www.dell.com/powersolutions

sqlserver2000挂起  时间:2021-04-23  阅读:()
POWERSOLUTIONS65ENTERPRISECLUSTERENVIRONMENTRecommendationsandTechniquesforScalingMicrosoftSQLServerTosupportmanymoreusers,adatabasemusteasilyscaleoutaswellasup.
ThisarticledescribestechniquesandstrategiesforscalingouttheMicrosoftSQLServerrelationaldatabasemanagementsystem(RDBMS)andprovidesscenariosillustratingscale-outdeployments.
MostenterpriseapplicationstodayrunonaMicrosoftWindows,UNIX,orLinuxoperatingsystem–basedrelationaldatabasemanagementsystem(RDBMS),suchasMicrosoftSQLServer2000.
Scalabilityhasbecomeacriticalfactorinthesuccessoftheseapplicationsasthenumberofusersrelyingonthemhasgrown.
TheInternetalsohasprofoundlyaffectedtheneedforscalability.
Onceexposedtojustafewthousandusers,thedatainmanycorporatedatabasesnowmustbeaccessedbytensofthousandsofconcurrentusersthroughe-commercesites,Webservices,andotherInternet-basedapplications.
Scalingdatabasestosupporttheseusersisamajorcon-cernforbothdatabasesoftwaredevelopersanddatabaseadministrators.
DifferencesbetweenscalingupandscalingoutWhendatabaseperformanceworsens,administratorstypicallyaddresstheproblemfirstbyscalingup—thatis,bytryingtooptimizeperformanceinthecurrentenvi-ronment.
Becausemanydatabaseapplicationshaveinefficientdesignsorbecomeinefficientastheirusagepatternschange,findingandimprovingtheareasofinefficiencycanyieldsignificantperformancebenefits.
Fine-tuningthedatabaseservercanhelpperformmorequeries,handlemoreusers,andrunmoreefficiently.
SQLServerscalesupfairlywell—toapoint.
Inonereal-worldscenario,forexample,acompany'sdatabaserequiredanine-tablejointolookupasinglecustomeraddress.
Selectivelydenormalizingthetablesandapply-ingstrategicindexesallowedSQLServertoexecuteaddressqueriesmuchfaster.
Becauseaddresslookupswereacommontaskforthiscompany,evenaminorper-queryimprovementsignificantlyenhancedoverallserverperformance.
Unfortunately,scalingupislimitedinhowmuchitcanimproveanapplication'sperformanceandabilitytosupportmoreusers.
Forexample,takeadatabasewhosesolefunctionistoperformasingle,simplequery—nojoins,noneedforindexes.
Ahigh-performanceSQLServercomputer—forexample,aquad-processorserverwith4GBofRAMandBYDONJONESWhendatabaseperformanceworsens,administratorstypicallyaddresstheproblemfirstbyscalingup.
severalfastharddrives—couldprobablysupporttensofthou-sandsofuserswhomustconcurrentlyexecutethatonequery.
However,thisservermightnotbeabletosupportamillionusers.
Inthissituation,scalingup—fine-tuning—wouldbeinsuf-ficient,becausesuchasimplequeryleaveslittleroomforimprovement.
Tobeginsupportingmanymoreusers,scalingoutisabettersolution.
Scale-outstrategiesredistributeworkloadsScalingoutSQLServer,amorecomplicatedprocessthanscalingup,requiressplittingadatabaseintovariouspieces,thenmovingthepiecestodifferent,independentSQLServercomputers.
Thegrocery-storecheckoutlinepresentsagoodanalogyforcompar-ingthetwoprocesses.
Inabusygrocerystorewithonlyonecheckoutlaneopen,alonglineofunhappycustomerswouldquicklymaterialize.
Ascale-upapproach—installingfasterbarcodescanners,requir-ingeveryonetouseacreditcardinsteadofwritingacheck,orhiringafastercashier—canmakethecheckoutprocessitselfmoreefficient.
Thesemeasuresmightimprovethesituation,butnotsolvetheproblem;customerswouldmovethroughthelinemorequickly,buttheystillwouldhaveonlyonecheckoutlane.
Abettersolutionwouldbetoscaleout—inthisanalogy,byopen-ingadditionalcheckoutlanes.
Customerscouldnowbeprocessedinparallelbycompletelyindependentlanes.
Tomaketheanalogyclosertoadatabasescale-outscenario,thegrocerystorecouldhavespe-cializedlanes:onethatexpeditesprocessing(customerspurchasing15itemsorfewer),andanotherthatfocusesonproduce,whichoftentakeslongerbecauseitmustbeweighedandnotsimplyscanned.
Anideal,ifunrealistic,solutionmightbetoretainasinglelaneforeachcustomer,buttodivideeachcustomer'spurchasesintocategoriestobehandledbyspecialists:produce,meat,boxeditems,andsoforth.
Specializedcashierscouldminimizetheirinteractionswitheachother,keepingtheprocessmovingspeedilyalong.
Althoughunworkableinarealgrocerystore,thissolutionillus-tratesareal-worldmodelforscalingoutdatabases.
GeneralstrategiesforscalingoutdatabasesDatabasemanagerscanconsidertwobasicscale-outstrategiesfordistributingtheworkloadofadatabaseacrossmultipleservers.
MostmajorRDBMSplatforms,includingSQLServer,providethemeanstomakethesestrategiespossible.
SQLServerfarmsreplicatethedatabaseThefirstapproachsimplyaddsmoreservers.
ConsiderascenarioinwhichacompanyhasanofficeinNewYorkandoneinLosAngeles.
Bothofficeshaveseveralthousanduserswhofrequentlyquerydatafromacorporateapplication,suchasanorder-processingdatabase.
Usersrarelychangedatainthesystem,buttheyfrequentlyaddnewdata.
Inthisscenario,usersinbothofficesareoverloadingthedatabase.
Evenifthedatabaseisawell-writtenmultitierapplication,pro-cessingalltheinformationononlyonedatabaseserveratthebackendcancreateabottleneck.
Figure1illustratesonewaytoaddresstheproblem:aSQLServerfarm.
Inthistechnique,twodata-baseserverseachcontainacom-pletecopyofthedatabase.
Eachofficehousesoneserver,andtheusersineachofficeconnectonlytotheirlocalserver.
ChangesandnewrecordsarereplicatedbetweentheserversbyusingSQLServerreplication.
Toavoidconflictswhenaddingnewrecords,eachofficemight,forexample,beassignedauniquerangeoforderIDnum-bers,ensuringthatnewrecordscreatedineitherofficecanbeuniquelyidentifiedacrossbothcopiesofthedatabase.
ThisstrategyisperhapsthesimplestmeansofscalingoutSQLServer.
AlthoughreplicationisnoteasytosetupandmaintainonSQLServer,neitherisitextremelydifficult.
Thestrategyworkswellevenwithmanyserversandcopiesofthedatabase.
However,thedatareplicationstrategydoesincursomedraw-backs,especiallylatency.
Neithercopyofthedatabasewillevermatchtheotherexactly.
Asnewrecordsareaddedtoeachcopy,timeelapsesbeforereplicationbegins.
Withonlytwoserversinthecompany,eachservermightbeasmuchasanhouroutofsyncwiththeother,dependinguponhowadministratorssetupreplication.
Addingmoreservers,however,involvesdifficultreplicationdecisions.
Foranotherscenario,considerthesix-officesetupdepictedinFigure2.
EachofthesixofficeshasitsownindependentSQLServersystem—anexcellentdesignforscalability.
However,latencycouldbeveryhigh.
IfeachSQLServerreplicateswithitspartnersjustonceeveryhour,thentotalsystemlatencycouldbethreehoursormore.
AchangemadeintheLosAngelesofficewouldreplicateENTERPRISECLUSTERENVIRONMENTPOWERSOLUTIONSNovember200366WorkstationsServerServerWorkstationsReplicationLosAngelesofficeNewYorkofficeFigure1.
SQLServerfarmScalingoutSQLServer,amorecomplicatedprocessthanscalingup,requiressplittingadatabaseintovariouspieces,thenmovingthepiecestodifferent,independentSQLServercomputers.
toNewYorkandLasVegasinaboutanhour.
Anhourlater,thechangewouldreachLondonandDenver.
Anhourlater,itwouldarriveinOrlando.
Givensuchhighlatency,theentiresystemwouldprobablyneverbesynchronizedcompletely.
Administratorscanreducelatency,butataperformancecost.
Ifeachofthesixserversreplicatedwitheachoftheotherfiveservers,thesystemcouldconverge,orbeuniversallyinsync,aboutonceanhour(assumingagainthatreplicationoccurredeveryhour).
Figure3showssuchafullyenmesheddesign.
Inthisfullyenmesheddesign,eachservermustmaintainrepli-cationagreementswithfiveotherservers,andmustreplicatewitheachservereveryhour.
Thismuchreplication,particularlyinabusydatabaseapplication,wouldlikelyslowresponsesomuchthattheperformancegainachievedbycreatingaserverfarmwouldbelost.
Eachofficemightrequiretwoserversjusttomaintainrepli-cationandmeetusers'needs.
Althoughfairlyeasytoimplement,theserverfarmtechniquehasapointofdiminishingreturns.
DistributedpartitioneddatabasesmovetaskstodifferentserversAmoresophisticatedstrategy—butonethatisalsomoredifficulttoimplement—involvespartitioningthedatabaseandmovingthepiecestodifferentservers.
Unlikethesimplifiedorder-processingdatabaseexamplepreviouslydiscussedin"SQLServerfarmsrepli-catethedatabase,"mostreal-worlddatabaseapplicationstendtorelyonanequalmixofdatareadinganddatawriting.
Forexample,anorder-processingapplicationmightincludeaproductcatalogthatislargelyreadonly,acustomer-orderdatabasethatiswriteheavy,andtablescontainingsupplierinformationthatareequallyread-write.
Thesethreecloselyrelateddata-basesegments—catalog,orders,andsuppliertables—arefairlytask-independent:diverseuserswithintheorganizationtendtouseeachdatabasedifferently.
Mer-chandisersmightwritetothecat-alogbutdolittleelse.
Customerservicerepresentativesmightreadthecatalogandwritetotheorderstablesbutneveraccessthesup-pliertables.
Thewarehousestaffmightreadthecatalogandreadfromandwritetothesuppliertables.
Thisdivisionoflaborindicateswherethedatabaseitselfcanbesplit,asFigure4illustrates.
Administratorscanusetwobasicapproachestoimplementingthedistributedpartitioneddatabasestrategy.
Thefirstistomodifytheclientapplicationsothatitunderstandsthedivisionofthedatabaseacrossmultipleservers.
Straightforwardyetsomewhattime-consuming,thissolutiondoesnotworkwellforthelongterm.
Futurechangestotheapplicationcouldresultinadditionaldivisions,whichwouldinturnrequireadditionalreprogramming.
Abetterapproachistoprogramtheclientapplicationtousestoredprocedures,views,andotherserver-sideobjects—anordi-narybestpracticeforaclient-serverapplication—sothattheclientapplicationneednotbeawareofthephysicallocationofthedata.
SQLServeroffersdifferenttechniques,suchasdistributedpartitionedviews,tohandlethissetup.
ENTERPRISECLUSTERENVIRONMENTwww.
dell.
com/powersolutionsPOWERSOLUTIONS67NewYorkLosAngelesLasVegasDenverOrlandoLondonFigure3.
Fullyenmeshedsix-serverfarmReplicationReplicationReplicationReplicationReplicationReplicationNewYorkLosAngelesLasVegasDenverOrlandoLondonFigure2.
Six-serverfarmScalingoutSQLServercanofferbenefitsnotonlyinimprovedapplicationperformance,butalsoingreaterredun-dancyandavailability.
Scale-outtechniquesusingSQLServerandWindowsSQLServerandWindowsofferseveraltechniquestoenablescalingout,includingSQLServer–specificfeaturessuchasdis-tributeddatabasesandviewsandWindows-specificfunctionssuchasWindowsClustering.
DistributedpartitionedviewshelpcreatevirtualtablesSQLServerdistributedpartitionedviewsallowdeveloperstocreateviewsthatcombinetablesfrommultipleSQLServercomputersintoasinglevirtualtable.
ThismethodlogicallydividesadatabaseacrossmultipleSQLServercomputers.
Ratherthanreprogrammingclientapplicationstounderstandthedivisionofthedatabases,develop-erscancreatedistributedviewsthatpresentavirtualizedversionofthem.
Thesetablesappeartoclientapplicationsasiftheywereonasingleserver.
Meanwhile,SQLServercombinesthetables,whicharespreadacrossmultipleservers,intoasingleview.
Distributedviewsareapowerfultoolinscalingout.
Theyallowdeveloperstoredistributedatabasestransparentlytotheendusersandtheirbusinessappli-cations.
Aslongasclientapplica-tionsaredesignedtousetheviewsratherthanthedirecttables,thetablesthemselvescanberearrangedandscaledoutasnec-essarywithouttheclientapplica-tionbeingawareofanychange.
Theworkloadrequiredtocreateandpresenttheviewtoclientcomputersissharedbyallserversparticipatingintheview—orbyallserversinthefederation.
SQLServer2000isthefirstversionofSQLServertomakeasignificantimprovementtothisapproach,becausethedatawithintheviewscanbeupdatedbyclientapplicationsasifthedatawereinaregulartable.
Theupdatesarecascadedbacktothenecessaryparticipantservers.
ReplicationofdistributedpartitioneddatabasesreduceslatencyAnotherscale-outapproachinvolvespartitioningadatabaseacrossmultipleserversandthenreplicatingthedatabasecopies.
Likethesix-serverorder-processingfarmdescribedearlier,eachservercontainsacompletedatabase.
Inthismethod,eachserverisresponsibleforadifferentsetofrows.
SQLServerreplicationisusedtokeepeachcopyofthedatabaseupdated.
Thismethodallowseachservertoimme-diatelyaccessitsownrowsandprovidesreasonablylowlatencyforaccesstorowscreatedonotherservers.
Clientapplicationsoftenmustbemodifiedtounderstandthisstructure.
Inmanypartitioneddatabaseschemes,datarowsmaybemodifiedonlyontheserverthatownsthem,withthechangesthenbeingmovedtotheotherserversthroughreplication.
Clientapplicationsmustknowhowtodeterminewhichserverownsarowbeforemakingmodifications.
WindowsClusteringfacilitateshighavailabilityandscalabilityBesidesimprovingperformance,WindowsClusteringcanhelpavoidtheriskofserverfailurewhenscalingout.
Forexample,atwo-nodeactive/activeclusterhastwoindependentSQLServerservers.
Thesenodescanbeconfiguredasaserverfarm,inwhicheachservercon-tainsacompletecopyofthedatabaseandusersaredistributedbetweenthem.
Analternativeisadistributeddatabasearchitecture,inwhicheachservercontainsonelogicalhalfoftheentiredatabase.
Ineitherarchitecture,afailureofoneserverisnotcatastrophicbecauseWindowsClusteringenablestheotherservertotranspar-entlytakeoverandactastwoservers.
Over-engineeringisthekeytoasuccessfulactive/activecluster.
Eachnodeshouldbedesignedtooperateatamaximumof60percentcapacity.
Ifonenodefails,theothernodecanbeginrun-ningat100percentcapacity,incurringonlyabouta20percentlossofefficiency.
Still,performanceisgenerallywellwithinanaccept-ablerangeconsideringthat,afterfailover,applicationsmustrunonhalfasmuchhardware.
Settingupclusterscanbeextremelycomplex.
InWindowsClustering,thesoftwareisnotdifficulttouse,buttheunderlyinghard-waremustbeabsolutelycompatiblewithWindowsClustering—andmosthardwarevendorshaveexactingrequirementsforclustersetups.
Purchasingpreconfiguredclustersfromamajorservervendor,suchasDell,canhelpsimplifyclustersetup.
Theclusterisdesignedtobereadytorunondelivery,andboththevendorandMicrosoftcanpro-videcluster-specifictechnicalsupportifnecessary.
High-performancestoragetoboostSQLServerresponseHigh-performancestorageisanoften-overlookedperformancebenefitforSQLServer—particularlyexternalstorageareanetworksENTERPRISECLUSTERENVIRONMENTPOWERSOLUTIONSNovember200368ServerServerServerCatalogOrdersSuppliersMerchandisingCustomerserviceWarehouseWriteWriteRead/writeReadReadFigure4.
Identifyingtask-baseddivisionsinthedatabasedesignSQLServerandWindowsofferseveraltechniquestoenablescalingout,includingSQLServer–specificfeaturessuchasdistributeddatabasesandviewsandWindows-specificfunctionssuchasclustering.
(SANs)thatrelyonFibreChanneltechnologyratherthantraditionalSCSIdisksubsystems.
Becausehigh-performancestorageenablesanexistingservertohandleagreaterworkload,itconstitutesanexam-pleofscalingupratherthanout.
SQLServerisahighlydisk-intensiveapplication.
AlthoughSQLServerincludeseffectivememory-basedcachingtechniquestoreducediskreadsandwrites,databaseoperationsrequiresignificantdatatrafficbetweenaserver'sdisksanditsmemory.
Themorequicklythedisksubsystemcanmovedata,thefasterSQLServerwillper-form.
Someindustryestimatessuggestthat75percentofidletimeinSQLServerresultsfromwaitingforthedisksubsystemtodeliverdata.
ImprovingthespeedofthedisksubsystemcanmarkedlyimproveoverallSQLServerperformance.
MovingtoadditionalRAID-5arraysontraditionalcopperSCSIconnectionsisasimplewaytoimprovediskspace.
However,high-speedFibreChannelSANsofferthebestspeed,aswellasmyriadinnovativerecoveryandredundancyoptions—makingthemasaferplacetostoreenterprisedata.
Scale-outstrategyforimprovingSQLServerperformance,redundancy,andavailabilityAsapplicationsgrowtosupporttensandhundredsofthousandsofusers,scalingisbecomingamission-criticalactivity.
Scalingup—improvingefficiencybyfine-tuningqueries,indexes,andsoforth—helpsITorganizationsdomorewithless.
However,scalingupcanrequirehighadministrativeoverheadandmayhavelimitedeffect.
Administratorsmightspendtwoweekstoachievea1per-centperformancegain,animprovementthatcannotcomparetothemuchhighergainspromisedbyawell-plannedscale-outdesign.
Althoughseldomconsideredasatargetforscalingout,SQLServeriswellsuitedtothisstrategy,inbothserverfarmandmoresophisticateddistributeddatabaseapproaches.
ScalingoutSQLServercanofferbenefitsnotonlyinimprovedapplicationperfor-mance,butalsoingreaterredundancyandavailability.
DonJonesisafoundingpartnerofBrainCore.
Net,andhasmorethanadecadeofexperi-enceintheITindustry.
Don'scurrentfocusisonhigh-endenterpriseplanning,includingdataavailabilityandsecuritydesign.
ENTERPRISECLUSTERENVIRONMENTwww.
dell.
com/powersolutionsPOWERSOLUTIONS69Databasescanbeinefficientforseveralreasons:Poordesign:Manyapplicationdevelopersdonotexcelatdatabasedesign.
Some,forexample,havebeentaughttofullynormalizethedatabaseatallcosts,whichcanleadtosignificantlydegradedperformance.
Sometimesprojectschedulesdonotpermitenoughdesigniterationsbeforethedatabasemustbelockeddownandsoft-waredevelopmentbegins.
Insomecases,theapplicationitselfisnotdesignedwell,resultinginanincompletedatabasedesignthatmustbepatchedandexpandedastheapplicationiscreated.
Change:Anapplicationusedinawayunintendedbyitsdesignerscanreduceefficiency.
Theapplicationmayhaveexpandedandbegunsufferingfrom"scopecreep"—thegrowthorchangeofprojectrequirements.
Inthiscase,redesigningtheapplicationfromthebeginningtomeetcurrentbusinessneedsmaybethebestsolutiontodatabaseinefficiency.
Growth:Databasesaredesignedforaspecificdatavolume;oncethatvolumeisexceeded,queriesmaynotworkastheywereintended.
Indexesmightneedtoberedesignedoratleastrebuilt.
Queriesthatwereintendedtoreturnafewdozenrowsmaynowreturnthousands,affectingtheunderlyingdesignoftheapplicationandthewaydataishandled.
Theseproblemsaredifficulttoaddressinalive,productionappli-cation.
Scalinguptendstohavealimitedeffect.
Althoughdevelopersmayagreethattheapplication'sdesignisinefficient,companiesarereluctanttodestroyaserviceableapplicationandstartoverwithoutseriousconsideration.
Scalingoutcanofferalessdrasticsolution.
Althoughscalingoutrequiresconsiderableworkontheserverside,itmaynotrequiremuchmorethanminorrevisionstoclient-sidecode,makingtheprojectapproachablewithoutcompletelyre-architectingtheapplication.
Scalingoutmightnotbethemostelegantorefficientwaytoimproveperformance,butitdoeshelpalleviatemanydatabaseandapplicationdesignflaws.
Italsocanallowcompaniestogrowtheirdatabaseapplicationswithoutneedingtoredesignthemfromthebeginning.
FORMOREINFORMATIONThisarticleisbasedonanexcerptfromthefreeeBookTheDefinitiveGuidetoScalingOutSQLServer(Realtimepublishers.
com)byDonJones,availableathttp://www.
dell.
com/sql/ebookDell|MicrosoftSQLServer2000:http://www.
dell.
com/us/en/esg/topics/products_software_pedge_001_database.
htmMicrosoftSQLServer:http://www.
microsoft.
com/sqlUNDERSTANDINGDATABASEINEFFICIENCY

gcorelabs:美国GPU服务器,8张RTX2080Ti,2*Silver-4214/256G内存/1T SSD/

gcorelabs提供美国阿什本数据中心的GPU服务器(显卡服务器),默认给8路RTX2080Ti,服务器网卡支持2*10Gbps(ANX),CPU为双路Silver-4214(24核48线程),256G内存,1Gbps独享带宽仅需150欧元、10bps带宽仅需600欧元,不限流量随便跑吧。 官方网站 :https://gcorelabs.com/hosting/dedicated/gpu/ ...

湖北50G防御物理服务器( 199元/月 ),国内便宜的高防服务器

4324云是成立于2012年的老牌商家,主要经营国内服务器资源,是目前国内实力很强的商家,从价格上就可以看出来商家实力,这次商家给大家带来了全网最便宜的物理服务器。只能说用叹为观止形容。官网地址 点击进入由于是活动套餐 本款产品需要联系QQ客服 购买 QQ 800083597 QQ 2772347271CPU内存硬盘带宽IP防御价格e5 2630 12核16GBSSD 500GB​30M​1个IP...

老薛主机入门建站月付34/月,年付345元,半价香港VPS主机

老薛主机怎么样?老薛主机这个商家有存在有一些年头。如果没有记错的话,早年老薛主机是做虚拟主机业务的,还算不错在异常激烈的市场中生存到现在,应该算是在众多商家中早期积累到一定的用户群的,主打小众个人网站业务所以能持续到现在。这不,站长看到商家有在进行夏季促销,比如我们很多网友可能有需要的香港vps主机季度及以上可以半价优惠,如果有在选择不同主机商的香港机房的可以看看老薛主机商家的香港vps。点击进入...

sqlserver2000挂起为你推荐
yw372:Com怎么把www.jiayw.com 家园影院的电影下载到本地!!phpweb破解如何破解网络锁360邮箱邮箱地址指的是什么?三友网有了解唐山三友集团的吗?大学生待遇如何,工资收入,福利保障,工作环境等等加多宝与王老吉王老吉和加多宝什么关系?如何发帖子手机百度贴吧怎么发帖子?zencart模板zen cart套用模板后,外观控制显示红色打不开,为什么?商务软件电子商务平台有哪些无忧代理网什么是 ‘无忧在线’ 安全电脑保护专家?长沙电话号码升位0731_88602360电话是哪的
深圳域名空间 大硬盘 息壤主机 68.168.16.150 evssl证书 域名转向 日本bb瘦 双线主机 根服务器 空间购买 万网主机管理 ebay注册 qq金券 lamp怎么读 lamp架构 国外免费云空间 杭州电信 双11促销 google搜索打不开 空间排行榜 更多