InternationalJournalofEmergingTechnologyandAdvancedEngineeringWebsite:www.
ijetae.
com(ISSN2250-2459,ISO9001:2008CertifiedJournal,Volume3,Issue9,September2013)365AnOverviewofUseofLinearDataStructureinHeuristicSearchTechniqueGirishPPotdar1,Dr.
RCThool21AssociateProfessor,ComputerEngineeringDepartment,P.
I.
C.
T,Pune,2Professor,DepartmentofInformationTechnology,SGGSIE&T,Nanded,Abstract—Searchproblemscanbeclassifiedbytheamountofinformationthatisavailabletothesearchprocess.
Whennoinformationisknownapriori,asearchprogrammustperformblindoruninformedsearch.
Whenmoreinformationthaninitialstate,operatorandthegoaltestisavailablethesizeofsearchspacecanusuallybeconstrained.
Thesemethodsareknownasinformedsearchmethods.
Theseoftendependonuseofheuristicinformation.
Aheuristicisaruleofthumb,strategy,trick,simplificationoranyotherkindofdevicewhichdrasticallylimitssearchforsolutionsinlargeproblemspaces.
Heuristicsdoesn'tguaranteeoptimalsolutions;infacttheydonotguaranteeanysolutionatall;theyoffersolutionswhicharegoodenoughmostofthetime.
Optimizationistheprocessoffindingthebestsolutionfromasetofsolutions.
Insomecasesoptimizationmaynotbepossibleorsimplynotefficientenoughtogeneratesolutionsintherequiredtime,soheuristicmaybeusedinstead.
Ifaproblemissolvedrepetitivelyandtheparameterschangeoften,heuristicsaremorelikelytofallapart.
Heuristicperformancemaybeimprovedbyincorporatingoptimizationalgorithms.
Bettersolutionsaregeneratedforabroaderrangeofparametersbyoptimizinginsidesomestepsoftheheuristicsearchalgorithm.
ThepaperexploredifferentheuristicsearchtechniquesandproposeaheuristicsearchmethodthataimstoovercomethedrawbacksofexistingtechniquesbymakingchangesinthedatastructuresusedinordertoachievebestpossiblesolutionandtoimprovetheperformanceefficiencyKeywords—MultiLevelLinkedList,A*algorithm,AO*algorithm,hillclimbing,Generalizedlinkedlist.
I.
INTRODUCTIONArtificialIntelligencetechniquesarebeingusedinanincreasingnumberofcomputerapplicationsincludingspeechrecognition,robotics,expertsystems,drugdesign,andmoleculesynthesis.
Almostallthesearchingalgorithmsgeneratethesearchtree.
ThesesearchingtechniquesarealsocalledastheHeuristicsearchingtechniques[1,12].
Aswebeginfromthestartstate,generatethesearchtree;selecttheavailableoptimalpathtillwegetthegoalstate.
Priorwegoaheadwiththediscussion,let'sdefinetheterm"Heuristic".
Heuristicmeanstodiscover.
Onecandefineheuristicsearch,as"Itisthesearchingprocesswhichtriestolocatethepredefinedstatebyapplyingheuristic.
"Theprogramstatements,whichrefertotheheuristic,arecalled"heuristicfunction".
Onemayidentifythefollowingconditionswhereinwemaymakeuseofheuristicsuchas:1.
Whenanuncertaintyinthestatespaceisforesighted.
2.
Whentheproblemspacedemandsit.
3.
Retrievalwithconstraintandreasoningisessential.
Thesearevariousheuristicsearchingtechniqueslike:BESTFIRSTSEARCH,A*algorithm[3,4,9].
Theaimhereistodesignanovelheuristicalgorithmwithadifferentdatastructurethantheconventionaloneandprovideheuristicsearchalgorithmresultsusingvariousmeasurementsparametersliketime,space,solutionquality,andsearcheffectiveness.
Generally,searchalgorithmscanbeclassifiedintothreegroups.
Theseare,constant-space,linear-space,andexponential-spacestrategies[7,8,9,10].
Inaconstant-spacesearchstrategy,anapplicableruleisselectedandappliedirrevocablywithoutleavinganymeansforreconsiderationatalaterpoint.
Theprocedurerepeatedlyexpandsnodes,inspectingnewlygeneratedsuccessorsandselectingforexpansionthebestamongthesuccessors,whileretainingnofurtherreferencetothefatherortheancestor.
Inlinear-spacesearchstrategies,iftheselectedruledoesn'tleadtoasolution,theintermediatestepsarediscardedandanotherruleisselectedinstead.
Linear-spacestrategiesareperfectlyadequateforproblemsrequiringsmallamountofsearch.
TheAIapplicationsthatusetheheuristictechniqueneed,andhencebuildtheirownheuristicfunctionwithintheapplicationconstraints.
Theexistenceofheuristicfunctionisbasicallytoevaluatethetwocosts,gandh'.
Whereingreferstothecostfromstartstatetothecurrentstate,andh'referstotheevaluatedcostfromcurrentstatetothegoalstate.
InternationalJournalofEmergingTechnologyandAdvancedEngineeringWebsite:www.
ijetae.
com(ISSN2250-2459,ISO9001:2008CertifiedJournal,Volume3,Issue9,September2013)366Sothetotalevaluatedcostfromtheheuristicfunctionf'isthesummationofthetwocostsgandh'.
Thatisf'=g+h'.
Thistotalevaluatedcostrefersto,howfarthegoalstateisfromthecurrentstate.
TheheuristicsearchingtechniqueslikeA*evaluatetheheuristiccostusingheuristicfunction,[2,3].
GRAPHSEARCHprocedure[1,9,10,11,16]usestwolists,OPENandCLOSED,inordertostoresearch-graphnodes.
NodesonOPENarethosetipnodesofthesearch-graphthathavenotbeenselectedforexpansion.
NodesinCLOSEDareeithertipnodesselectedforexpansionandgeneratednosuccessors,ornon-tipnodes.
NodesinOPENaretraversedbytheproceduresothatthe"bestnodeisselectedforexpansion.
Theselectioncanbebasedonavarietyofheuristicideas.
Wheneverthenodeselectedforexpansionisagoalnode,theprocessterminatessuccessfullyandthepathisdeterminedfromthestartnodetothefoundgoalbytracingbackthepointers.
Theprocessterminatesunsuccessfullywheneverthesearchtreehasnoremainingtipnodes(i.
e.
OPENisempty).
Inthiscasethegoalnodeisinaccessiblefromthestartnode.
Normally,Heuristicsearchalgorithmsuseaevaluationfunctionf--real-valuedfunctiontoselectnodesfromOPENforfurtherexpansion.
Thisevaluationfunctioniscomputedforanodeninthesearch-graphasfollows[5,11,14,15]:f(n)=wg(n)+(1-w)h(n)Whereg(n)isthecostofthemshortestpathfromthestartnodetothenoden,h(n)iscostoftheoptimalpathfromntoagoalnode,and0w1istheweightgiventotheestimatesgandh.
Indeterminingtheestimateh,werelyonheuristicinformationavailablefromtheproblemdomain.
Theestimatehiscalledtheheuristicfunction.
TheheuristicfunctionhissaidtobeadmissibleifitisalowerboundontheactualcostTheestimatehissaidtobeconsistentif,foreachpairofnodesnandm,h(m)-h(n)islessthanorequaltotheactualdistancebetweenthetwonodesnandm.
Anybest-firstheuristicsearchalgorithmthatusesanadmissibleheuristicfunctionalwaysterminatewiththeoptimalsolutionpath,ifsuchpathexists.
Suchalgorithmsarecalledadmissiblealgorithms[6,10].
Thememoryrequirementforaheuristicsearchalgorithmisprimarilymeasuredbytheaveragesizeofthesearch-graph.
ThisisequaltothesizeofthetwolistsOPENandCLOSED.
BasicideaTheideaofbehindthispaperistooptimizetheperformanceofheuristicsearchalgorithm.
Hereweproposeanewapproachbymakingchangesinthedatastructuresandmethodsusedinconventionalalgorithms.
NeedTherearemanyexistingheuristicsearchalgorithmslikehillclimbing,A*,AO*,simulatedannealing.
Hillclimbingsuffersfromproblemslikelocalmaximum,plateau,ridge.
ThegracefuldecayofadmissibilityisthemajordrawbackofA*algorithm.
AO*hasoverheadofexpandingthepartialgraphonestateatatimeandrecomputingthebestpolicyoverthegraphaftereachstep.
Mostoftheseexistingheuristicsearchalgorithmsmaintainlistswhichareentered,updatedandmanipulatedon.
Maintainingandmanagingtheselistssimultaneouslyistediousandcomplextask.
Toreducethiscomplexityweuseadatastructurethataimsatmakingagooduseofmemoryspacewithoutcompromisingonthecompletenessandoptimalityofthealgorithm[13].
ScopeThescopeoftheworkisrestricteduseheuristicsearchmethodusingMultiLevelLinkedList(MLL)toimprovetheperformanceofthesealgorithms.
Proposedworkistoimprovetheperformancebyoptimizinginsidethestepsofalgorithmbyremovingtheredundantlistswhichisthemaindrawbackofmostexistingalgorithms.
Thealgorithmmaybeappliedtoanygraphbasedrealtimeapplications.
II.
BLOCKSCHEMATICTheproposedworkcanbeseeninFig1.
Fig1.
Overviewofblockschematic.
InputmoduleHeuristicSystemProcessingUnitComparatorUnitTimeandspacemonitorDisplayUnitInternationalJournalofEmergingTechnologyandAdvancedEngineeringWebsite:www.
ijetae.
com(ISSN2250-2459,ISO9001:2008CertifiedJournal,Volume3,Issue9,September2013)367III.
DATADESCRIPTIONDataconsistsofdatarelatedtotheapplicationthealgorithmwillbeappliedon.
Thealgorithmifimplementedontravellingsalesmanproblemasanexample;wheredataconsistsofthedistancematrixandthestartingcity.
ThedataisorganizedintoMultilinkedlist(MLL)insteadoftheconventionalGeneralizedlinkedlist(GLL).
Fig2-DFDTheaboveDFDgivesdifferentpossiblemodulesthatcanbeusedwhileimplementingtheproposedworkandpossibledatainteractionbetweenthesemodules.
IV.
ARCHITECTURALDESIGNThefigure3describesthecompletemoduledescriptionforthecurrentwork.
Theuseofproposeddatastructurecanresultinsubstantialtimesavingforlargedataset.
Thesamemaybeappliedtographbasedapplicationssuchastravellingsalespersonproblem,graphpartionioningandmanysuchapplications.
Fig3.
ArchitecturalDesignV.
INTERNALSOFTWAREDATASTRUCTUREMultilinklist(MLL)isusedintheproposedalgorithm.
Itisadynamicallocationmethod.
MLLmaintainsaparentlistandsuccessorlist.
Everyparentnodemaintainsitslistofsuccessors.
AlltheseparentnodesarelinkedtogethertoformMLL.
Fig4.
MLLdatastructureInputModuleAcceptInputProcessInputHeuristicSearchSystemTime&SpaceMonitorGenerateoutput&measureperformanceComparetheResultsDisplayPanelResultGraphDataTimeandspaceparametersSolutionOrganizeddataInputModuleOuralgorithmmoduleAO*algorithmmoduleA*algorithmmoduleComparemoduleOutputModuleP1S1S2P2S1S2P3S1S2InternationalJournalofEmergingTechnologyandAdvancedEngineeringWebsite:www.
ijetae.
com(ISSN2250-2459,ISO9001:2008CertifiedJournal,Volume3,Issue9,September2013)368VI.
CONCLUSIONMLLcanbeprovedtobeverypowerfulstructure.
Iftheapplicationpermitsthenonecanusethereferencelistasthesupportinglist,thuscanavoidstoringthesamestatesagainandagain.
Thusweaimatconductingexperimentationdesignedtogiveresultsconcerningtheroleofheuristicsinachievingsearchefficiency.
ThisapproachusingMLLisidealforcommunicationapplications.
REFERENCES[1]EricHansen,RongZhou–"AnytimeHeuristicSearch",JournalofArtificialIntelligenceResearch28,2007.
[2]Davis,H.
,R.
PollackandD.
Golden,TowardsaDomainIndependentMethodforComparingSearchAlgorithmRun-times,Proceedingsofthe6thCanadianConferenceonAI,240-244(1986b).
[3]AnneL.
Gardner"Search:AnOverview",AImagazine,Volume2,Number1,Sept1980.
[4]ABDEL-ELAHAL-AYYOUB,FAWAZMASOUD"HeuristicSearchRevisited",JournalofSystemsandsoftware,Vol55,No2,2000,103-113[5]Hermankaindl,GerhardKainz–"BidirectionalHeuristicsearchreconsidered",JournalofArtificialIntelligenceResearch7,1997.
[6]AlokKumar,AnshulKumar,M.
Balkrihnan"HeuristicSearchasedApproachtoScheduling,AllocationandBindinginDataPathSynthesis"8thInternationalConferenceonVLSIdesign–Jan1995.
[7]JosephCMusto,LKenLauderbaugh"AHeuristicSearchAlgorithmForOnlineSystemIdentfication"IEEEInternationalsymposiumonIntelligentControl,August1991.
[8]Davis,H.
,R.
PollackandD.
Golden,ATechniqueforComparingSearchAlgorithmRuntimes,ProceedingsoftheFourteenthAnnualACMCSC-86,301-308(1986a).
[9]Dechter,R.
andJ.
Pearl,GeneralizedBest-FirstSearchStrategiesandtheOptimalityofA*,JournaloftheACM,Vol.
32,No.
3,505-536(1985).
[10]Korf,R.
,Depth-FirstIterativeDeepening:AnOptimalAdmissibleTreeSearch,ArtificialIntelligence,Vol.
27,97-109(1985).
[11]Bagchi,A.
andA.
Manhanti,SearchAlgorithmsUnderDifferentKindofHeuristics:AComparativeStudy,JournaloftheACM,Vol.
30,1-21(1983).
[12]Annev.
d.
LGardner"SearchanOverview",AIMagazineWinter81.
[13]StevenWalczak"Knowledge-BasedSearchinCompetitiveDomains"[14]LucaDiGasperoAndreaSchaerf"ATabuSearchApproachtotheTravelingTournamentProblem"[15]EugeneCharniakandDrewMcDermott,"IntroductiontoArtificialIntelligence".
AddisonWesley.
[16]NilsJNilsson,"PrincipalsofArtificialIntelligence"NarosaPublishingHouse.
目前云服务器市场竞争是相当的大的,比如我们在年中活动中看到各大服务商都找准这个噱头的活动发布各种活动,有的甚至就是平时的活动价格,只是换一个说法而已。可见这个行业确实竞争很大,当然我们也可以看到很多主机商几个月就消失,也有看到很多个人商家捣鼓几个品牌然后忽悠一圈跑路的。当然,个人建议在选择服务商的时候尽量选择老牌商家,这样性能更为稳定一些。近期可能会准备重新整理Vultr商家的一些信息和教程。以前...
WHloud Official Notice(鲸云官方通知)(鲸落 梦之终章)]WHloud RouMu Cloud Hosting若木产品线云主机-香港节点上新预售本次线路均为电信CN2 GIA+移动联通BGP,此机型为正常常规机,建站推荐。本次预售定为国庆后开通,据销售状况决定,照以往经验或有咕咕的可能性,但是大多等待时间不长。均赠送2个快照 2个备份,1个默认ipv4官方网站:https:/...
CloudServer是一家新的VPS主机商,成立了差不多9个月吧,提供基于KVM架构的VPS主机,支持Linux或者Windows操作系统,数据中心在美国纽约、洛杉矶和芝加哥机房,都是ColoCrossing的机器。目前商家在LEB提供了几款特价套餐,最低月付4美元(或者$23.88/年),购买更高级别套餐还能三个月费用使用6个月,等于前半年五折了。下面列出几款特别套餐配置信息。CPU:1cor...
graphsearch为你推荐
University163urlcss支持ipad支持ipad支持ipad支持ipad重庆电信网速测试如何测量网速x-routerx-0.4x等于多少?如何用itunes备份如何使用iTunes最新版进行备份?急!!css3按钮如何在html添加一个搜索框和一个按钮
购买域名和空间 directspace uk2 godaddy优惠券 网盘申请 南昌服务器托管 165邮箱 炎黄盛世 idc资讯 网站木马检测工具 爱奇艺vip免费领取 重庆电信服务器托管 德隆中文网 中国域名 深圳域名 国外网页代理 谷歌搜索打不开 .htaccess 塔式服务器 美国代理服务器 更多