页码wwwdyttinfo

wwwdyttinfo  时间:2021-04-20  阅读:()
Published:February05,2014DOI:10.
1371/journal.
pone.
0088282TheRegulationofAlfalfaSaponinExtractonKeyGenesInvolvedinHepaticCholesterolMetabolisminHyperlipidemicRatsYinghuaShi,RuiGuo,XiankeWang,DediYuan,SenhaoZhang,JieWang,XuebingYan,ChengzhangWangAbstractToinvestigatethecholesterol-loweringeffectsofalfalfasaponinextract(ASE)anditsregulationmechanismonsomekeygenesinvolvedincholesterolmetabolism,40healthy7weeksoldmaleSpragueDawley(SD)ratswererandomlydividedintofourgroupswith10ratsineachgroup:controlgroup,hyperlipidemicgroup,ASEtreatmentgroup,ASEpreventiongroup.
Thebodyweightgain,relativeliverweightandserumlipid1evelsofratsweredetermined.
Totalcholesterol(TC)andtotalbileacids(TBA)levelsinliverandfeceswerealsomeasured.
Furthermore,theactivityandmRNAexpressionsofHmgcr,Acat2,Cyp7a1andLdlrwereinvestigated.
Theresultsshowedthefollowing:(1)TheabnormalserumlipidlevelsinhyperlipidemicratswereamelioratedbyASEadministration(bothASEpreventiongroupandtreatmentgroup)(P15mmol/L,andTG>1.
2mmol/L)wereidentifiedashyperlipidemicrats[25].
Toidentifyinductionofhyperlipidemia,attheendof3and4weekafterfeedinghigh-lipiddiet,bloodsamplewascollectedfromtailveinoftherats,andthenassayedforserumTCandTGlevelsusingastandardenzymaticassaykit(BioSinoBio-technologyandScienceInc.
,China).
Afterserumlipiddetermination,20ratswhichwerefedwithhigh-lipiddietfor4weeksallshowedhyperlipidemicsymptom.
Alfalfasaponinextract(ASE)wasprovidedbyHebeiBao'enBiotechnologyCo.
,Ltd(Shijiazhuang,China),whichwasextractedfromtheleavesandstemofalfalfa,andthepuritywas62%.
ThepreparationofASEwasasfollows:Thepowdereddriedstemsandleavesofalfalfaweredefattedbysoxhletextractionwithpetroleumether(2*24h),andthedefattedpowerwasextractedwith75%ethanol(10ml/g)for3hwithconstantstirring.
Aftersuctionfiltration,theextractionwasrepeated.
Theextractswerecombinedandevaporatedundervacuum.
Thedriedextractswasdissolvedindistilledwaterataconcentrationof100g/landthenfractionatedonamacroporousadsorptionresinAB-8columnwithdistilledwater,50%ethanolrespectively.
Theethanolextractedsaponinswereobtainedfromthe50%ethanolfractions,andevaporatedundervacuum.
ToevaluateeffectsofASEonhyperlipidemicrats,10identifiedhyperlipidemicrats(oraladministrationwith2mldistilledwaterat9:00ameverymorningduringtheperiodofhyperlipidemicmodelestablishment)werecontinuouslyfedwithahigh-lipiddiet,andatthesametimeonceeverymorningtreatedwith240mg/kg/dayASEin2mldistilledwaterbyoralgavagefromthebeginningof5week.
Thetreatmentslastedfor4weeks.
Furthermore,toinvestigatepreventioneffectsofASEonhyperlipidemicrats,fromthebeginningofhyperlipidemicmodelestablishment,10ratswerefedwithahigh-lipiddiet,andatthesametimeonceeverymorningtreatedwith240mg/kg/dayASEin2mldistilledwaterbyoralgavagefor8weeks.
Thedoseof240mg/kgwasdecidedbasedonanearlierstudy[21].
Hyperlipidemicratswerefedwithhigh-lipiddietandorallyadministratedwith2mldistilledwateratthesametimeonceeverymorningfor8weeks.
Thecontrolratswerefedwithstandardlabchowandorallyadministratedwith2mldistilledwateratthesametimeonceeverymorningfor8weeks.
Sothereare4groupswith10ratsineachgroup:controlgroup,hyperlipidemicgroup,ASEtreatmentgroupandASEpreventiongroup.
SamplingDatacollection.
Theratsweremonitoreddailyforgeneralhealthandweighedindividuallyatthebeginningandendoftheexperiment.
Thedailyfeedintakeandweightgainwererecordedduringtheexperimentalperiod.
Bloodsampling.
Attheendof8week,ratswerefastedovernightandkilledunderetheranesthesia.
Bloodwascollectedbycardiacpunctureandleftatroomtemperatureforcoagulation.
Theserumwasobtainedbycentrifugationat3000*g,4°Cfor10minandstoredat-70°Cforlateruse.
Theliverwasremovedandwashedwithnormalsaline,blotteddryonfilterpaper,weighed,thenimmediatelyfrozeninliquidnitrogenandstoredat70°Cforfurtheranalysis.
Liversampling.
0.
5gliverofeachratwashomogenizedinPhosphateBufferedSaline(PBS,pH7.
2)(0.
25g/ml)at4°C.
Thesupernatantwasthencentrifugedat4000*g,4°Cfor10min.
Thepreparationwasadjustedtoindicatedconcentrationandstoredat70°Cforfutureuse.
ProteinconcentrationinsupernatantwasmeasuredbyBradfordmethod[26].
Fecessampling.
Fecesofeachratwerecollectedduringthelast3daysexperimentalperiodanddriedat60°C.
Feceswereweighedandgrindedinto0.
5mdiameterpowder.
0.
5gFecespowderofeachratwereextracted3timeswith10mlof95%ethanolat60°Candthenfilteredaswellasevacuatedthoroughly.
TheresiduewasdissolvedinPBSbysonication.
Thepreparationwasadjustedtoindicatedconcentrationandstoredat70°Cforlateranalysis.
BioassaysBiochemicalassayofserumlipid,cholesterolandbileacidsintheliverandfeces.
Levelsoftriglyceride(TG),totalcholesterol(TC),high-densitylipoproteincholesterol(HDL-C)andlow-densitylipoproteincholesterol(LDL-C)inserumweredeterminedusingtheHitachi911analyzer(Roche)withcommercialkits(BioSinoBio-technologyandScienceInc.
)accordingtothemanufacturer'sinstruction.
Levelsoftotalcholesterol(TC)andtotalbileacids(TBA)intheratliverorfecalpreparationweredeterminedusingtheHitachi911analyzer(Roche)withcommercialkits(BioSinoBio-technologyandScienceInc.
)accordingtothemanufacturer'sinstruction.
Enzymaticactivityassay.
EnzymaticactivityofHMGCR,ACAT2andCYP7A1aswellasconcentrationofLDLRinratliverweredeterminedrespectivelyusingRatELISAKits(GENMED)[27],[28]accordingtothemanufacturer'sinstructionusingBertholdLB940microplatereader(BertholdTechnologies).
RNApreparation,cDNAsynthesisandreal-timeRT-PCR.
TotalRNAwaspreparedusingTrizolreagent(Invitrogen)accordingtothemanufacturer'sprotocol.
OnemicrogramRNAwastranscribedintocDNAusingOmniscriptreversetranscriptase(QIAGEN)accordingtomanufacturer'sprotocol.
Real-timequantitativePCR(QPCR)wasusedtodetecttheexpressiondifferenceofHmgcr,Acat2,Cyp7a1andLdlrinhepatictissuesamongtreatments.
β-Actinwasusedasaninternalcontrol.
TheprimersforQPCRwerepresentedinTable1.
Real-timeQPCRwasperformedona96-wellPCRplateintriplicatewithatotalreactionvolumeof10Lcontaining1LcDNA,5uLSYBRGreenMastermix,0.
1uLofeachspecificforwardandreverseprimers,and3.
8Lnuclease-freewater,PCRwascarriedoutinanABIPRISM7700sequencedetectionsystem(AppliedBiosystems)with2minat95°Cforpredegeneration,thenfollowedby40cyclesat95°Cfor15s,60°Cfor20sand72°Cfor30seach.
ThereactionmixturewithnocDNAwasconsideredasthenegativecontroltoconfirmtheabsenceofprimerdimerization.
Thecyclethreshold(Ct)valuesweredeterminedbySequenceDetectionSystemsoftwareversion1.
7a.
QualitativePCRwasperformedtoconfirmformationofasingleproductineachreactionbeforequantitation.
Thetargetgeneexpressionsofthesampleswereexhibitedasfoldchangefromcontrol.
Allgeneswerenormalisedwithβ-Actin.
Table1.
SYBRGreenprimersequencesusedforreal-timeRT-PCR.
doi:10.
1371/journal.
pone.
0088282.
t001页码,2/8(W)w2014/2/27http://www.
plosone.
org/article/info%3Adoi%2F10.
1371%2Fjournal.
pone.
0088282CreatePDFfileswithoutthismessagebypurchasingnovaPDFprinter(http://www.
novapdf.
com)StatisticalanalysisAllresultswereexpressedasmean±SEM.
Thedatawereevaluatedbyone-wayANOVA,andthedifferencesbetweenthemeanswereassessedusingDuncan'stest.
P0.
05).
doi:10.
1371/journal.
pone.
0088282.
g001EffectsofASEonserumlipidlevelsofratsAssummarizedinFigure2,serumTG,TCandLDL-Clevelsweremarkedlyelevated(P<0.
05),whereasserumHDL-Clevelsweresignificantlydecreasedinhyperlipidemicratscomparedwiththecontrolgroup(P<0.
05).
AdministrationofASE(bothASEpreventiongroupandtreatmentgroup)ledtosignificantreductionofserumTG,TCandLDL-Clevels(P<0.
05),aswellastheriseofserumHDL-Clevelscomparedtohyperlipidemicgroup(P<0.
05)althoughtheydidnotreachthevaluesofcontrolgroup(p<0.
05controlvsbothASEadministrationgroups),whichindicatedthebeneficialeffectsofASEonserumlipidprofilesinhyperlipidemicrats.
Figure2.
Effectsofalfalfasaponinextractonserumlipidlevelsofrats.
A.
SerumTGlevel.
B.
SerumTClevel.
C.
SerumHDL-Clevel.
D.
SerumLDL-Clevel.
n=10.
TG,triglycerides;TC,totalcholesterol;HDL-C,high-densitylipoproteincholesterol;LDL-C,low-densitylipoproteincholesterol;*P<0.
05,HyperlipidemicgroupVS.
controlgroup;#P<0.
05,ASEgroup(bothASEtreatmentandpreventiongroup)VS.
hyperlipidemicgroup;$P<0.
05,ASEgroup(bothASEtreatmentandpreventiongroup)VS.
controlgroup.
doi:10.
1371/journal.
pone.
0088282.
g002EffectsofASEontotalcholesterolandtotalbileacidslevelsinliverandfecesofratsAssummarizedinFigure3and4,theratsfedwithhigh-lipiddietshowedmarkedlyhigherlevelsofliverTCandTBAcomparedwiththecontrolgroup(P<0.
05),ASEadministration(bothASEpreventiongroupandtreatmentgroup)significantlyreducedliverTClevel(P<0.
05)althoughtheydidnotreachthevaluesofcontrolgroup(p<0.
05controlvsbothASEadministrationgroups),howeverbothASEadministrationsignificantlyincreasedliverTBAlevel(P<0.
05).
BothTCandTBAlevelsinfecesofratsfedwithhigh-lipiddietweresignificantlyhigherthanthoseincontrolrats(P<0.
05),andfurtherremarkablyelevatedbybothASEadministration(P<0.
05).
页码,3/8(W)w2014/2/27http://www.
plosone.
org/article/info%3Adoi%2F10.
1371%2Fjournal.
pone.
0088282CreatePDFfileswithoutthismessagebypurchasingnovaPDFprinter(http://www.
novapdf.
com)Figure3.
Effectsofalfalfasaponinextractontotalcholesterolandtotalbileacidslevelsinliverofrats.
A.
TClevelinliver.
B.
TBAlevelinliver.
n=10.
TC,totalcholesterol;TBA,totalbileacids;*P<0.
05,HyperlipidemicgroupVS.
controlgroup;#P<0.
05,ASEgroup(bothASEtreatmentandpreventiongroup)VS.
hyperlipidemicgroup;$P<0.
05,ASEgroup(bothASEtreatmentandpreventiongroup)VS.
controlgroup.
doi:10.
1371/journal.
pone.
0088282.
g003Figure4.
Effectsofalfalfasaponinextractontotalcholesterolandtotalbileacidslevelsinfecesofrats.
A.
TClevelinfeces.
B.
TBAlevelinfeces.
n=10.
TC,totalcholesterol;TBA,totalbileacids;*P<0.
05,HyperlipidemicgroupVS.
controlgroup;#P<0.
05,ASEgroup(bothASEtreatmentandpreventiongroup)VS.
hyperlipidemicgroup;$P<0.
05,ASEgroup(bothASEtreatmentandpreventiongroup)VS.
controlgroup.
doi:10.
1371/journal.
pone.
0088282.
g004EffectsofASEongeneexpressionandenzymaticactivityinliverofratsRT-PCRdatapresentedinFigure5showedthatgeneexpressionofHmgcrinliverofhyperlipidemicratswasdown-regulatedascomparedwiththecontrolgroup(P<0.
05),andfurthermarkedlyreducedinhyperlipidemicratswithASEadministration(bothASEpreventiongroupandtreatmentgroup)(P<0.
05).
Onthecontrary,geneexpressionofCyp7a1inliverofhyperlipidemicratswasup-regulatedascomparedwiththecontrolgroup(P<0.
05),andfurtherdramaticallyelevatedinhyperlipidemicratswithbothASEadministration(P<0.
05).
GeneexpressionofAcat2inliverofhyperlipidemicratswasup-regulatedascomparedtothecontrolgroup(P<0.
05),andremarkablydecreasedinhyperlipidemicratswithbothASEadministration(P<0.
05),eventheywerelowerthanthevaluesofcontrolgroup(p<0.
05controlvsbothASEadministrationgroups).
Onthecontrary,geneexpressionofLdlrinliverofhyperlipidemicratswasdown-regulatedascomparedtothecontrolgroup(P<0.
05),andsignificantlyincreasedinhyperlipidemicratswithbothASEadministration(P<0.
05)althoughtheydidnotreachthevaluesofcontrolgroup(p<0.
05controlvsbothASEadministrationgroups).
ComparedwithASEtreatmentgroup,geneexpressionofCyp7a1andLdlrofratsinASEpreventiongroupweresignificantlyincreased(P<0.
05).
ELISAdatapresentedinFigure6showedthattherewasthesametrendonactivitiesoftheseenzymesintheliverasgeneexpression.
Figure5.
EffectsofalfalfasaponinextractonmRNAexpressionofgenesinratliver.
A.
HmgcrmRNA.
B.
Acat2mRNA.
C.
Cyp7a1mRNA.
D.
LdlrmRNA.
n=10.
Hmgcr,3-Hydroxy-3-methylglutarylCoAreductase;Acat2,acyl-CoA:cholesterolO-acyltransferase2;Cyp7a1,cytochromeP450,family7,subfamilya,polypeptide1;Ldlr,low-densitylipoproteinreceptor.
*P<0.
05,HyperlipidemicgroupVS.
controlgroup;#P<0.
05,ASEgroup(bothASEtreatmentandpreventiongroup)VS.
hyperlipidemicgroup;$P<0.
05,ASEgroup(bothASEtreatmentandpreventiongroup)VS.
controlgroup;+P<0.
05,ASEpreventiongroupVS.
ASEtreatmentgroup.
doi:10.
1371/journal.
pone.
0088282.
g005Figure6.
EffectsofalfalfasaponinextractonenzymaticactivityandconcentrationofLDLRinratliver.
A.
HMGCRactivity.
B.
ACAT2activity.
C.
CYP7A1activity.
D.
LDLRconcentration.
n=10.
HMGCR,3-Hydroxy-3-methylglutarylCoAreductase;ACAT2,acyl-CoA:cholesterolO-acyltransferase2;CYP7A1,cytochromeP450,family7,subfamilya,polypeptide1;LDLR,low-densitylipoproteinreceptor.
*P<0.
05,页码,4/8(W)w2014/2/27http://www.
plosone.
org/article/info%3Adoi%2F10.
1371%2Fjournal.
pone.
0088282CreatePDFfileswithoutthismessagebypurchasingnovaPDFprinter(http://www.
novapdf.
com)HyperlipidemicgroupVS.
controlgroup;#P<0.
05,ASEgroup(bothASEtreatmentandpreventiongroup)VS.
hyperlipidemicgroup;$P<0.
05,ASEgroup(bothASEtreatmentandpreventiongroup)VS.
controlgroup;+P<0.
05,ASEpreventiongroupVS.
ASEtreatmentgroup.
doi:10.
1371/journal.
pone.
0088282.
g006DiscussionAnti-hyperlipidemiceffectsofASEinhyperlipidemicratsDyslipidemia(usuallyelevatedserumlevelsofTG,TCandLDL-C,accompaniedbyreducedHDL-Clevel)isametabolicdisorderthatconstitutesacrucialriskfactorofatherosclerosisandcardiovasculardisease[29].
LDL-ChasbeenfoundtobethemostdangerousfactoramongserumlipidsowingtoincreasedpenetrationofoxidatedLDL-Cintoarterialwalls[30]andthentheexcessofLDLiseasilydepositedintothebloodvesselwalls,whichisinvolvedintheinitiationandpromotionofatherosclerosisandbecomesamajorcomponenttocauseatheroscleroticplaquelesions[31].
HDLcarriescholesterolandcholesterolestersfromtheperipheraltissuesandcellstotheliver,wherecholesterolismetabolizedintobileacids.
SoHDLplaysaveryimportantroletoreducecholesterollevelsinthebloodandperipheraltissues,andtoinhibitatheroscleroticplaqueformationintheaorta[32].
Therefore,decreasingserumTCandLDL-ClevelsandincreasingserumHDLlevelarepivotalforreducingtheriskofatherosclerosis[33].
Dietplaysacrucialroleinthecontrolofcholesterolhomeostasis.
Theconsumptionofcholesterol-enricheddietisregardedasakeyriskfactorinthedevelopmentofcardiovasculardiseasesasitleadstothedevelopmentofhyperlipidemiaandatherosclerosis.
OurresultsshowedthatthehyperlipidemicratsdevelopedhigherserumlevelsofTG,TCandLDL-C,aswellasadecreasedconcentrationofHDL-C.
Theresultsobtainedwereconsistentwiththepreviousstudies[20],[21],[34],[35].
However,theelevatedserumlevelsofTG,TCandLDL-CinhyperlipidemicratsweresignificantlyreducedbyASEadministration.
Conversely,thedeclinedserumHDL-ClevelwassignificantlyincreasedbyASEadministration.
TheseresultssuggestedthatASEwasaneffectivelipid-loweringagent.
Thefindingsalsoagreedwiththepreviousstudiesonthecholesterol-loweringeffectsofASinmonkeysandratsreportedbyMalinowetal[10]–[12]andStoryetal[14],theyconcludedthatthehypocholesterolemiceffectsofAScouldbeascribedtoitsinhibitionofcholesterolabsorption.
However,whetherthecholesterol-loweringeffectsofASEaremediatedbysomekeygenesinvolvedincholesterolmetabolismisnotknown.
Therefore,inthepresentstudy,weinvestigatedthehepaticmetabolicpathwayofcholesterolanddetectedtheexpressionandactivityofHMGCR,ACAT2,CYP7A1andLDLRintheliver.
InhibitoryeffectsofASEonHMGCRandACAT2inhyperlipidemicrats3-Hydroxy-3-methylglutarylCoAreductase(HMGCR)istherate-limitingenzymeincholesterolbiosynthesis.
TheinhibitionofHMGCRexpressionoractivitywillleadtoinhibitcholesteroldenovosynthesisintheliverandthusreduceserumcholesterollevel[16],[36].
Acyl-CoA:cholesterolO-acyltransferase2(ACAT2),isthemajortissuecholesterol-esterifyingenzyme,whichisfoundwithinlipoprotein-producingcellssuchasenterocytesandhepatocytes[18].
IthasbeenpreviouslydocumentedthatACAT2convertsfreecholesterolintocholesterylestersinresponsetoexcessintracellularcholesterol[37].
ACAT2-derivedcholesterylestersmayalsobeincorporatedintohepaticapoB-containinglipoproteinsandsecretedintoplasma.
SoACAT2playsacriticalroleintheproductionofatherogenicapoB-containinglipoproteinsandthatACAT2-specificinhibitorsareextremelyeffectiveinpreventingmurineatherosclerosis[38].
Inourstudy,geneexpressionofHmgcrwassuppressedinhyperlipidemicrats,andfurthersignificantlyinhibitedbyASEadministration,andmarkedlyreducedTClevelintheliverandserumofhyperlipidemicrats.
SothedecreasingTClevelintheliverandserumobservedinthecurrentstudycouldbeexplainedbythedown-regulationofHmgcr,whichreducedtheconversionofHMG-CoAintomevalonate,andinhibitedthesynthesisofcholesterol[39].
AlthoughtherewasnoreportontheeffectofASEontheexpressionofcholesterolmetabolismrelatedgenes,itwasfoundthatFTZ(FufangZhenshuTiaoZhi)extractedfromChineseherbscouldregulatethegeneexpressionofHmgcr[28].
Cynomolgusmonkeysfedahigh-cholesteroldietexpressincreasedhepaticAcat2mRNAlevels,andpatientstreatedwithstatinshaveadose-dependentdecreaseinAcat2expression[40].
Theintakeofhigh-lipiddietledtoanincreaseinAcat2mRNAlevelsinthepresentstudy,however,theadministrationofASEremarkablydecreasedgeneexpressionofAcat2.
StudiesofAlgeretal[41]demonstratedthatliver-specificdepletionofAcat2withantisenseoligonucleotidespreventeddietarycholesterol-associatedhepaticsteatosisbothinaninbredmousemodelofnon-alcoholicfattyliverdisease(SJL/J)andinahumanizedhyperlipidemicmousemodel(LDLr,apoB),andACAT2-specificinhibitorsmightholdunexpectedtherapeuticpotentialtotreatbothathero-sclerosisandnon-alcoholicfattyliverdisease.
Sothedown-regulationofAcat2inthecurrentstudymightpreventdietarycholesterol-associatedhepaticsteatosis.
FurtherstudyontheeffectofASEonthegeneexpressionofAcat2couldgivemoreinsightsonthepharmacologicaleffectsofAS.
Up-regulatingeffectsofASEonCYP7A1andLDLRinhyperlipidemicratsCholesterolconversionintobileacidsintheliverisapivotalpathwayinreducingtheserumcholesterollevel.
Bileacidsynthesisandexcretioncontributetomostofthecholesterolremovedfromthebody[42].
CytochromeP450,family7,subfamilya,polypeptide1,alsoknownascholesterol7-alpha-hydroxylase(CYP7A1)istherate-limitingenzymeintheclassicalbileacidbiosyntheticpathway,whichaccountsforatleast75%ofthetotalbileacidpool[43].
TheincreaseofCYP7A1expressionoractivitywillenhancethecatabolicpathwayofcholesterolandledtothereductionofserumandlivercholesterollevel[44].
Low-densitylipoproteinreceptor(LDLR)isacellsurfaceglycoprotein,whichbindstwoproteins:apoB-100,whichisthesoleproteinofLDL,andapoE,whichisfoundinmultiplycopiesinIDLandasubclassofHDL[19].
LDLRhasdualroleinLDLmetabolism.
First,itlimitsLDLproductionbyenhancingtheremoveoftheprecursor,IDL,fromthecirculation.
Second,itenhancesLDLdegradationbymediatingcellularuptakeofLDL.
AdeficiencyofLDLreceptorscausesLDLtoaccumulateasaresultbothofoverproductionandofdelayedremoval[45].
SoLDLRisacruciallyimportantmodulatorofplasmaLDLlevelsinhumansandanimals.
TheincreaseofLDLRexpressionoractivitywillresultinthereductionofserumLDLcholesterollevelbyenhancingtheuptakeandclearanceofLDLcholesterol[46].
/100/100页码,5/8(W)w2014/2/27http://www.
plosone.
org/article/info%3Adoi%2F10.
1371%2Fjournal.
pone.
0088282CreatePDFfileswithoutthismessagebypurchasingnovaPDFprinter(http://www.
novapdf.
com)1.
ViewArticlePubMed/NCBIGoogleScholar2.
ViewArticlePubMed/NCBIGoogleScholar3.
ViewArticlePubMed/NCBIGoogleScholar4.
ViewArticlePubMed/NCBIGoogleScholar5.
ViewArticlePubMed/NCBIGoogleScholar6.
ViewArticlePubMed/NCBIGoogleScholar7.
ViewArticlePubMed/NCBIGoogleScholar8.
ViewArticlePubMed/NCBIGoogleScholar9.
ViewArticlePubMed/NCBIGoogleScholarOurstudyshowedthatgeneexpressionofCyp7a1wasenhancedinliverofhyperlipidemicratsandfurthersignificantlyincreasedbyASEadministration,whichresultedinanincreaseofthecholesterolconversionintobileacids.
GeneexpressionofLdlrwasinhibitedinhyperlipidemicrats,however,ASEpromotedhepaticuptakeandclearanceofplasmacholesterolbyup-regulatinggeneexpressionofLdlr.
Theliverplaysanimportantroleinmaintainingwhole-bodycholesterolhomeostasis.
Itisthemajorsiteforeliminationofcholesterolfromthebodyviabilethroughconvertingcholesterolintobileacids,andalsoamajorcatabolicsitefortheLDLreceptor-mediatedpathway[47],[48].
Ingeneral,theriseinexpressionofCyp7a1andLdlrwouldincreaseuptakeofLDLcholesterolandenhancethecatabolicpathwaywhichconvertscholesteroltobileacid.
Asaresult,hepaticTBAlevelwouldincrease,hepaticandserumTClevelwouldreduce.
Thiscorrespondedtothechangesintheseparametersobservedinthepresentstudy.
Reenaetal.
[46]reportedthehypocholesterolemiceffectsofinteresterifiedoilsweremediatedbyup-regulatingCyp7a1andLdlrmRNAexpressioninrats.
Wuetal.
[49]alsoreportedPNS(Panaxnotoginsengsaponins)supplementationcouldup-regulatethemRNAexpressionofCyp7a1andsupressthediet-inducedhypercholesterolaemia.
SimilarmechanismwasalsoobservedwithsoyisoflavoneandpuerarinwhichdecreasedserumTClevelbymainlyenhancingtheexpressionofCyp7a1[50],[51].
CholesterolhomeostasisistightlycontrolledbycoordinatedchangesintheconcentrationsofmRNAencodingmultipleenzymes[15].
TheactivityoftheseenzymesinthepresentstudyalsoparalleledtheobservedchangesinmRNAlevels.
Down-regulatinggeneexpressionofHmgcrandAcat2thusdecreasingtheiractivitybyASEadministrationmayhaveresultedinthereductionofliverandserumTClevelinhyperlipidemicrats.
Conversely,up-regulatinggeneexpressionofCyp7a1andLdlrthusincreasingtheiractivitybyASEadministrationmayhaveledtotheriseofTBAlevelandthereductionofTClevelintheliverandserumofhyperlipidemicrats.
ThedatainourstudysuggestedASEcouldregulatecholesterolmetabolismmainlyfromthreepathways,i.
e.
enhancingthecatabolicpathwayanduptakeofLDL-Candinhibitingthesynthesispathwayofcholesterol.
Thehypocholesterolemiceffectsofsomeplantextractswasalsofoundtoberelatedtotheexpressionofgenesimplicatedincholesterolmetabolism,suchasHmgcrandCyp7a1inFTZ[28],Cyp7a1inPNS[49],soyisoflavone[50]andpuerarin[51].
Althoughtheexactmechanismofactionfortheseplantextractsoncholesterolmetabolismremainstobeelucidated,theresultsobtainedprovidepowerfulsupportforseekingnewnaturalcholesterol-loweringagents.
OurstudyalsoshowedthatlevelsofTBAandTCinfecesofhyperlipidemicratsweresignificantlyincreasedbyASEadministration,whichalsosuggestedthattheincreaseinexcretionofcholesterolanditsmetabolitewasanotherimportantpathwayofASEtoreduceserumcholesterollevelinhyperlipidemicrats.
Previously,ithasbeendemonstratedthatASreducedserumand/orlivercholesterolaccumulation,ButthesestudiesmainlyfocusedontheeffectsofASonintestinalcholesteroladsorption,whichindicatedASbindtocholesterolpreventingitsreabsorption,increasingthecholesterolcontentinthefecesanddecreasingcholesterollevelsintheblood[10]–[14].
Inthepresentstudy,besidestheadsorptionofASEoncholesterol,itwasnotablethatourfindingsdemonstratedthattheregulationofASEonsomekeygenesimplicatedincholesterolmetabolismmightberesponsibleforthehypocholesterolemiceffectsofASE.
However,whetherASEhasadirecteffectinmRNAexpressionandactivityofthesegenes,furtherstudyisneededtoclarifythedetailedmechanism.
Althoughmostparametersevaluateddidn'treturntonormalvaluesinbothASEadministrationgroupscomparedwiththecontrolgroup,buttheseparametersweresignificantlyimprovedinbothASEadministrationgroupscomparedwithhyperlipidemicgroup,whichsuggestedthatoraladministrationofASEwasabletoameliorateplasmaandlivercholesterol/lipidparameters.
ThesechangeswerecorrelatedwithalterationsinthemRNAexpressionandactivityofkeygenesimplicatedincholesterolmetabolism.
TherewasnosignificantdifferencebetweenASEtreatmentandASEpreventiongroupformostparametersevaluated,whichindicatedthatASEpreventiongrouphadnoextraeffectsincomparisonwithASEtreatmentgroup,sofurtherexperimentsshouldbeconductedtoinvestigatethepreventiveeffectsofASEonhyperlipidemia.
ConclusionsOurpresentstudyindicatedthatASEhadcholesterol-loweringeffects.
Thepossiblemechanismcouldbeattributedto:(1)thedown-regulationofHmgcrandAcat2,aswellasup-regulationofCyp7a1andLdlrinliverofhyperlipidemicrats,whichinvolvedincholesterolbiosynthesis,uptake,andeffluxpathway;(2)theincreaseinexcretionofcholesterol.
ThefindingsinourstudysuggestedASEhadgreatpotentialusefulnessasanaturalagentfortreatinghyperlipidemia.
AuthorContributionsConceivedanddesignedtheexperiments:CZWYHSXKW.
Performedtheexperiments:RGXKWDDY.
Analyzedthedata:YHSRGXKWDDY.
Contributedreagents/materials/analysistools:SHZJWXBY.
Wrotethepaper:YHSCZW.
ReferencesArsenaultBJ,RanaJS,StroesES,DespresJP,ShahPK,etal.
(2009)Beyondlow-densitylipoproteincholesterol:respectivecontributionsofnon-high-densitylipoproteincholesterollevels,triglycerides,andthetotalcholesterol/high-densitylipoproteincholesterolratiotocoronaryheartdiseaseriskinapparentlyhealthymenandwomen.
JournaloftheAmericanCollegeofCardiology55:35–41.
AbidiP,ZhouY,JiangJD,LiuJ(2005)Extracellularsignal-regulatedkinasedependentstabilizationofhepaticlow-densitylipoproteinreceptormRNAbyherbalmedicineberberine.
Arteriosclerosis,Thrombosis,andVascularBiology25:2170–2176.
doi:10.
1161/01.
atv.
0000181761.
16341.
2bChoudharyMI,NaheedS,JalilS,AlamJM(2005)Atta-ur-Rahman(2005)EffectsofethanolicextractofIrisgermanicaonlipidprofileofratsfedonahigh-fatdiet.
JournalofEthnopharmacology98:217–220.
doi:10.
1016/j.
jep.
2005.
01.
013WuHY,BeiWJ,GuoJ(2009)Chineseherbalmedicineforthetreatmentofdyslipidemia.
JournalofGeriatricCardiology6:119–125.
MilgateJ,RobertsDCK(1995)Thenutritional&biologicalsignificanceofsaponins.
NutritionResearch15(8):1223–1249.
doi:10.
1016/0271-5317(95)00081-sRaoAV,GurfinkelDM(2000)Thebioactivityofsaponins:triterpenoidandsteroidalglycosides.
DrugMetabolDrugInteract17:211–235.
doi:10.
1515/dmdi.
2000.
17.
1-4.
211BarensDK,SheafferC(1995)Alfalfa.
Agri2:205–216.
CheekePR(2000)ActualandpotentialapplicationsofYuccaschidigeraandQuillajasaponariasaponinsinhumanandanimalnutrition.
JAnimSci77:1–10.
doi:10.
1007/978-94-015-9339-7_25SenS,MakkarHPS,BeckerK(1998)Alfalfasaponinsandtheirimplicationinanimalnutrition.
JAgricFoodChem46:131–140.
doi:10.
1021/jf970389i页码,6/8(W)w2014/2/27http://www.
plosone.
org/article/info%3Adoi%2F10.
1371%2Fjournal.
pone.
0088282CreatePDFfileswithoutthismessagebypurchasingnovaPDFprinter(http://www.
novapdf.
com)10.
ViewArticlePubMed/NCBIGoogleScholar11.
ViewArticlePubMed/NCBIGoogleScholar12.
ViewArticlePubMed/NCBIGoogleScholar13.
ViewArticlePubMed/NCBIGoogleScholar14.
ViewArticlePubMed/NCBIGoogleScholar15.
ViewArticlePubMed/NCBIGoogleScholar16.
ViewArticlePubMed/NCBIGoogleScholar17.
ViewArticlePubMed/NCBIGoogleScholar18.
ViewArticlePubMed/NCBIGoogleScholar19.
ViewArticlePubMed/NCBIGoogleScholar20.
ViewArticlePubMed/NCBIGoogleScholar21.
ViewArticlePubMed/NCBIGoogleScholar22.
ViewArticlePubMed/NCBIGoogleScholar23.
ViewArticlePubMed/NCBIGoogleScholar24.
ViewArticlePubMed/NCBIGoogleScholar25.
ViewArticlePubMed/NCBIGoogleScholar26.
ViewArticlePubMed/NCBIGoogleScholar27.
ViewArticlePubMed/NCBIGoogleScholar28.
ViewArticlePubMed/NCBIGoogleScholar29.
ViewArticlePubMed/NCBIGoogleScholar30.
ViewArticlePubMed/NCBIGoogleScholar31.
ViewArticlePubMed/NCBIGoogleScholarMalinowMR,McLaughlinP,KohlerGo,LivingstonAL(1977)Preventionofelevatedcholesteremiainmonkeysbyalfalfasaponins.
Steroids29:105–110.
doi:10.
1016/0039-128x(77)90113-1MalinowMR,McLaughlinP,PapworthL,StaffordC,KohlerGo,etal.
(1977)Effectofalfalfasaponinsonintestinalcholesterolabsorptioninrats.
AmJClinNutr30(12):2061–2067.
MalinowMR,McLaughlinP,StaffordC,LivingstonAL,KohlerGo,etal.
(1979)Comparativeeffectsofalfalfasaponinsandalfalfafiberoncholesterolabsorptioninrats.
AmJClinNutr32(9):1810–1812.
ToppingDL,StorerGB,CalvertGD,IllmanRJ,OakenfullDG,etal.
(1980)Effectsofdietarysaponinsonfecalbileacidsandneutralsterols,plasmalipids,andlipoproteinturnoverinthepig.
AmJClinNutr33:783–786.
StoryJA,LepageSL,PetroMS,WestLG,CassidyMM,etal.
(1984)Interactionsofalfalfaplantandsproutsaponinswithcholesterolinvitroandincholesterol-fedrats.
AmJClinNutr39(6):917–929.
MatsuyamaH,SatoK,NakamuraY,SuzukiK,AkibaY(2005)Modulationofregulatoryfactorsinvolvedincholesterolmetabolisminresponsetofeedingofpravastatin-orcholesterol-supplementeddietinchickens.
BiochimBiophysicActa1734:136–142.
doi:10.
1016/j.
bbalip.
2005.
03.
006JurevicsH,HostettlerJ,BarrettC,MorellP,ToewsAD(2000)Diurnalanddietary-inducedchangesincholesterolsynthesiscorrelatewithlevelsofmRNAforHMG-CoAreductase.
JournalofLipidResearch41:1048–1053.
GilardiF,MitroN,GodioC,ScottiE,CarusoD,etal.
(2007)Thepharmacologicalexploitationofcholesterol7-alpha-hydroxylase,thekeyenzymeinbileacidsynthesis:frombindingresinstochromatinremodellingtoreduceplasmacholesterol.
Pharmacology&Therapeutics116:449–472.
doi:10.
1016/j.
pharmthera.
2007.
08.
003CasesS,NovakS(1998)ACAT2,ASecondMammalianAcyl-CoA:CholesterolAcyltransferase.
TheJournalofBiologicalChemistry273(41):26755–26764.
doi:10.
1074/jbc.
273.
41.
26755BrownMS,GoldsteinJL(1986)Areceptor-mediatedpathwayforcholesterolhomeostasis.
Science232:34–47.
doi:10.
1126/science.
3513311WangCZ,WangYH,ShiYH,YanXB,HeY,etal.
(2011)Effectsofalfalfasaponinsonthelipidmetabolism,antioxidationandimmunityofweanedpiglets.
ActaPrataculturaeSinica20(4):210–218.
YuanDD,ShiYH,WangCZ,GuoR,WangJ(2013)Effectofalfalfasaponinsoncholesterolmetabolismanditsmolecularmechanism.
ActaPrataculturaeSinica22(5):294–301.
WangXK,ShiYH,WangCZ,ChenTH,ChenML,etal.
(2012)ComparativeStudyonthemodellingofhyperlipidemiaratbydifferenthigh-fatdiets.
JiangsuAgriculturalSciences40(1):182–184.
KwokCY,WongCNY,YauMYC,YuPHF,AuAL,etal.
(2010)ConsumptionofdriedfruitofCrataeguspinnatifid(hawthorn)suppresseshigh-cholesteroldiet-inducedhypercholesterolemiainrats.
JournalofFunctionalFoods2:179–186.
doi:10.
1016/j.
jff.
2010.
04.
006LiQ,WuJH,GuoDJ,ChengHL,ChenSL,etal.
(2009)Suppressionofdiet-inducedhypercholesterolemiabyScutellarininrats.
PlantaMedica75:1203–1208.
doi:10.
1055/s-0029-1185539NiHC,LiJ,JinY,ZangHM,PengL(2004)Theexperimentalanimalmodelofhyperlipidemiaandhyperlipidemicfattyliverinrats.
ChinesePharmacologicalBulletin20:703–706.
BradfordMM(1976)Arapidandsensitivemethodforthequantitationofmicrogramquantitiesofproteinutilizingtheprincipleofprotein-dyebinding.
AnalyticalBiochemstry72:248–254.
doi:10.
1006/abio.
1976.
9999GuoJ,BeiWJ,TangCP(2009)TheeffectofFufangZhenshuTiaozhiextractonhepaticlipaseindiet-inducedhyperlipidemicrats.
JournalofChineseMedicinalMaterials32:582–585.
GuoJ,BeiWJ,HuYM,TangCP,HeW,etal.
(2011)AnewTCMformulaFTZlowersserumcholesterolbyregulatingHMG-CoAreductaseandCYP7A1inhyperlipidemicrats.
JournalofEthnopharmacology135:299–307.
doi:10.
1016/j.
jep.
2011.
03.
012DurringtonP(2003)Dyslipidaemia.
Lancet362:717–731.
doi:10.
1016/s0140-6736(03)14234-1GottoAJ,BrintonEA(2004)Assessinglowlevelsofhigh-densitylipoproteincholesterolasariskfactorincoronaryheartdisease:aworkinggroupreportandupdate.
JournaloftheAmericanCollegeofCardiology43:717–724.
doi:10.
1016/j.
jacc.
2003.
08.
061PischonT,GirmanCJ,SacksFM,RifaiN,StampferMJ,etal.
(2005)Nonhigh-densitylipoproteincholesterolandapolipoproteinBinthepredictionofcoronaryheartdiseaseinmen.
Circulation112:3375–3383.
doi:10.
1161/circulationaha.
104.
532499页码,7/8(W)w2014/2/27http://www.
plosone.
org/article/info%3Adoi%2F10.
1371%2Fjournal.
pone.
0088282CreatePDFfileswithoutthismessagebypurchasingnovaPDFprinter(http://www.
novapdf.
com)32.
ViewArticlePubMed/NCBIGoogleScholar33.
ViewArticlePubMed/NCBIGoogleScholar34.
ViewArticlePubMed/NCBIGoogleScholar35.
ViewArticlePubMed/NCBIGoogleScholar36.
ViewArticlePubMed/NCBIGoogleScholar37.
ViewArticlePubMed/NCBIGoogleScholar38.
ViewArticlePubMed/NCBIGoogleScholar39.
ViewArticlePubMed/NCBIGoogleScholar40.
ViewArticlePubMed/NCBIGoogleScholar41.
ViewArticlePubMed/NCBIGoogleScholar42.
ViewArticlePubMed/NCBIGoogleScholar43.
ViewArticlePubMed/NCBIGoogleScholar44.
ViewArticlePubMed/NCBIGoogleScholar45.
ViewArticlePubMed/NCBIGoogleScholar46.
47.
ViewArticlePubMed/NCBIGoogleScholar48.
ViewArticlePubMed/NCBIGoogleScholar49.
ViewArticlePubMed/NCBIGoogleScholar50.
ViewArticlePubMed/NCBIGoogleScholar51.
ViewArticlePubMed/NCBIGoogleScholarWhitneyEJ,KrasuskiRA,PersoniusBE,MichalekJE,MaranianAM,etal.
(2005)Arandomizedtrialofastrategyforincreasinghigh-densitylipoproteincholesterollevels:effectsonprogressionofcoronaryheartdiseaseandclinicalevents.
AnnalsofInternalMedicine142:95–104.
doi:10.
7326/0003-4819-142-2-200501180-00008GoldsteinJL,BrownMS(2001)Molecularmedicine.
Thecholesterolquartet.
Science292:1310–1312.
doi:10.
1126/science.
1061815ArafaHM(2005)Curcuminattenuatesdiet-inducedhyperchlolesterolemiainrats.
MedSciMonit11(7):228–234.
ChiangMT,ChenYC,HuangAL(1998)Plasmalipoproteincholesterollevelsinratsfedadietenrichedincholesterolandcholicacid.
IntJVitamNutrRes68(5):328–334.
LeeMK,MoonSS,LeeSE,BokSH,JeongTS,etal.
(2003)Naringenin7-O-cetyletherasinhibitorofHMG-CoAreductaseandmodulatorofplasmaandhepaticlipidsinhighcholesterol-fedrats.
Bioorganic&MedicinalChemistry11:393–398.
doi:10.
1016/s0968-0896(02)00441-8LeeRG,ShahR,SawyerJK,HamiltonRL,ParksJS,etal.
(2005)ACAT2contributescholesterylesterstonewlysecretedVLDL,whereasLCATaddscholesterylestertoLDLinmice.
JLipidRes46:1205–1212.
doi:10.
1194/jlr.
m500018-jlr200LeeRG,KelleyKL,SawyerJK,FareseRV,JrParksJS,etal.
(2004)Plasmacholesterolestersprovidedbylecithin:cholesterolacyltransferaseandacyl-coenzymeA:cholesterolacyltransferase2haveoppositeatheroscleroticpotential.
CircRes95:998–1004.
doi:10.
1161/01.
res.
0000147558.
15554.
67GoldsteinJL&BrownMS(1990)Regulationofthemevalonatepathway.
Nature343:425–430.
doi:10.
1038/343425a0RudelLL,DavisM,SawyerJ,ShahR,WallaceJ(2002)Primateshighlyresponsivetodietarycholesterolup-regulatehepaticACAT2,andlessresponsiveprimatesdonot.
JBiolChem277:31401–31406.
doi:10.
1074/jbc.
m204106200AlgerHM,BrownJM,SawyerJK,KelleyKL,ShahR,etal.
(2010)InhibitionofAcyl-CoenzymeACholesterolAcyltransferase2(ACAT2)PreventsDietaryCholesterol-associatedSteatosisbyEnhancingHepaticTriglycerideMobilization.
JBiolChem285:14267–14274.
doi:10.
1074/jbc.
m110.
118422RussellDW(2003)Theenzymes,regulation,andgeneticsofbileacidsynthesis.
AnnualReviewofBiochemistry72:137–174.
ChiangJY(2004)Regulationofbileacidsynthesis:pathways,nuclearreceptors,andmechanisms.
JournalofHepatology40:539–551.
doi:10.
1016/j.
jhep.
2003.
11.
006DelBasJM,Fernández-LarreaJ,BlayM,ArdèvolA,SalvadóMJ,etal.
(2005)GrapeseedprocyanidinsimproveatheroscleroticriskindexandinduceliverCYP7A1andSHPexpressioninhealthyrats.
TheJournaloftheFederationofAmericanSocietiesforExperimentalBiology19(3):479–481.
doi:10.
1096/fj.
04-3095fjeRudlingM(1992)HepaticmRNAlevelsfortheLDLreceptorandHMG-CoAreductaseshowcoordinateregulationinvivo.
JLipidRes33:493–501.
ReenaMB,GowdaLR,LokeshBR(2011)EnhancedhypocholesterolemiceffectsofinteresterifiedoilsaremediatedbyupregulatingLDLreceptorandcholesterol7-α-hydroxylasegeneexpressioninrats.
TheJournalofNutritiondoi:10.
3945/jn.
110.
127027SpadyDK,BilheimerDW,DietschyJM(1983)Ratesofreceptor-dependentandindependentlowdensitylipoproteinuptakeinthehamster.
ProcNatiAcadSciUSA80:3499–3503.
doi:10.
1073/pnas.
80.
11.
3499SpadyDK&BilheimerDW(1985)Dietarysaturatedtriacylglycerolssupresshepaticlowdensitylipoproteinreceptoractivityinthehamster.
ProcNatiAcadSciUSA82:4526–4530.
doi:10.
1073/pnas.
82.
13.
4526WuJH,LeungGP,KwanYW,ShamTT,TangJY,etal.
(2013)Suppressionofdiet-inducedhypercholesterolaemiabysaponinsfromPanaxnotoginsenginrats.
JournalofFunctionalFood.
5:1159–1169.
doi:10.
1016/j.
jff.
2013.
03.
013KawakamiY,TsurugasakiW,YoshidaY,IgarashiY,NakamuraS,etal.
(2004)Regulativeactionsofdietarysoyisoflvoneonbiologicalantioxidativesystemandlipidmetabolisminrats.
JournalofAgriculturalandFoodChemistry52:1764–1768.
doi:10.
1021/jf0345898YanLP,ChanSW,ChanASC,ChenSL,etal.
(2006)Puerarindecreasesserumtotalcholesterolandenhancesthoracicaortaendothelialnitricoxidesynthaseexpressionindiet-inducedhypercholesterolemicrats.
LifeSciences79:324–330.
doi:10.
1016/j.
lfs.
2006.
01.
016页码,8/8(W)w2014/2/27http://www.
plosone.
org/article/info%3Adoi%2F10.
1371%2Fjournal.
pone.
0088282CreatePDFfileswithoutthismessagebypurchasingnovaPDFprinter(http://www.
novapdf.
com)

亚洲云-浙江高防BGP,至强铂金8270,提供自助防火墙管理,超大内存满足你各种需求

官方网站:点击访问亚洲云官网618活动方案:618特价活动(6.18-6.30)全站首月活动月底结束!地区:浙江高防BGPCPU:至强铂金8270主频7 默频3.61 睿频4.0核心:8核(最高支持64核)内存:8G(最高支持128G)DDR4 3200硬盘:40G系统盘+80G数据盘带宽:上行:20Mbps/下行:1000Mbps防御:100G(可加至300G)防火墙:提供自助 天机盾+金盾 管...

VirtVPS抗投诉瑞士VPS上线10美元/月

专心做抗投诉服务器的VirtVPS上线瑞士机房,看中的就是瑞士对隐私的保护,有需要欧洲抗投诉VPS的朋友不要错过了。VirtVPS这次上新的瑞士服务器采用E-2276G处理器,Windows/Linux操作系统可选。VirtVPS成立于2018年,主营荷兰、芬兰、德国、英国机房的离岸虚拟主机托管、VPS、独立服务器、游戏服务器和外汇服务器业务。VirtVPS 提供世界上最全面的安全、完全受保护和私...

易探云(QQ音乐绿钻)北京/深圳云服务器8核8G10M带宽低至1332.07元/年起

易探云怎么样?易探云香港云服务器比较有优势,他家香港BGP+CN2口碑不错,速度也很稳定。尤其是今年他们动作很大,推出的香港云服务器有4个可用区价格低至18元起,试用过一个月的用户基本会续费,如果年付的话还可以享受8.5折或秒杀价格。今天,云服务器网(yuntue.com)小编推荐一下易探云国内云服务器优惠活动,北京和深圳这二个机房的云服务器2核2G5M带宽低至330.66元/年,还有高配云服务器...

wwwdyttinfo为你推荐
常回家snsFlash动画设计与制作——第九章:导出和发布动画刚刚网女友刚开始用震动棒很舒服身上抽搐时,她说疼不让用了,是真的疼还是太刺激她受不了?徐州商标徐州松木家具前十名香盛圆排第几12306.com12306身份信息待核验要多久?审核要多久curl扩展系统不支持CURL 怎么解决pintang目前世界上最稀有、最珍贵的钱币是什么?tumblr上不去吃鸡更新完打不开,成这样了,怎么办在线等,挺急的3g手机有哪些现在有哪些比较适用的3g手机?400电话查询能查出400电话是什么地区的吗
国外域名 网易域名邮箱 备案域名出售 免费动态域名 lamp 2019年感恩节 好玩的桌面 申请空间 免费phpmysql空间 绍兴电信 上海服务器 万网空间管理 linode支付宝 群英网络 supercache 广东主机托管 腾讯数据库 卡巴斯基官网下载 标准机柜 远程登录 更多