SHORTCOMMUNICATIONLong-distancedispersalinredfoxesVulpesvulpesrevealedbyGPStrackingZeaWalton1&GustafSamelius2&MortenOdden1&TomasWillebrand1Received:22January2018/Revised:26September2018/Accepted:3October2018/Publishedonline:11October2018#TheAuthor(s)2018AbstractDispersalisafundamentalprocessthatfacilitatespopulationandrangeexpansionbyprovidingamechanismforcolonizationandmetapopulationlinkages.
Yetquantifyingthedispersalprocess,particularlylong-distancedispersalevents,hasbeeninherentlydifficultduetotechnologicalandobservationallimitations.
Additionally,dispersaldistancecalculatedasthestraight-linedistancebetweeninitiationandsettlementfailstoaccountfortheactualmovementpathoftheanimalduringdispersal.
Here,wehighlightsixlong-distancedispersalevents,representingsomeofthelongestdispersaldistancesrecordedforredfoxes.
Cumulativedispersalmovementsrangedfrom132to1036kmandoccurredwithinbothsexes(1female,5males).
Withoneexception,dispersaleventsrangedfrom7to22daysandtendedtobedirectednorth-northwest.
Importantly,cumulativemovementswereuptofivetimeslongerthanstraight-linedistances,withtwofoxestravelinganadditional114and256kmbeforereturningto,andsettlingin,areaspreviouslyencounteredduringdispersal.
Thissuggestsaroleofhabitatassessmentandhomingbehaviorduringdispersalandindicatesthatthecapacityandpotentialfordispersalarenotlimitingfactorstoeithersexinaredfoxpopulation.
Dispersalcapacityshouldthusbeconsideredregardingtransboundarymanagementanddiseasecontrolofredfoxpopulations.
KeywordsCanid.
Dispersal.
Long-rangemovements.
Meso-carnivore.
Scandinavia.
Transboundarymanagement.
Rangeexpansion.
Diseasetransmission.
Redfox.
Norway.
Sweden.
Globalpositioningsystem(GPS)IntroductionDispersalisafundamentalprocessinecologyprovidingthemechanismbehindpopulationandrangeexpansion(Sutherlandetal.
2000;Lambinetal.
2001).
Yetquantifyingthedispersalprocess,particularlylong-distancedispersalmovements,hasbeeninherentlydifficultduetotechnologicalandobservationallimitations(Nathanetal.
2003;Nathan2005;WhitmeeandOrme2013).
Thisalsocontributestodif-ficultiesdefiningwhatrepresentsalong-distancedispersalmovementfordifferentspecies.
Long-distancedispersalhasbeenalternatelydefinedasanabsolutedispersaldistance,or,asthoseindividualsthatdispersesubstantiallyfurtherthantherestofthepopulation(Nathan2005).
Here,wefollowthelatter,defininglong-distancedispersalasindividualsthatrep-resentoutliersonthespectrumofdispersaldistancesrecordedforaparticularspecies.
Far-rangingindividualsandtherolethattheyplayinrangeexpansion,colonization,andmetapopulationlinkagesareofgreatinteresttoresearchers(ShigesadaandKawasaki2002;Wabakkenetal.
2007;Ciuccietal.
2009).
Long-distancedis-persaleventsbycanidshavebeenpreviouslyrecognized(wolvesCanislupus(Wabakkenetal.
2007);coyotesCanislatrans(Harrison1992;KolbeandSquires2004);redfoxesVulpesvulpes(AllenandSargeant1993;Colsonetal.
2017)).
However,dataarescarceandsucheventsarebelievedtobenotablebutuncommon(Sutherlandetal.
2000;Nathanetal.
2003).
Thus,quantifyingsuchmovementshaslargelyremainedelusive.
Muchofthepreviousknowledgeregardingdispersalhasreliedoncapture-mark-recapturestudiesorveryhighfrequen-cy(VHF)radiotrackingtechnology,wheredispersalisoftenquantifiedasthestraight-linedistancebetweeninitiationandsettlement.
However,thisfailstoaccountfortheactual*ZeaWaltonzea.
walton@inn.
no1FacultyofAppliedEcology,AgricultureSciencesandBiotechnology,DepartmentofForestryandWildlifeManagement,InlandNorwayUniversityofAppliedSciences,Evenstad,2480Koppang,Norway2SnowLeopardTrust,4649SunnysideAvenueNorth,Suite325,Seattle,WA98103,USAEuropeanJournalofWildlifeResearch(2018)64:64https://doi.
org/10.
1007/s10344-018-1223-9movementpathoftheanimalduringdispersal(Stormetal.
1976;HarrisandTrewhella1988;AllenandSargeant1993;Gosselinketal.
2010).
Further,dispersaldatamaybeofcoarsetemporalresolutionormayfailtorecordanimalsdispersinglongdistances,potentiallybeyondstudyareaorcountryboundaries.
Thisoversimplificationofdispersalcanhaveim-plicationsregardingtheextentofdispersaleventsandtheunderstandingofthedispersalprocess(Nathanetal.
2003;WhitmeeandOrme2013).
Theredfox,ahighlyadaptableandflexiblegeneralistmesopredator,hassuccessfullycolonizedmostofthenorthernhemisphere,leadingtooneofthelargestgeographicrangesofanyterrestrialmammal(LarivièreandPasitschniak-Arts1996).
Thebehavioralplasticityofredfoxesandtheirabilitytorespondtolandscapeproductivitychangesandhumansub-sidieshasallowedthemtoexpandintoincreasinglynorthernlatitudes,whichhasdirectimplicationsfortheseecosystems(Colsonetal.
2017;Elmhagenetal.
2015,2017).
Dispersalisaprerequisiteforrangeexpansion(Clobertetal.
2001)butourunderstandingofhowlong-distancedispersaleventsmaycon-tributetorangeexpansionremainslargelyunknown.
WithadvancesinGPSandsatellitetrackingtechnology,itisnowpossibletocapturedispersaleventsintheirentirety,withhighspatialandtemporalresolution(Nathan2005;Cagnaccietal.
2010).
Thisgreatlyfacilitatesamorecomprehensivequanti-ficationofindividualdispersalpatternsanddistancestraveledthanpreviouslyattainable.
Here,weexaminesixindividuallong-distancedispersaleventsbyredfoxesfromthreedifferentpopulationsinNorwayandSwedenusingGPStelemetry.
Withthesedata,weaimtoimproveunderstandingofthecharacteristicsoflong-distancedispersaleventsofredfoxes.
Specifically,wequantifybothstraight-lineandcumulativedistancestraveled,aswellasthetiming,duration,anddirectionalityoftheselong-distancedispersalevents.
Further,weexplorewhetherlong-distancemovementsoccurasamultistageprocessorassingleeventsanddiscusstheirpotentialimplicationsfornorthernrangeexpansionsanddiseasetransmission.
MethodsBetween2011and2017,wecaptured101redfoxeswithinfourdifferentstudyareasinSwedenandNorway,aspartofalong-termresearchproject(seeWaltonetal.
2017fordetails).
Thefourstudyareasrepresentagradientoflandscapeproductivityandhumanlanduse.
Thesouthernmoststudyarea,Kolmrden(58N),Sweden,consistsofboreonemoralforests,agriculturallands,andscatteredhumansettlements,whilenorthernborealforestsandalpinetundraoflowdiversityandproductivitychar-acterizethenorthernmoststudyareainHedmarkCounty(62N),Norway.
Norwayspruce(Piceaabies)andScotspine(Pinussylvestris)dominatetheforestsinallareas,butbirch(BetulapubescensandB.
verrucosa)andotherdeciduoustreespeciesareincreasinglypresenttothesouth.
Allcapturedfoxes>5kgwerefittedwithGPSradiocollars(TellusUltralight,210g,Televilt,Inc.
Lindesberg,Sweden).
Wefurthersexed,measured,weighed,andagedallcapturedfoxes.
Agewasdefinedassub-adult(1year)basedontheamountoftoothwearandtoothcoloration.
Additionally,weassumedabirthdateofApril1foryoungoftheyear(HarrisandTrewhella1988)toapproximateageinmonthsattimeofdispersal.
Foradditionaldescriptionofstudyareasandcapturemethod-ologyseeWaltonetal.
(2017).
GPScollarsvariedinpositionschedules,withcollarsdeployedbeforeOctober2015programmedtotakethreepositionsperdaywithadrop-offafter270days(9months),andcollarsdeployedafterOctober2015programmedtotakesixpositionsperdaywithadrop-offafter180days(6months).
Weadditionallyhadseveralfoxescapturedafter2015withpositiondatacollectedat10-minintervalsforupto3-weekperiodswithintheirstandardsixpositionsperdayprogramming.
Wedeterminedfoxesengagingindispersalusingnetsquareddisplacement(NSD)(BrgerandFryxell2012;Gurarieetal.
2017),andvisualinspectionofmovementdatainQGIS2.
18.
0(QuantumGISDevelopmentTeam2017).
Individualsthatdispersedstraight-linedistancesgreaterthan60kmrepresentedoutliersonthespectrumofdispersaldis-tancesrecorded,andwe,thus,definedtheseindividuals(n=6)aslong-distancedispersersfollowingNathan(2005).
Toallowcomparisonofdispersaldistancesamongthesefoxes,westandardizedpositionintervaltothreepositionsperday(thelowestmaximumnumberofpositionsperdayrecorded).
Intotal,6629GPSpositionswereavailableforfurtheranaly-sis.
TheGPSfixsuccessratewas98.
1%withameanhori-zontaldilutionofprecision(HDOP)of1.
06±0.
8SD(range=0–25.
5).
LowerHDOPvaluesareconsideredtobemorepre-cise(D'EonandDelparte2005)and99.
7%ofpositionsavail-ablehadaHDOPVulpesvulpes)dis-persalevents.
CanJZool95:607–609D'EonRG,DelparteD(2005)Effectsofradio-collarpositionandorien-tationonGPSradio-collarperformance,andtheimplicationsofPDOPindatascreening.
JApplEcol42:383–388ElmhagenB,KindbergJ,HellstromP,AngerbjornA(2015)AborealinvasioninresponsetoclimatechangeRangeshiftsandcommu-nityeffectsintheborderlandbetweenforestandtundra.
Ambio44(Suppl1):S39–S50.
https://doi.
org/10.
1007/s13280-014-0606-8ElmhagenB,BerteauxD,BurgessRM,EhrichD,GallantD,HenttonenH,ImsRA,KillengreenST,NiemimaaJ,NorénK,OllilaT,RodnikovaA,SokolovAA,SokolovaNA,StickneyAA,AngerbjrnA(2017)HomagetoHersteinssonandMacdonald:cli-matewarmingandresourcesubsidiescauseredfoxrangeexpansionandArcticfoxdecline.
PolarRes36(sup1).
https://doi.
org/10.
1080/17518369.
2017.
1319109GosselinkTE,PiccoloKA,vanDeelenTR,WarnerRE,MankinPC(2010)NataldispersalandphilopatryofredfoxesinurbanandagriculturalareasofIllinois.
JWildlManag74:1204–1217.
https://doi.
org/10.
2193/2009-108GurarieE,CagnacciF,PetersW,FlemingCH,CalabreseJM,MuellerT,FaganWF(2017)Aframeworkformodellingrangeshiftsandmi-grations:askingwhen,whither,whetherandwillitreturn.
JAnimEcol86:943–959HarrisS,TrewhellaWJ(1988)Ananalysisofsomeofthefactorsaffect-ingdispersalinanurbanfox(Vulpesvulpes)population.
JApplEcol25:409–422HarrisonDJ(1992)SocialecologyofcoyotesinnortheasternNorthAmerica:relationshipstodispersal,foodresources,andhumanex-ploitation.
In:BoerAH(ed)Ecologyandmanagementoftheeasterncoyote.
UniversityofNewBrunswickPress,Fredericton,pp53–72KamlerJF,BallardWB,GeseEM,HarrisonRL,KarkiSM(2004)Dispersalcharacteristicsofswiftfoxes.
CanJZool82:1837–1842.
https://doi.
org/10.
1139/z04-187KolbeJA,SquiresJR(2004)LongdistancemovementbyacoyotewithintheRockyMountains.
NorthwestSci78:344–345KotM,LewisMA,vandenDriesscheP(1996)Dispersaldataandthespreadofinvadingorganisms.
Ecology77:2027–2042LambinX,AarsJ,PiertneySB(2001)Dispersal,intraspecificcompeti-tion,kincompetitionandkinfacilitation:areviewoftheempiricalevidence.
Dispersal.
OxfordUniversityPress,OxfordLarivièreS,Pasitschniak-ArtsM(1996)Vulpesvulpes.
MammSpecies:1,1–1LetkováV,LazarP,urlíkJ,GoldováM,KoiováA,KouthováL,MojiováJ(2006)Theredfox(VulpesvulpesL.
)asasourceofzoonoses.
VetArhiv76:S73–S81LloydHG(1980)Habitatrequirementsoftheredfox.
In:ZimenE(ed)Theredfox.
Biogeographica.
Springer,Dordrecht.
https://doi.
org/10.
1007/978-94-017-5592-4_2MoralesJM,MoorcroftPR,MatthiopoulosJ,FrairJL,KieJG,PowellRA,MerrillEH,HaydonDT(2010)Buildingthebridgebetweenanimalmovementandpopulationdynamics.
PhilosTransRSocLondSerBBiolSci365:2289–2301.
https://doi.
org/10.
1098/rstb.
2010.
0082NathanR(2005)Long-distancedispersalresearch:buildinganetworkofyellowbrickroads.
DiversDistrib11:125–130NathanR,PerryG,CroninJT,StrandAE,CainML(2003)Methodsforestimatinglong-distancedispersal.
Oikos103:261–273NorénK,StathamMJ,grenEO,IsomursuM,Flagstad,EideNE,BergTB,Bech-SanderhoffL,SacksBN(2015)GeneticfootprintsrevealgeographicpatternsofexpansioninFennoscandianredfoxes.
GlobChangBiol21:3299–3312PhillipsRL,AndrewsRD,StormGL,BishopRA(1972)Dispersalandmortalityofredfoxes.
JWildlManag36:237–248.
https://doi.
org/10.
2307/3799056QuantumGISGeographicInformationSystem(2017)OpenSourceGeospatialFoundationProject.
http://qgis.
osgeo.
orgRCoreTeam(2017)R:alanguageandenvironmentforstatisticalcom-putingRfoundationforstatisticalcomputing.
Austria,Viennahttp://www.
R-project.
org/ShigesadaN,KawasakiK(2002)Invasionandtherangeexpansionofspecies:effectsoflong-distancedispersal.
In:BullockJM,KenwardRE,HailsRS(eds)Dispersalecology.
Blackwell,Oxford,pp350–373SoulsburyCD,IossaG,BakerPJ,WhitePCL,HarrisS(2011)Behavioralandspatialanalysisofextraterritorialmovementsinredfoxes(Vulpesvulpes).
JMammal92:190–199.
https://doi.
org/10.
1644/09-mamm-a-187.
1StormGL,AndrewsRD,PhillipsRL,BishopRA,SiniffDB,TesterJR(1976)Morphology,reproduction,dispersal,andmortalityofmid-westernredfoxpopulations.
WildlMonogr:3–82SutherlandGD,HarestadAS,PriceK,LertzmanKP(2000)Scalingofnataldispersaldistancesinterrestrialbirdsandmammals.
ConservEcol4:16TrewhellaWJ,HarrisS,McAllisterFE(1988)Dispersaldistance,home-rangesizeandpopulationdensityintheredfox(Vulpesvulpes):aquantitativeanalysis.
JApplEcol25:423–434.
https://doi.
org/10.
2307/2403834VervaekeM,vanderGiessenJ,BrochierB,LossonB,JordaensK,VerhagenR,CoulanderCdeL,TeunisP(2006)SpatialspreadingofEchinococcusmultilocularisinredfoxes(Vulpesvulpes)acrossnationbordersinWesternEurope.
PrevVetMed76:137–150.
https://doi.
org/10.
1016/j.
prevetmed.
2006.
04.
014WabakkenP,SandH,KojolaI,ZimmermannB,ArnemoJM,PedersenHC,LibergO(2007)Multistage,long-rangenataldispersalbyaglobalpositioningsystem–collaredScandinavianwolf.
JWildlManag71:1631–1634.
https://doi.
org/10.
2193/2006-222WaltonZ,SameliusG,OddenM,WillebrandT(2017)VariationinhomerangesizeofredfoxesVulpesvulpesalongagradientofproductiv-ityandhumanlandscapealteration.
PLoSOne12:e0175291.
https://doi.
org/10.
1371/journal.
pone.
0175291WhitmeeS,OrmeCD(2013)Predictingdispersaldistanceinmammals:atrait-basedapproach.
JAnimEcol82:211–221.
https://doi.
org/10.
1111/j.
1365-2656.
2012.
02030.
xWolffJO(1997)Populationregulationinmammals:anevolutionaryperspective.
JAnimEcol66:1–1364Page6of6EurJWildlRes(2018)64:64
搬瓦工和Vultr哪个好?搬瓦工和Vultr都是非常火爆的国外VPS,可以说是国内网友买的最多的两家,那么搬瓦工和Vultr哪个好?如果要选择VPS,首先我们要考虑成本、服务器质量以及产品的售后服务。老玩家都知道目前在国内最受欢迎的国外VPS服务商vultr和搬瓦工口碑都很不错。搬瓦工和Vultr哪个稳定?搬瓦工和Vultr哪个速度快?为了回答这些问题,本文从线路、速度、功能、售后等多方面对比这两...
印象云,成立于2019年3月的商家,公司注册于中国香港,国人运行。目前主要从事美国CERA机房高防VPS以及香港三网CN2直连VPS和美国洛杉矶GIA三网线路服务器销售。印象云香港三网CN2机房,主要是CN2直连大陆,超低延迟!对于美国CERA机房应该不陌生,主要是做高防服务器产品的,并且此机房对中国大陆支持比较友好,印象云美国高防VPS服务器去程是163直连、三网回程CN2优化,单IP默认给20...
最近很多网站都遭受到了伪墙/假墙攻击,导致网站流量大跌,间歇性打不开网站。这是一种新型的攻击方式,攻击者利用GWF规则漏洞,使用国内服务器绑定host的方式来触发GWF的自动过滤机制,造成GWF暂时性屏蔽你的网站和服务器IP(大概15分钟左右),使你的网站在国内无法打开,如果攻击请求不断,那么你的网站就会是一个一直无法正常访问的状态。常规解决办法:1,快速备案后使用国内服务器,2,使用国内免备案服...
vul为你推荐
info域名注册info域名什么时候出现的?虚拟空间哪个好虚拟空间哪个好100m网站空间网站空间100M和1000M有什么区别 ?虚拟主机控制面板虚拟主机控制面板是什么?虚拟主机mysql我申请的虚拟主机 ,是MYSQL数据库,但是我安装好网页后,需要更改的数据库地址是我默认的还是找卖家咨询?www二级域名顶级域名,二级域名,网站免费域名免费域名是什么买域名买域名怎么买?域名服务器在网上买个域名和买个服务器有什么区别吗?org域名.org域名和.com哪个域名好?
域名抢注 花生壳动态域名 vps优惠码 阿里云邮箱登陆首页 电影服务器 韩国空间 rak机房 godaddy html空间 admit的用法 国外代理服务器地址 免费活动 爱奇艺vip免费试用7天 web服务器安全 服务器硬件配置 香港博客 空间排行榜 restart 优惠服务器 建站行业 更多