CS347–IntroductiontoArtificialIntelligenceDr.
DanielTauritz(Dr.
T)DepartmentofComputerSciencetauritzd@mst.
eduhttp://web.
mst.
edu/~tauritzd/CS347coursewebsite:http://web.
mst.
edu/~tauritzd/courses/cs347/WhatisAISystemsthat…actlikehumans(TuringTest)thinklikehumansthinkrationallyactrationallyPlayUltimatumGameKeyhistoricaleventsforAI4thcenturyBCAristotlepropositionallogic1600'sDescartesmind-bodyconnection1805FirstprogrammablemachineMid1800'sCharlesBabbage's"differenceengine"&"analyticalengine"LadyLovelace'sObjection1847GeorgeBoolepropositionallogic1879GottlobFregepredicatelogicKeyhistoricaleventsforAI1931KurtGodel:IncompletenessTheoremInanylanguageexpressiveenoughtodescribenaturalnumberproperties,thereareundecidable(incomputable)truestatements1943McCulloch&Pitts:NeuralComputation1956Term"AI"coined1976Newell&Simon's"PhysicalSymbolSystemHypothesis"Aphysicalsymbolsystemhasthenecessaryandsufficientmeansforgeneralintelligentaction.
HowdifficultisittoachieveAIThreeSistersPuzzleRationalAgentsEnvironmentSensors(percepts)Actuators(actions)AgentFunctionAgentProgramPerformanceMeasuresRationalBehaviorDependson:Agent'sperformancemeasureAgent'spriorknowledgePossibleperceptsandactionsAgent'sperceptsequenceRationalAgentDefinition"Foreachpossibleperceptsequence,arationalagentselectsanactionthatisexpectedtomaximizeitsperformancemeasure,giventheevidenceprovidedbytheperceptsequenceandanypriorknowledgetheagenthas.
"TaskEnvironmentsPEASdescription&properties:Fully/PartiallyObservableDeterministic,Stochastic,StrategicEpisodic,SequentialStatic,Dynamic,Semi-dynamicDiscrete,ContinuousSingleagent,MultiagentCompetitive,CooperativeProblem-solvingagentsAdefinition:Problem-solvingagentsaregoalbasedagentsthatdecidewhattodobasedonanactionsequenceleadingtoagoalstate.
Problem-solvingstepsProblem-formulation(actions&states)Goal-formulation(states)Search(actionsequences)ExecutesolutionWell-definedproblemsInitialstateActionsetTransitionmodel:RESULT(s,a)GoaltestPathcostSolution/optimalsolutionExampleproblemsVacuumworldTic-tac-toe8-puzzle8-queensproblemSearchtreesRootcorrespondswithinitialstateVacuumstatespacevs.
searchtreeSearchalgorithmsiteratethroughgoaltestingandexpandingastateuntilgoalfoundOrderofstateexpansioniscritical!
Searchnodedatastructuren.
STATEn.
PARENT-NODEn.
ACTIONn.
PATH-COSTStatesareNOTsearchnodes!
FrontierFrontier=SetofleafnodesImplementedasaqueuewithops:EMPTY(queue)POP(queue)INSERT(element,queue)Queuetypes:FIFO,LIFO(stack),andpriorityqueueProblem-solvingperformanceCompletenessOptimalityTimecomplexitySpacecomplexityComplexityinAIb–branchingfactord–depthofshallowestgoalnodem–maxpathlengthinstatespaceTimecomplexity:#generatednodesSpacecomplexity:max#nodesstoredSearchcost:time+spacecomplexityTotalcost:search+pathcostTreeSearchBreadthFirstTreeSearch(BFTS)UniformCostTreeSearch(UCTS)Depth-FirstTreeSearch(DFTS)Depth-LimitedTreeSearch(DLTS)Iterative-DeepeningDepth-FirstTreeSearch(ID-DFTS)Examplestatespace#1BreadthFirstTreeSearch(BFTS)Frontier:FIFOqueueComplete:ifbanddarefiniteOptimal:ifpath-costisnon-decreasingfunctionofdepthTimecomplexity:O(b^d)Spacecomplexity:O(b^d)UniformCostTreeSearch(UCTS)Frontier:priorityqueueorderedbyg(n)DepthFirstTreeSearch(DFTS)Frontier:LIFOqueue(a.
k.
a.
stack)Complete:noOptimal:noTimecomplexity:O(bm)Spacecomplexity:O(bm)BacktrackingversionofDFTShasaspacecomplexityof:O(m)Depth-LimitedTreeSearch(DLTS)Frontier:LIFOqueue(a.
k.
a.
stack)Complete:notwhenl=βPruneiffail-lowforMin-playerPruneiffail-highforMax-playerDLMw/Alpha-BetaPruningTimeComplexityWorst-case:O(bd)Best-case:O(bd/2)[Knuth&Moore,1975]Average-case:O(b3d/4)MoveOrderingHeuristicsKnowledgebasedKillerMove:thelastmoveatagivendepththatcausedAB-pruningorhadbestminimaxvalueHistoryTableExamplegametreeExamplegametreeSearchDepthHeuristicsTimebased/StatebasedHorizonEffect:thephenomenonofdecidingonanon-optimalprincipalvariantbecauseanultimatelyunavoidabledamagingmoveseemstobeavoidedbyblockingittillpassedthesearchdepthSingularExtensions/QuiescenceSearchTimePerMoveConstantPercentageofremainingtimeStatedependentHybridQuiescenceSearchWhensearchdepthreached,computequiescencestateevaluationheuristicIfstatequiescent,thenproceedasusual;otherwiseincreasesearchdepthifquiescencesearchdepthnotyetreachedCallformat:QSDLM(root,depth,QSdepth),QSABDLM(root,depth,QSdepth,α,β),etc.
QSgametreeEx.
1QSgametreeEx.
2ForwardpruningBeamSearch(nbestmoves)ProbCut(forwardpruningversionofalpha-betapruning)TranspositionTables(1)HashtableofpreviouslycalculatedstateevaluationheuristicvaluesSpeedupisparticularlyhugeforiterativedeepeningsearchalgorithms!
GoodforchessbecauseoftenrepeatedstatesinsamesearchTranspositionTables(2)Datastructure:HashtableindexedbypositionElement:StateevaluationheuristicvalueSearchdepthofstoredvalueHashkeyofposition(toeliminatecollisions)(optional)BestmovefrompositionTranspositionTables(3)ZobristhashkeyGenerate3d-arrayofrandom64-bitnumbers(piecetype,locationandcolor)Startwitha64-bithashkeyinitializedto0Loopthroughcurrentposition,XOR'inghashkeywithZobristvalueofeachpiecefound(note:onceakeyhasbeenfound,useanincrementalapporachthatXOR'sthe"from"locationandthe"to"locationtomoveapiece)MTD(f)MTDf(root,guess,depth){lower=-∞;upper=∞;do{beta=guess+(guess==lower);guess=ABMaxV(root,depth,beta-1,beta);if(guessExtendedFutilityPruningRazoringState-SpaceSearchComplete-stateformulationObjectivefunctionGlobaloptimaLocaloptima(don'tusetextbook'sdefinition!
)Ridges,plateaus,andshouldersRandomsearchandlocalsearchSteepest-AscentHill-ClimbingGreedyAlgorithm-makeslocallyoptimalchoicesExample8queensproblemhas88≈17MstatesSAHCfindsglobaloptimumfor14%ofinstancesinonaverage4steps(3stepswhenstuck)SAHCw/upto100consecutivesidewaysmoves,findsglobaloptimumfor94%ofinstancesinonaverage21steps(64stepswhenstuck)StochasticHill-ClimbingChoosesatrandomfromamonguphillmovesProbabilityofselectioncanvarywiththesteepnessoftheuphillmoveOnaverageslowerconvergence,butalsolesschanceofprematureconvergenceMoreLocalSearchAlgorithmsFirst-choicehill-climbingRandom-restarthill-climbingSimulatedAnnealingPopulationBasedLocalSearchDeterministiclocalbeamsearchStochasticlocalbeamsearchEvolutionaryAlgorithmsParticleSwarmOptimizationAntColonyOptimizationParticleSwarmOptimizationPSOisastochasticpopulation-basedoptimizationtechniquewhichassignsvelocitiestopopulationmembersencodingtrialsolutionsPSOupdaterules:PSOdemo:http://www.
borgelt.
net//psopt.
htmlAntColonyOptimizationPopulationbasedPheromonetrailandstigmergeticcommunicationShortestpathsearchingStochasticmovesOnlineSearchOfflinesearchvs.
onlinesearchInterleavingcomputation&actionExplorationproblems,safelyexplorableAgentshaveaccessto:ACTIONS(s)c(s,a,s')GOAL-TEST(s)OnlineSearchOptimalityCR–CompetitiveRatioTAPC–TotalActualPathCostC*-OptimalPathCostBestcase:CR=1Worstcase:CR=∞OnlineSearchAlgorithmsOnline-DFS-AgentRandomWalkLearningReal-TimeA*(LRTA*)OnlineSearchExampleGraph1OnlineSearchExampleGraph2OnlineSearchExampleGraph3AIcoursesatS&TCS345ComputationalRoboticManipulation(SP2012)CS347IntroductiontoArtificialIntelligence(SP2012)CS348EvolutionaryComputing(FS2011)CS434DataMining&KnowledgeDiscovery(FS2011)CS447AdvancedTopicsinAI(SP2013)CS448AdvancedEvolutionaryComputing(SP2012)CpE358ComputationalIntelligence(FS2011)SysEng378IntrotoNeuralNetworks&Applications
全球独立服务器、站群多IP服务器、VPS(哪个国家都有),香港、美国、日本、韩国、新加坡、越南、泰国、加拿大、英国、德国、法国等等99元起步,湘南科技郴州市湘南科技有限公司官方网址:www.xiangnankeji.cn产品内容:全球独立服务器、站群多IP服务器、VPS(哪个国家都有),香港、美国、日本、韩国、新加坡、越南、泰国、加拿大、英国、德国、法国等等99元起步,湘南科技VPS价格表:独立服...
80vps怎么样?80vps最近新上了香港服务器、美国cn2服务器,以及香港/日本/韩国/美国多ip站群服务器。80vps之前推荐的都是VPS主机内容,其实80VPS也有独立服务器业务,分布在中国香港、欧美、韩国、日本、美国等地区,可选CN2或直连优化线路。如80VPS香港独立服务器最低月付420元,美国CN2 GIA独服月付650元起,中国香港、日本、韩国、美国洛杉矶多IP站群服务器750元/月...
企鹅小屋:垃圾服务商有跑路风险!企鹅不允许你二次工单的,二次提交工单直接关服务器,再严重就封号,意思是你提交工单要小心,别因为提交工单被干了账号!前段时间,就有站长说企鹅小屋要跑路了,站长不太相信,本站平台已经为企鹅小屋推荐了几千元的业绩,CPS返利达182.67CNY。然后,站长通过企鹅小屋后台申请提现,提现申请至今已经有20几天,企鹅小屋也没有转账。然后,搞笑的一幕出现了:平台账号登录不上提示...
graphsearch为你推荐
Specificationsapple山东省高校教师培训管理系统债券127urlcss空调iphone支持ipad支持ipadeaccelerator开启eAccelerator内存优化就各种毛病,DZ到底用哪个内存优化比较好。。。itunes备份itunes备份是什么tcpip上的netbios怎么启用TCP/IP上的NetBIOS
合租服务器 快速域名备案 樊云 godaddy支付宝 云主机51web 免费博客空间 私有云存储 最好看的qq空间 ibrs 华为网络硬盘 电子邮件服务器 cdn加速原理 umax120 服务器监测 免费私人服务器 个人免费主页 下载速度测试 游戏服务器出租 服务器防火墙 好看的空间 更多