAG,RowlinsonG,DeleideG,ChiolerioF,MalcovatiM,ScassellatiGA,EpenetosAA.
Intraperitonealradio-localizationoftumorspre-targetedbybiotinylatedmonoclonalantibodies.
Int.
J.
Cancer1990;45:1184–1189.
75.
CoussensLM,WerbZ.
Inammationandcancer.
Nature2002;420:860–867.
76.
LibbyP.
Inammationinatherosclerosis.
Nature2002;420:868–874.
77.
LibbyP,RidkerPM,MaseriA.
Inammationandatherosclero-sis.
Circulation2002;105:1135–1143.
78.
NathanC.
Pointsofcontrolininammation.
Nature2002;420:846–852.
79.
KooiME,CappendijkVC,CleutjensKB,KesselsAG,KitslaarPJ,BorgersM,FrederikPM,DaemenMJ,vanEngelshovenJM.
Accumulationofultrasmallsuperparamagneticparticlesofironoxideinhumanatheroscleroticplaquescanbedetectedbyinvivomagneticresonanceimaging.
Circulation2003;107:2453–2458.
80.
KircherMF,AllportJR,GravesEE,LoveV,JosephsonL,LichtmanAH,WeisslederR.
Invivohighresolutionthree-dimensionalimagingofantigen-speciccytotoxicT-lymphocytetrafckingtotumors.
CancerRes.
2003;63:6838–6846.
81.
BarkhausenJ,EbertW,HeyerC,DebatinJF,WeinmannHJ.
Detectionofatheroscleroticplaquewithgadouorine-enhancedmagneticresonanceimaging.
Circulation2003;108:605–609.
82.
GrifoenAW,MolemaG.
Angiogenesis:potentialsforphar-macologicinterventioninthetreatmentofcancer,cardiovas-culardiseasesandchronicinammation.
PharmacolRev.
2000;52:237–268.
83.
CarmelietP,JainRK.
Angiogenesisincancerandotherdis-eases.
Nature2000;407:249–257.
84.
GrifoenAW,CoenenMJ,DamenCA,HellwigSM,vanWeeringDH,VooysW,BlijhamGH,GroenewegenG.
CD44isinvolvedintumorangiogenesis;anactivationantigenonhumanendothelialcells.
Blood1997;90:1150–1159.
85.
HaubnerR,WesterHJ,WeberWA,MangC,ZieglerSI,GoodmanSL,Senekowitsch-SchmidtkeR,KesslerH,Schwai-gerM.
Noninvasiveimagingofalpha(v)beta3integrinexpres-sionusing18F-labeledRGD-containingglycopeptideandpositronemissiontomography.
CancerRes.
2001;61:1781–1785.
86.
KoopmanG,ReutelingspergerCP,KuijtenGA,KeehnenRM,PalsST,vanOersMH.
AnnexinVforowcytometricdetectionofphosphatidylserineexpressiononBcellsundergoingapop-tosis.
Blood1994;84:1415–1420.
87.
BlankenbergFG,KatsikisPD,TaitJF,DavisRE,NaumovskiL,OhtsukiK,KopiwodaS,AbramsMJ,DarkesM,RobbinsRC,MaeckerHT,StraussHW.
Invivodetectionandimagingofphosphatidylserineexpressionduringprogrammedcelldeath.
Proc.
Natl.
Acad.
Sci.
USA1998;95:6349–6354.
88.
HofstraL,LiemIH,DumontEA,BoersmaHH,vanHeerdeWL,DoevendansPA,DeMuinckE,WellensHJ,KemerinkGJ,ReutelingspergerCP,HeidendalGA.
Visualisationofcelldeathinvivoinpatientswithacutemyocardialinfarction.
Lancet2000;356:209–212.
89.
DumontEA,ReutelingspergerCP,SmitsJF,DaemenMJ,DoevendansPA,WellensHJ,HofstraL.
Real-timeimagingofapoptoticcell-membranechangesatthesingle-celllevelinthebeatingmurineheart.
Nat.
Med.
2001;7:1352–1355.
90.
PetrovskyA,SchellenbergerE,JosephsonL,WeisslederR,BogdanovAJr.
Near-infrareduorescentimagingoftumorapoptosis.
CancerRes.
2003;63:1936–1942.
91.
SchellenbergerEA,SosnovikD,WeisslederR,JosephsonL.
Magneto/opticalannexinV,amultimodalprotein.
Bioconjug.
Chem.
2004;15:1062–1067.
92.
JungHI,KettunenMI,DavletovB,BrindleKM.
DetectionofapoptosisusingtheC2AdomainofsynaptotagminI.
Bioconjug.
Chem.
2004;15:983–987.
93.
ZhaoM,BeauregardDA,LoizouL,DavletovB,BrindleKM.
Non-invasivedetectionofapoptosisusingmagneticresonanceimagingandatargetedcontrastagent.
Nat.
Med.
2001;7:1241–1244.
94.
NiehansGA,SingletonTP,DykoskiD,KiangDT.
StabilityofHER-2/neuexpressionovertimeandatmultiplemetastaticsites.
J.
Natl.
CancerInst.
1993;85:1230–1235.
95.
BaselgaJ,ArteagaCL.
Criticalupdateandemergingtrendsinepidermalgrowthfactorreceptortargetingincancer.
J.
Clin.
Oncol.
2005;23:2445–2459.
96.
ParkJW,BenzCC,MartinFJ.
Futuredirectionsofliposome-andimmunoliposome-basedcancertherapeutics.
Semin.
Oncol.
2004;31:196–205.
97.
ArtemovD,MoriN,RaviR,BhujwallaZM.
Magneticreso-nancemolecularimagingoftheHER-2/neureceptor.
CancerRes.
2003;63:2723–2727.
98.
ParkJW,HongK,KirpotinDB,ColbernG,ShalabyR,BaselgaJ,ShaoY,NielsenUB,MarksJD,MooreD,PapahadjopoulosD,BenzCC.
Anti-HER2immunoliposomes:enhancedefcacyattributabletotargeteddelivery.
Clin.
CancerRes.
2002;8:1172–1181.
99.
GlassCK,WitztumJL.
Atherosclerosis.
theroadahead.
Cell2001;104:503–516.
100.
LusisAJ.
Atherosclerosis.
Nature2000;407:233–241.
101.
ChoudhuryRP,FusterV,FayadZA.
Molecular,cellularandfunctionalimagingofatherothrombosis.
Nat.
Rev.
DrugDiscov.
2004;3:913–925.
102.
FriasJC,WilliamsKJ,FisherEA,FayadZA.
RecombinantHDL-likenanoparticles:aspeciccontrastagentforMRIofatheroscleroticplaques.
J.
Am.
Chem.
Soc.
2004;126:16316–16317.
103.
LiH,GrayBD,CorbinI,LebherzC,ChoiH,Lund-KatzS,WilsonJM,GlicksonJD,ZhouR.
MRanduorescentimagingoflow-densitylipoproteinreceptors.
Acad.
Radiol.
2004;11:1251–1259.
104.
KellyKA,AllportJR,TsourkasA,Shinde-PatilVR,JosephsonL,WeisslederR.
Detectionofvascularadhesionmolecule-1expressionusinganovelmultimodalnanoparticle.
Circ.
Res.
2005;96:327–336.
105.
JohanssonLO,BjornerudA,AhlstromHK,LaddDL,FujiiDK.
Atargetedcontrastagentformagneticresonanceimagingofthrombus:implicationsofspatialresolution.
J.
Magn.
Reson.
Imaging2001;13:615–618.
106.
BanghamAD,StandishMM,WatkinsJC.
Diffusionofuni-valentionsacrossthelamellaeofswollenphospholipids.
J.
Mol.
Biol.
1965;13:238–252.
107.
TorchilinVP.
Recentadvanceswithliposomesaspharma-ceuticalcarriers.
Nat.
Rev.
DrugDiscov.
2005;4:145–160.
108.
MaginRL,WrightSM,NiesmanMR,ChanHC,SwartzHM.
LiposomedeliveryofNMRcontrastagentsforimprovedtissueimaging.
Magn.
Reson.
Med.
1986;3:440–447.
109.
KoenigSH,BrownRDIII,KurlandR,OhkiS.
RelaxivityandbindingofMn2ionsinsolutionsofphosphatidylserinevesi-cles.
Magn.
Reson.
Med.
1988;7:133–142.
110.
DevoisselleJM,Vion-DuryJ,GalonsJP,Confort-GounyS,CoustautD,CanioniP,CozzonePJ.
Entrapmentofgadolinium–DTPAinliposomes.
CharacterizationofvesiclesbyP-31NMRspectroscopy.
Invest.
Radiol.
1988;23:719–724.
111.
UngerE,NeedlemanP,CullisP,TilcockC.
Gadolinium–DTPAliposomesasapotentialMRIcontrastagent.
Workinprogress.
Invest.
Radiol.
1988;23:928–932.
LIPID-BASEDNANOPARTICLESFORCONTRAST-ENHANCEDMRI161Copyright#2006JohnWiley&Sons,Ltd.
NMRBiomed.
2006;19:142–164112.
TilcockC,UngerE,CullisP,MacDougallP.
LiposomalGd–DTPA:preparationandcharacterizationofrelaxivity.
Radiol-ogy1989;171:77–80.
113.
CarideVJ,SostmanHD,WinchellRJ,GoreJC.
Relaxationenhancementusingliposomescarryingparamagneticspecies.
Magn.
Reson.
Imaging1984;2:107–112.
114.
FossheimSL,Il'yasovKA,HennigJ,BjornerudA.
Thermo-sensitiveparamagneticliposomesfortemperaturecontroldur-ingMRimaging-guidedhyperthermia:invitrofeasibilitystudies.
Acad.
Radiol.
2000;7:1107–1115.
115.
FossheimSL,FahlvikAK,KlavenessJ,MullerRN.
Paramag-neticliposomesasMRIcontrastagents:inuenceofliposomalphysicochemicalpropertiesontheinvitrorelaxivity.
Magn.
Reson.
Imaging1999;17:83–89.
116.
NavonG,PanigelR,ValensinG.
Liposomescontainingpara-magneticmacromoleculesasMRIcontrastagents.
Magn.
Reson.
Med.
1986;3:876–880.
117.
UngerEC,WinokurT,MacDougallP,RosenblumJ,ClairM,GatenbyR,TilcockC.
Hepaticmetastases:liposomalGd–DTPA-enhancedMRimaging.
Radiology1989;171:81–85.
118.
NiesmanMR,BacicGG,WrightSM,SwartzHJ,MaginRL.
LiposomeencapsulatedMnCl2asaliverspeciccontrastagentformagneticresonanceimaging.
Invest.
Radiol.
1990;25:545–551.
119.
UngerE,FritzT,ShenDK,WuG.
Manganese-basedliposomes.
Comparativeapproaches.
Invest.
Radiol.
1993;28:933–938.
120.
SaitoR,BringasJR,McKnightTR,WendlandMF,MamotC,DrummondDC,KirpotinDB,ParkJW,BergerMS,BankiewiczKS.
Distributionofliposomesintobrainandratbraintumormodelsbyconvection-enhanceddeliverymonitoredwithmag-neticresonanceimaging.
CancerRes.
2004;64:2572–2579.
121.
MamotC,NguyenJB,PourdehnadM,HadaczekP,SaitoR,BringasJR,DrummondDC,HongK,KirpotinDB,McKnightT,BergerMS,ParkJW,BankiewiczKS.
Extensivedistributionofliposomesinrodentbrainsandbraintumorsfollowingconvection-enhanceddelivery.
J.
Neurooncol.
2004;68:1–9.
122.
HeverhagenJT,GraserA,FahrA,MullerR,AlfkeH.
Encap-sulationofgadobutrolinAVE-basedliposomalcarriersforMRdetectability.
Magn.
Reson.
Imaging2004;22:483–487.
123.
UngerE,ShenDK,WuGL,FritzT.
LiposomesasMRcontrastagents:prosandcons.
Magn.
Reson.
Med.
1991;22:304–308.
124.
KoenigSH,AhkongQF,BrownRDIII,LaeurM,SpillerM,UngerE,TilcockC.
Permeabilityofliposomalmembranestowater:resultsfromthemagneticelddependenceofT1ofsolventprotonsinsuspensionsofvesicleswithentrappedparamagneticions.
Magn.
Reson.
Med.
1992;23:275–286.
125.
VigliantiBL,AbrahamSA,MichelichCR,YarmolenkoPS,MacFallJR,BallyMB,DewhirstMW.
Invivomonitoringoftissuepharmacokineticsofliposome/drugusingMRI:illustra-tionoftargeteddelivery.
Magn.
Reson.
Med.
2004;51:1153–1162.
126.
FrichL,BjornerudA,FossheimS,TillungT,GladhaugI.
Experimentalapplicationofthermosensitiveparamagneticliposomesformonitoringmagneticresonanceimagingguid-edthermalablation.
Magn.
Reson.
Med.
2004;52:1302–1309.
127.
LoklingKE,FossheimSL,SkurtveitR,BjornerudA,KlavenessJ.
pH-sensitiveparamagneticliposomesasMRIcontrastagents:invitrofeasibilitystudies.
Magn.
Reson.
Imaging2001;19:731–738.
128.
KabalkaGW,DavisMA,BuonocoreE,HubnerK,HolmbergE,HuangL.
Gd-labeledliposomescontainingamphipathicagentsformagneticresonanceimaging.
Invest.
Radiol.
1990;25(Suppl.
1):S63–S64.
129.
KabalkaGW,BuonocoreE,HubnerK,DavisM,HuangL.
Gadolinium-labeledliposomescontainingparamagneticamphi-pathicagents:targetedMRIcontrastagentsfortheliver.
Magn.
Reson.
Med.
1988;8:89–95.
130.
KimSK,PohostGM,ElgavishGA.
Fatty-acyliminopolycar-boxylates:lipophilicbifunctionalcontrastagentsforNMRimaging.
Magn.
Reson.
Med.
1991;22:57–67.
131.
SchwendenerRA,WuthrichR,DuewellS,WehrliE,vonSchulthessGK.
ApharmacokineticandMRIstudyofunila-mellargadolinium–,manganese–andiron–DTPA–stearateli-posomesasorgan-speciccontrastagents.
Invest.
Radiol.
1990;25:922–932.
132.
TilcockC,AhkongQF,KoenigSH,BrownRDIII,DavisM,KabalkaG.
ThedesignofliposomalparamagneticMRagents:effectofvesiclesizeupontherelaxivityofsurface-incorporatedlipophilicchelates.
Magn.
Reson.
Med.
1992;27:44–51.
133.
KabalkaGW,DavisMA,HolmbergE,MaruyamaK,HuangL.
Gadolinium-labeledliposomescontainingamphiphilicGd–DTPAderivativesofvaryingchainlength:targetedMRIcontrastenhancementagentsfortheliver.
Magn.
Reson.
Ima-ging1991;9:373–377.
134.
KabalkaGW,DavisMA,MossTH,BuonocoreE,HubnerK,HolmbergE,MaruyamaK,HuangL.
Gadolinium-labeledliposomescontainingvariousamphiphilicGd–DTPAderiva-tives:targetedMRIcontrastenhancementagentsfortheliver.
Magn.
Reson.
Med.
1991;19:406–415.
135.
HovlandR,GlogardC,AasenAJ,KlavenessJ.
PreparationandinvitroevaluationofanovelamphiphilicGdPCTA-[12]deri-vative;amicellarMRIcontrastagent.
Org.
Biomol.
Chem.
2003;1:644–647.
136.
TrubetskoyVS,CannilloJA,MilshteinA,WolfGL,TorchilinVP.
ControlleddeliveryofGd-containingliposomestolymphnodes:surfacemodicationmayenhanceMRIcontrastproper-ties.
Magn.
Reson.
Imaging1995;13:31–37.
137.
BertiniI,BianchiniF,CaloriniL,ColagrandeS,FragaiM,FranchiA,GalloO,GavazziC,LuchinatC.
Persistentcontrastenhancementbystericallystabilizedparamagneticliposomesinmurinemelanoma.
Magn.
Reson.
Med.
2004;52:669–672.
138.
ChuWJ,SimorT,ElgavishGA.
InvivocharacterizationofGd(BME–DTTA),amyocardialMRIcontrastagent:tissuedistributionofitsMRIintensityenhancementanditseffectonheartfunction.
NMRBiomed.
1997;10:87–92.
139.
LeclercqF,Cohen-OhanaM,MignetN,SbarbatiA,HerscoviciJ,SchermanD,BykG.
Design,synthesisandevaluationofgadoliniumcationiclipidsastoolsforbiodistributionstudiesofgenedeliverycomplexes.
Bioconjug.
Chem.
2003;14:112–119.
140.
StorrsRW,TropperFD,LiHY,SongCK,SipkinsDA,KuniyoshiJK,BednarskiMD,StraussHW,LiKC.
Paramag-neticpolymerizedliposomesasnewrecirculatingMRcontrastagents.
J.
Magn.
Reson.
Imaging1995;5:719–724.
141.
DeCuyperM,JoniauM.
Potentialitiesofmagnetoliposomesinstudyingsymmetricandasymmetricphospholipidtransferprocesses.
Biochim.
Biophys.
Acta1990;1027:172–178.
142.
MargolisLB,NamiotVA,KljukinLM.
Magnetoliposomes:anotherprincipleofcellsorting.
Biochim.
Biophys.
Acta1983;735:193–195.
143.
BabincovaM,AltanerovaV,LampertM,AltanerC,MachovaE,SramkaM,BabinecP.
Site-specicinvivotargetingofmagnetoliposomesusingexternallyappliedmagneticeld.
Z.
Naturforsch.
C2000;55:278–281.
144.
BabincovaM,LeszczynskaD,SourivongP,BabinecP,Leszc-zynskiJ.
Principlesofmagnetodynamicchemotherapy.
Med.
Hypotheses2004;62:375–377.
145.
BulteJW,MaLD,MaginRL,KammanRL,HulstaertCE,GoKG,TheTH,deLeijL.
SelectiveMRimagingoflabeledhumanperipheralbloodmononuclearcellsbyliposomemediatedincorporationofdextran-magnetiteparticles.
Magn.
Reson.
Med.
1993;29:32–37.
146.
MartinaMS,FortinJP,MenagerC,ClementO,BarrattG,Grabielle-MadelmontC,GazeauF,CabuilV,LesieurS.
Gen-erationofsuperparamagneticliposomesrevealedashighlyefcientMRIcontrastagentsforinvivoimaging.
J.
Am.
Chem.
Soc.
2005;127:10676–10685.
147.
DeCuyperM,JoniauM.
Magnetoliposomes.
Formationandstructuralcharacterization.
Eur.
Biophys.
J.
1988;15:311–319.
148.
BulteJW,DeCuyperM,DespresD,FrankJA.
Short-vs.
long-circulatingmagnetoliposomesasbonemarrow-seekingMRcontrastagents.
J.
Magn.
Reson.
Imaging1999;9:329–335.
149.
StrijkersGJ,MulderWJM,vanHeeswijkRB,FrederikPM,BomansP,MagusinPC,NicolayK.
RelaxivityofliposomalparamagenticMRIcontrastagents.
MAGMA2005;18:186–192.
150.
vanTilborgGA,StrijkersGJ,MulderWJ,ReutelingspergerCP,NicolayK.
AnnexinV-functionalizedmultimodalliposomesas162W.
J.
M.
MULDERETAL.
Copyright#2006JohnWiley&Sons,Ltd.
NMRBiomed.
2006;19:142–164contrastagentsforapoptoticcells.
Proceedingsofthe13thISMRMScienticMeeting2005.
Miami,FL,2005.
151.
MulderWJ,StrijkersGJ,HabetsJW,vanderSchaftDW,StormG,KoningGA,GrifoenAW,NicolayK.
MRImagingofv3-expressionintumorbearingmiceusingRGD-conjugatedparamagneticanduorescentliposomes[abstract].
Angiogen-esis2005;2:183–184.
152.
MulderWJ,StrijkersGJ,HabetsJW,BleekerEJ,vanderSchaftDW,StormG,KoningGA,GrifoenAW,NicolayK.
MRmolecularimaginganduorescencemicroscopyforidentica-tionofactivatedtumorendotheliumusingabimodallipidicnanoparticle.
FASEBJ.
2005;19:2008–2010.
153.
TorchilinVP.
Targetedpolymericmicellesfordeliveryofpoorlysolubledrugs.
Cell.
Mol.
LifeSci.
2004;61:2549–2559.
154.
TorchilinVP,LukyanovAN,GaoZ,Papahadjopoulos-SternbergB.
Immunomicelles:targetedpharmaceuticalcar-riersforpoorlysolubledrugs.
Proc.
Natl.
Acad.
Sci.
USA2003;100:6039–6044.
155.
AimeS,BarberoL,BottaM.
TrendsinNMRstudiesofparamagneticGd(III)complexesaspotentialcontrastagentsinMRI.
Magn.
Reson.
Imaging1991;9:843–847.
156.
AccardoA,TesauroD,RoscignoP,GianolioE,PaduanoL,D'ErricoG,PedoneC,MorelliG.
PhysicochemicalpropertiesofmixedmicellaraggregatescontainingCCKpeptidesandGdcomplexesdesignedastumorspeciccontrastagentsinMRI.
J.
Am.
Chem.
Soc.
2004;126:3097–3107.
157.
AmirbekianV,LipinskMJ,FriasJC,AguinaldoJGS,ManiV,FayadZA.
InvivoMRimagingofapolipoprotein-Eknockoutmicetodetectatherosclerosiswithgadolinium-containingmi-cellesandimmunomicellesmolecularlytargetedtomacro-phages.
Proceedingsofthe13thISMRMScienticMeeting2005.
Miami,FL,2005.
158.
ShimadaM,YoshikawaK,SuganumaT,KayanumaH,InoueY,ItoK,SenooA,HayashiS.
Interstitialmagneticresonancelymphography:comparativeanimalstudyofga-douorine8andgadoliniumdiethylenetriamine-pentaaceticacid.
J.
Comput.
-Assist.
Tomogr.
2003;27:641–646.
159.
MisselwitzB,PlatzekJ,RaduchelB,OellingerJJ,WeinmannHJ.
Gadouorine8:initialexperiencewithanewcontrastmediumforinterstitialMRlymphography.
MAGMA1999;8:190–195.
160.
MisselwitzB,PlatzekJ,WeinmannHJ.
EarlyMRlymphogra-phywithgadouorineMinrabbits.
Radiology2004;231:682–688.
161.
SirolM,ItskovichVV,ManiV,AguinaldoJG,WeinmannHJ,FusterV,ToussaintJF,FayadZA.
Atheroscleroticplaquedetectionbycontrast-enhancedmagneticresonanceimaging.
AcomparativeanimalstudyofgadouorineandGd–DTPA.
Eur.
HeartJ.
2004;25:146.
162.
SirolM,ItskovichVV,ManiV,AguinaldoJG,FallonJT,MisselwitzB,WeinmannHJ,FusterV,ToussaintJF,FayadZA.
Lipid-richatheroscleroticplaquesdetectedbygadouor-ine-enhancedinvivomagneticresonanceimaging.
Circulation2004;109:2890–2896.
163.
SirolM,MorenoP,FusterV,WeinmannHJ,ToussaintJF,FayadZA.
Earlyversusadvancedatheroscleroticplaqueinvivodetectionbygadouorine-enhancedmagneticresonanceimaging.
J.
Am.
Coll.
Cardiol.
2005;45:297A.
164.
BendszusM,WessigC,SchutzA,HornT,KleinschnitzC,SommerC,MisselwitzB,StollG.
Assessmentofnervedegen-erationbygadouorineM-enhancedmagneticresonanceima-ging.
Ann.
Neurol.
2005;57:388–395.
165.
vanTilborgGA,MulderWJ,ReutelingspergerCP,StrijkersGJ,NicolayK.
Imagingofapoptosisusingtargetedlipid-basedbimodalcontrastagents.
ProceedingsoftheFourthAnnualMeetingoftheSocietyforMolecularImaging.
Cologne,Germany:2005.
166.
LanzaGM,WallaceKD,ScottMJ,CacherisWP,AbendscheinDR,ChristyDH,SharkeyAM,MillerJG,GaffneyPJ,WicklineSA.
Anovelsite-targetedultrasoniccontrastagentwithbroadbiomedicalapplication.
Circulation1996;94:3334–3340.
167.
LanzaGM,YuX,WinterPM,AbendscheinDR,KarukstisKK,ScottMJ,ChinenLK,FuhrhopRW,ScherrerDE,WicklineSA.
Targetedantiproliferativedrugdeliverytovascularsmoothmusclecellswithamagneticresonanceimagingnanoparticlecontrastagentimplicationsforrationaltherapyofrestenosis.
Circulation2002;106:2842–2847.
168.
MorawskiAM,WinterPM,CrowderKC,CaruthersSD,FuhrhopRW,ScottMJ,RobertsonJD,AbendscheinDR,LanzaGM,WicklineSA.
TargetednanoparticlesforquantitativeimagingofsparsemolecularepitopeswithMRI.
Magn.
Reson.
Med.
2004;51:480–486.
169.
WinterPM,MorawskiAM,CaruthersSD,FuhrhopRW,ZhangHY,WilliamsTA,AllenJS,LacyEK,RobertsonJD,LanzaGM,WicklineSA.
Molecularimagingofangiogenesisinearly-stageatherosclerosiswithalpha(v)beta(3)-integrin-targetedna-noparticles.
Circulation2003;108:2270–2274.
170.
WinterPM,MorawskiAM,CaruthersSD,HarrisTD,FuhrhopRW,ZhangHY,AllenJS,LacyEK,WilliamsTA,WicklineSA,LanzaGM.
Antiangiogenictherapyofearlyatherosclerosiswithparamagneticalpha(v)beta(3)-integrin-targetedfumagillinnanoparticles.
J.
Am.
Coll.
Cardiol.
2004;43:322A–323A.
171.
LiuXN,SongL,WangDW,LiaoYH,MaAQ,ZhuZM,ZhaoBR,ZhaoJZ,HuiRT.
[Correlationofthrombospondin-1G1678Apolymorphismtostroke:astudyinChinesepopula-tion].
ZhonghuaYiXueZaZhi2004;84:1959–1962.
172.
PerezJM,SimeoneFJ,TsourkasA,JosephsonL,WeisslederR.
PeroxidasesubstratenanosensorsforMRimaging.
NanoLett.
2004;4:119–122.
173.
LoklingKE,SkurtveitR,FossheimSL,SmistadG,HenriksenI,KlavenessJ.
pH-sensitiveparamagneticliposomesforMRI:assessmentofstabilityinblood.
Magn.
Reson.
Imaging2003;21:531–540.
174.
LoklingKE,SkurtveitR,BjornerudA,FossheimSL.
NovelpH-sensitiveparamagneticliposomeswithimprovedMRproper-ties.
Magn.
Reson.
Med.
2004;51:688–696.
175.
GlogardC,StensrudG,AimeS.
Novelradical-responsiveMRIcontrastagentbasedonparamagneticliposomes.
Magn.
Reso-nan.
Chem.
2003;41:585–588.
176.
HoehnM,KustermannE,BlunkJ,WiedermannD,TrappT,WeckerS,FockingM,ArnoldH,HeschelerJ,FleischmannBK,SchwindtW,BuhrleC.
Monitoringofimplantedstemcellmigrationinvivo:ahighlyresolvedinvivomagneticresonanceimaginginvestigationofexperimentalstrokeinrat.
Proc.
Natl.
Acad.
Sci.
USA2002;99:16267–16272.
177.
KraitchmanDL,HeldmanAW,AtalarE,AmadoLC,MartinBJ,PittengerMF,HareJM,BulteJW.
Invivomagneticresonanceimagingofmesenchymalstemcellsinmyocardialinfarction.
Circulation2003;107:2290–2293.
178.
vandenBosEJ,WagnerA,MahrholdtH,ThompsonRB,MorimotoY,SuttonBS,JuddRM,TaylorDA.
Improvedefcacyofstemcelllabelingformagneticresonanceimagingstudiesbytheuseofcationicliposomes.
CellTransplant.
2003;12:743–756.
179.
VuuK,XieJ,McDonaldMA,BernardoM,HunterF,ZhangY,LiK,BednarskiM,GuccioneS.
Gadolinium–rhodaminenano-particlesforcelllabelingandtrackingviamagneticresonanceandopticalimaging.
Bioconjug.
Chem.
2005;16:995–999.
180.
AhrensET,FloresR,XuH,MorelPA.
Invivoimagingplatformfortrackingimmunotherapeuticcells.
Nat.
Biotechnol.
2005;23:983–987.
181.
OkuN.
Deliveryofcontrastagentsforpositronemissiontomographyimagingbyliposomes.
Adv.
DrugDeliv.
Rev.
1999;37:53–61.
182.
HarringtonKJ,MohammadtaghiS,UsterPS,GlassD,PetersAM,VileRG,StewartJS.
Effectivetargetingofsolidtumorsinpatientswithlocallyadvancedcancersbyradiolabeledpegy-latedliposomes.
Clin.
CancerRes.
2001;7:243–254.
183.
BoermanOC,LavermanP,OyenWJ,CorstensFH,StormG.
Radiolabeledliposomesforscintigraphicimaging.
Prog.
LipidRes.
2000;39:461–475.
184.
DagarS,RubinsteinI,OnyukselH.
Liposomesinultrasoundandgammascintigraphicimaging.
MethodsEnzymol.
2003;373:198–214.
185.
WinterPM,ShuklaHP,CaruthersSD,ScottMJ,FuhrhopRW,RobertsonJD,GaffneyPJ,WicklineSA,LanzaGM.
Molecularimagingofhumanthrombuswithcomputedtomography.
Acad.
Radiol.
2005;12(Suppl1):S9–S13.
186.
MichaletX,PinaudFF,BentolilaLA,TsayJM,DooseS,LiJJ,SundaresanG,WuAM,GambhirSS,WeissS.
QuantumdotsLIPID-BASEDNANOPARTICLESFORCONTRAST-ENHANCEDMRI163Copyright#2006JohnWiley&Sons,Ltd.
NMRBiomed.
2006;19:142–164forlivecells,invivoimaginganddiagnostics.
Science2005;307:538–544.
187.
MulderWJ,KooleR,BrandwijkRJ,StormG,ChinPT,StrijkersGJ,deMelloDonegaC,NicolayK,GrifoenAW.
QuantumDotswithaParamagneticCoatingasaBimodalMolecularImagingProbe.
NanoLett11-24-0005.
188.
AimeS,DelliCD,TerrenoE.
HighlysensitiveMRIchemicalexchangesaturationtransferagentsusingliposomes.
Angew.
Chem.
Int.
Ed.
2005;44:5513–5515.
189.
TerrenoE,CastelliDD,AimeS.
Towardshighly-sensitiveMRI-CESTagents.
Cologne,2005.
190.
FerrariM.
Cancernanotechnology:opportunitiesandchal-lenges.
Nat.
Rev.
Cancer2005;5:161–171.
191.
BuxtonDB,LeeSC,WicklineSA,FerrariM.
Recommenda-tionsoftheNationalHeart,LungandBloodInstituteNano-technologyWorkingGroup.
Circulation2003;108:2737–2742.
192.
MoghimiSM,HunterAC,MurrayJC.
Nanomedicine:currentstatusandfutureprospects.
FASEBJ.
2005;19:311–330.
193.
NicolleGM,HelmL,MerbachAE.
S-8paramagneticcentresinmolecularassemblies:possibleeffectoftheirproximityonthewaterprotonrelaxivity.
Magn.
Reson.
Chem.
2003;41:794–799.
194.
WinterPM,CaruthersSD,YuX,SongSK,ChenJJ,MillerB,BulteJWM,RobertsonJD,GaffneyPJ,WicklineSA,LanzaGM.
Improvedmolecularimagingcontrastagentfordetectionofhumanthrombus.
Magn.
Reson.
Med.
2003;50:411–416.
164W.
J.
M.
MULDERETAL.
Copyright#2006JohnWiley&Sons,Ltd.
NMRBiomed.
2006;19:142–164

PQ.hosting全线9折,1Gbps带宽不限流量VPS/€3/月,全球11大机房可选

Hostadvice主机目录对我们的服务进行了测试,然后给PQ.hosting颁发了十大WordPress托管奖。为此,宣布PQ.Hosting将在一周内进行折扣优惠,购买和续订虚拟服务器使用优惠码:Hostadvice ,全部优惠10%。PQ.hosting,国外商家,成天于2019年,正规公司,是全球互联网注册商协会 RIPE 的成员。主要是因为提供1Gbps带宽、不限流量的基于KVM虚拟的V...

日本美国站群服务器raksmart站群新增,限量低至月1.99美元

RAKsmart 商家八月份的促销活动今天更新。基本上和上个月的产品套餐活动差不多的,不过也是有简单的微调。对于RAKsmart商家还是比较了解的,他们家产品虽然这两年增加多个机房,以及在VPS主机方案上有丰富的机房和调整到一些自营机房,他们家的策划能力还是有限,基本上每个月的套餐活动都差不多。RAKsmart 在八月份看到有新增香港高防服务器可选,最高100GB防御。同时原来上个月缺货的日本独立...

spinservers($179/月),1Gbps不限流量服务器,双E5-2630Lv3/64GB/1.6T SSD/圣何塞机房

中秋节快到了,spinservers针对中国用户准备了几款圣何塞机房特别独立服务器,大家知道这家服务器都是高配,这次推出的机器除了配置高以外,默认1Gbps不限制流量,解除了常规机器10TB/月的流量限制,价格每月179美元起,机器自动化上架,一般30分钟内,有基本自助管理功能,带IPMI,支持安装Windows或者Linux操作系统。配置一 $179/月CPU:Dual Intel Xeon E...

703hh.com为你推荐
太空国家世界上第一个把人类送入太空的国家是12306崩溃12306是不是瘫痪了?Baby被问婚变绯闻黄晓明婚礼上说baby碰他哪里最兴奋硬盘工作原理硬盘跟光盘的工作原理?mathplayer如何学好理科51sese.comwww.51xuanh.com这是什么网站是骗人的吗?www.sesehu.comwww.121gao.com 是谁的网站啊dadi.tv电视机如何从iptv转换成tv?dpscycle痛苦术士PVE输出宏鹤城勿扰非诚勿扰 怀化小伙 杨荣是哪一期
域名出售 拜登买域名批特朗普 美国主机推荐 便宜建站 nerd 哈喽图床 免费网站监控 申请空间 南昌服务器托管 中国智能物流骨干网 阿里云浏览器 789电视 免费活动 免费测手机号 中国电信宽带测速网 中国电信宽带测速器 台湾google 金主 测速电信 购买空间 更多