starchlesskosskeb4

kosskeb4  时间:2021-01-13  阅读:()
ControlofLeafExpansion:ADevelopmentalSwitchfromMetabolicstoHydraulics1[W][OA]FlorentPantin,ThierrySimonneau,Gae¨lleRolland,MyriamDauzat,andBertrandMuller*Laboratoired'EcophysiologiedesPlantessousStressEnvironnementaux,UMR759,InstitutdeBiologieIntegrativedesPlantes,INRA,34060Montpellier,FranceLeafexpansionisthecentralprocessbywhichplantscolonizespace,allowingenergycaptureandcarbonacquisition.
Waterandcarbonemergeasmainlimitingfactorsofleafexpansion,buttheliteratureremainscontroversialabouttheirrespectivecontributions.
Here,wetestedthehypothesisthattheimportanceofhydraulicsandmetabolicsisorganizedaccordingtobothdark/lightuctuationsandleafontogeny.
Forthispurpose,weestablishedthedevelopmentalpatternofindividualleafexpansionduringdaysandnightsinthemodelplantArabidopsis(Arabidopsisthaliana).
Undercontrolconditions,decreasesinleafexpansionwereobservedatnightimmediatelyafteremergence,whenstarchreserveswerelowest.
Thesenocturnaldecreaseswerestronglyexaggeratedinasetofstarchmutants,consistentwithanearlycarbonlimitation.
However,low-lighttreatmentofwild-typeplantshadnoinuenceontheseearlydecreases,implyingthatexpansioncanbeuncoupledfromchangesincarbonavailability.
From4dafterleafemergenceonward,decreasesofleafexpansionwereobservedinthedaytime.
Usingmutantsimpairedinstomatalcontroloftranspirationaswellasplantsgrownundersoilwaterdecitorhighairhumidity,wegatheredevidencethatthesediurnaldecreaseswerethesignatureofahydrauliclimitationthatgraduallysetupastheleafdeveloped.
Changesinleafturgorwereconsistentwiththispattern.
Itisconcludedthatduringthecourseofleafontogeny,thepredominantcontrolofleafexpansionswitchesfrommetabolicstohydraulics.
Wesuggestthattheleafisbetterarmedtobuffervariationsintheformerthaninthelatter.
Leafexpansionisamajorcomponentofplantper-formance.
Itenableslightcapture,whichpowerspho-tosynthesisandthusbiomassproduction.
Itisalsooneoftherstplantfunctionsaffectedbyenvironmentalstressessuchaswaterdecit(Hsiao,1973),makingitakeytargetforidentifyingtolerantgenotypesandspe-cies(TardieuandTuberosa,2010).
Tothisaim,under-standingtheprocessesdominatingthecontrolofleafexpansionisacrucialstep.
Amongthemultiplicityoffactorsinvolvedinleafexpansion,twomajorlimita-tionsemerge:abiophysicalcontrolmainlylinkedtowateruxestogrowingcells,andametaboliccontrollinkedtothesupplyofcarbohydrates(Dale,1988;Walteretal.
,2009).
Tosomeextent,plantscanberepresentedassystemsruledbybiophysicallaws,withwateruxesmodeledasOhm-likefunctionsofhydraulicconductancesandwaterpotentials(vandenHonert,1948).
InlinewiththeformalismofLockhart(1965),severalargumentssupporttheviewthatleafexpansionispredominantlydrivenbycellturgor,itselflargelyinducedbysoilwaterpotentialandtranspiration.
Notably,increasingsoilwaterdecit(Boyer,1968;Acevedoetal.
,1971)orevaporativedemand(Ben-Haj-SalahandTardieu,1997;Tardieuetal.
,2000)leadstogrowthinhibitionsthatcorrelateinspaceandtimewithturgordepres-sionsintheelongatingzoneofmaize(Zeamays)leaves(Bouchabkeetal.
,2006;Ehlertetal.
,2009).
Suchin-hibitionsunderlimitedwateravailabilityhavebeenattributedtoacollapseofwaterpotentialgradientsthatgovernwateruxestogrowingcells(Boyer,1988;TangandBoyer,2002,2008).
Hydrauliccontrolofgrowthisthusthoughttobemorerestrictiveduringthedaythanduringthenight,aperiodduringwhichstomatalclosureallowstherecoveryofleafwaterpotential(Ben-Haj-SalahandTardieu,1997).
Whilecellexpansionneedswatertoproceed,italsorequiresenergyandcarbonskeletonsandthereforereliesonassimilatessuppliedtothegrowingtissues(Dale,1985;SmithandStitt,2007).
Consistentwiththis,growthappearstobecloselycontrolledbycarbonmetabolismatdifferentscales.
Mostcurrentagronom-icalmodelsarebasedontheformalismofMonteith(1977),linkingbiomassaccumulationtoradiationinterceptedbyplantsandcarbonassimilationrate.
Likewise,stablecorrelationsareobservedbetweenorgangrowthratesandinterceptedradiationorcar-bohydrateavailabilityintheirgrowingparts,suchasinroots(Aguirrezabaletal.
,1994;Freixesetal.
,2002)orreproductiveorgans(Dosioetal.
,2011).
Finally,theleafgrowthrhythmofseveralspeciesatane1ThisworkwassupportedbytheFrenchMinistryofResearch(granttoF.
P.
)andbytheEuropeanCommission(FP6)throughtheAGRON-OMICSIntegratedProject(grantno.
LSHG–CT–2006–037704).
*Correspondingauthor;e-mailmuller@supagro.
inra.
fr.
TheauthorresponsiblefordistributionofmaterialsintegraltothendingspresentedinthisarticleinaccordancewiththepolicydescribedintheInstructionsforAuthors(www.
plantphysiol.
org)is:BertrandMuller(muller@supagro.
inra.
fr).
[W]TheonlineversionofthisarticlecontainsWeb-onlydata.
[OA]OpenAccessarticlescanbeviewedonlinewithoutasub-scription.
www.
plantphysiol.
org/cgi/doi/10.
1104/pp.
111.
176289PlantPhysiology,June2011,Vol.
156,pp.
803–815,www.
plantphysiol.
org2011AmericanSocietyofPlantBiologists803https://plantphysiol.
orgDownloadedonDecember24,2020.
-PublishedbyCopyright(c)2020AmericanSocietyofPlantBiologists.
Allrightsreserved.
timescalecoincideswithuctuationsincarbohydrateavailability(WalterandSchurr,2005;Wieseetal.
,2007).
Toaccommodateuctuationsinphotosynthet-icallyactiveradiation,carbonavailabilityisbufferedbytransientstoragecompounds,especiallystarch,whichisaccumulatedduringthedayandusedasacarbonsupplyatnight.
Therateofnocturnalstarchbreakdownisundernecontroltoallowoptimumexhaustionofcarbonstoresbytheendofthenightwithoutenteringcarbonstarvation,whichhasdelete-riouseffectsonvariousmetabolicanddevelopmentalprocesses(Brouquisseetal.
,1991;SmithandStitt,2007).
Thisturnoverofstarchreservesisthoughttobeamajorintegratorintheregulationofgrowth(Sulpiceetal.
,2009).
Towhatextentleafontogenymayinterferewithmetabolicandhydraulicfactorsconstrainingleafgrowthisnotknown.
Still,expectationscanyetbedrawnfrombasicknowledgeofthesink-to-sourcetransitionindevelopingleaves.
Sinceyoungleavescriticallydependoncarbonimportfromolderleaves(Turgeon,1989),theirexpansioncouldbeexpectedtobemoredependentuponcarbonuctuationsascom-paredwitholderleaves,whichhaveapositivecarbonbalance.
Ontheotherhand,youngleavescouldbeprioritizedinsuchawaythatthecarbonsupplytothemismaintainedwhenthewholeplantcarbonavailabilityisdecreased(Minchinetal.
,1993;LacointeandMinchin,2008).
Inthesameway,possibleinter-actionsbetweenontogenyandhydraulicscanonlybespeculated.
Forinstance,watersupplythroughxylemvesselscoulddecreasewithleafmaturationasaresultofdecreasedhydraulicconductivity(Martreetal.
,2000,2001;MartreandDurand,2001;Nardinietal.
,2010).
Ontheotherhand,itisgenerallyadmittedthatcuticlethickenswithleafdevelopment(Richardsonetal.
,2007),suggestingthatthiscouldlimitpassivewaterloss(Kerstiens,2006)andfavorhydraulicstatusastheleafexpands.
Finally,althoughthemoleculareventsleadingtostomatalformationarenowwelldescribed(BergmannandSack,2007),theacquisitionofstomatalfunctionalityduringleafdevelopmentremainsunclear.
Thus,quantitativeargumentsthatdistinguishthepossiblerolesofwaterrelationsorcar-bonavailabilityonexpansionduringleafontogenyarelacking.
Inthisstudy,weaimedtodiscovertherelativecontributionsofwaterandcarbontothecontrolofgrowthwithrespecttoleafontogenyinthemodelplantArabidopsis(Arabidopsisthaliana).
Forthispurpose,weevaluatedataday/nighttimestepthedevelopmentalpatternofleafexpansioninmutantsimpairedinstarchsynthesisorbreakdownaswellasinmutantsderegu-latedinstomatalcontroloftranspiration.
Furthermore,plantsweregrownundervariouslevelsofsoilwatercontent,airhumidity,andirradiance.
Resultsconvergetoassociatehydraulicandmetaboliccontrolstodayandnightperiods,respectively.
Evidenceisthenpresentedthatduringitsdevelopment,theleafexperiencesrstmetabolicandthenhydrauliclimitation.
Bothgeneticandenvironmentalcuesacttomodulatemetabolicorhydraulicconstraintsandtoshiftinaconsistentwaythetimingwhenthemainlimitationswitchesfromcarbontowater.
RESULTSANDDISCUSSIONADualPatternintheWild-TypePlantsInArabidopsis,theexpansionofoneindividualleaffrominitiationattheshootapicalmeristemtogrowthcessationcanlastmorethan1month(Aguirrezabaletal.
,2006).
Becausewholeplantcharacteristics(e.
g.
sink-sourcebalance;Christopheetal.
,2008)canchangesubstantiallyoversuchalongperiod,wedesignedaprotocoltostudyday/nightchangesofrelativeexpansionrate(RER)atdifferentleafgrowthstagesoveramuchshortertimescale.
Briey,weusedtheexpansionof10to13serialleavesover24htoreconstructtheexpansionpatternofanindividualleafover8to10d.
Thisprocess,drivenbytheconceptofphyllochronage,isdescribedin"MaterialsandMethods"andfullydetailedinSupplementalMate-rialsandMethodsS1andinSupplementalFiguresS1toS3.
Wefocusedonadevelopmentalwindowencompassingthersthalfofleafexpansionafteremergence,aperiodduringwhichrelativeandthenabsoluteleafexpansionaresuccessivelymaximum(SupplementalFig.
S1)andthereforestronglycontrib-utetonalleafarea.
Underwell-wateredconditions(0.
35gwaterg21drysoil),acommonRERpatternemerged(Fig.
1)inbothecotypeColumbia(Col-0)andecotypeWassilewskija(Ws-3).
TwosuccessiveperiodscouldbedistinguishedalongtheoveralldecreasingpatternofRER.
Therstonetookplaceearlyafteremergenceforabout3dandshowedleafexpansionratebeingonaverage0.
15and0.
23d21higherduringlightthanduringdarkphasesforCol-0andWs-3,respectively.
Thesecondperiodoccurredatlaterstagesat5dfollowingemergenceandshowedRERbeing,bycon-trast,onaverage0.
16and0.
08d21higherduringthedarkphases.
Forthesakeofclarityandtoallowstatisticalanalysis,RERpatternswerethenparame-terizedbyttingasecond-degreepolynomialinde-pendentlytothedayandnightRER,asshownforCol-0intheinsetofFigure1.
Wehypothesizedthatlatealternations(RERnight.
RERday)reecthydrauliclimitationswhileearlyalternations(RERday.
RERnight)reectmetaboliclimitations.
Totestthesehy-potheses,wealteredthehydraulicandmetabolicstatusoftheleafusinggeneticandenvironmentalmanipulations.
DaytimeReductionsinLeafExpansionAreunderHydraulicControl:EvidencefromStomatalMutants,SoilWaterDecit,andHighAirHumidityDaytimedropsofleafexpansionasobservedhereinArabidopsisrecallresultsrepeatedlyobservedinmonocotssuchasmaize(Ben-Haj-SalahandTardieu,Pantinetal.
804PlantPhysiol.
Vol.
156,2011https://plantphysiol.
orgDownloadedonDecember24,2020.
-PublishedbyCopyright(c)2020AmericanSocietyofPlantBiologists.
Allrightsreserved.
1997;TangandBoyer,2002;Bouchabkeetal.
,2006),wheat(Triticumaestivum;Christ,1978),rice(Oryzasativa;Cutleretal.
,1980),fescue(Festucaarundinacea;SchnyderandNelson,1988;Durandetal.
,1995),orMiscanthus(Clifton-BrownandJones,1999)andalsoindicotssuchassunower(Helianthusannuus;Boyer,1968)orseveralhalophyticspecies(Rozemaetal.
,1987).
Eitherpermanentortransient,thesedropshavebeenattributedtoahydrauliclimitation,becausetheyoccurredespeciallyunderrestrictedwateravailability(i.
e.
undertranspiringconditionswithhigherampli-tudeundersoilwaterdecit).
Wethustestedifthedecreaseofexpansionduringdayscouldbeduetoanimpairmentofleafwaterpotentialinducedbytran-spiration.
Weanalyzedtheabscisicaciddecient4(aba4)mutant(Northetal.
,2007)andthe9-cis-epoxycarotenoiddioxygenase6overexpressor(NCED6-OE)transformant(Lefebvreetal.
,2006)reputedtohavehighandlowstomatalconductance,respectively,duetomodiedcapacitiestosynthesizeabscisicacid(ABA).
Stomatalconductanceoftheaba4mutantwassignicantlyhigherinourconditionsascomparedwiththewild-type,whilephotosynthesisratewasnotaffectedbythemutation(Fig.
2A,inset).
Hence,weexpectedtheeffectofthehydraulicconstraintonleafexpansiontobeampliedinthismutant.
Inaconsistentway,aba4showedearlierandmorepronouncedRERreductionsduringlightphases(Fig.
2A).
Fromday5afteremer-genceonward,thediurnalRERwasonaverage0.
31d21lowerthanthenocturnalRERinaba4ascomparedwith0.
16d21daytimereductioninthewildtype.
Contrastingwithaba4,stomatalconductancewasstronglyreducedinNCED6-OEand,stillinlinewithourhypothesis,itdisplayedastronglyalteredRERpattern(Fig.
2A).
LeafexpansionduringdayswasessentiallymaintainedsimilartonightRERat5dfollowingemergence(only0.
01d21loweronaverage).
Toascertainthehydraulicoriginofgrowthlimitationinthedaytime,weexposedbothCol-0andWs-3accessionstotwolevelsofsoilwaterdecit.
Applyingamoderatesoilwaterdecit(0.
23gwaterg21drysoil)toCol-0(Fig.
2C)orWs-3(Fig.
2D)ampliedthediurnaldepressions(0.
37d21lowerRERduringdaysthanduringnightsafter5d),withdaydropsoccurringearlierthanunderwell-wateredconditions.
Underseveredecit(0.
18gwaterg21drysoil),diurnalreductionsinRERwereevenmorepronounced,especiallyinCol-0,whereleafexpansionvirtuallyceasedduringdays(0.
30d21lowerRERinthedaytimeatanydevelopmentalstage).
Bycontrast,whenthevaporpressuredecit(VPD)waslowered(downto0.
3kPainsteadof0.
8kPa)inordertoimprovetheleafwaterstatus,day/nightalternationsofleafexpansionwereminimized,withaattenedpatternintheearlystagesandadiurnalRERbeingonly0.
08d21lowerthanduringthenightafter5donaverage(Fig.
2B).
Overall,theconsistencyoftheresultsobtainedusingstomatalmutants,lowevaporativedemand,orsoilwaterdecittreatmentsstronglysupportsthehypothesisthatdiurnalreductionsinleafexpansionobservedduringthelaterphasesofleafdevelopmentinthewell-wateredwild-typeplantsareunderhy-drauliccontrol.
Besidesactingonstomatalclosure,alteredABAcontentinstomatalmutantscouldhaveimposedlong-termadditionaleffects,forinstanceonhydraulicconductivity,possiblythroughchangesinaquaporinexpression,aswellasonnonhydraulicprocessessuchascellwallpropertiesorcelldivision(forreview,seeTardieuetal.
,2010).
Thesesideeffects,togetherwiththeslightlybutsignicantlylowernetphotosynthesis(Fig.
2A,inset),couldpartlyexplainthegloballylowerRERinNCED6-OEplantscom-paredwithothergenotypes.
NightDepressionsAreLinkedtoaMetabolicControlofLeafExpansion:EvidencefromStarchMutantsUsingasimilarcombinationofenvironmentalandgeneticapproaches,wetestedifearlynocturnalde-pressionsofgrowthwereduetoacarbonlimitation.
Inlinewiththishypothesis,experimentsatelevatedCO2havesuggestedthatleafgrowthissourcelimitedatnight(GrimmerandKomor,1999;RasseandTocquin,2006).
AsthestarchpoolisthemaincarbonsourceatnightinArabidopsis,weusedfourmutantswithimpairedabilitytostorestarchortouseitatnight.
Thestarchlessphosphoglucomutase(pgm)mutantcannotsynthesizestarch(Casparetal.
,1985),whereasthestarchaccumulatorstarchexcess1(sex1)isnotabletoFigure1.
Expansionpatternsofthewild-typeplantsunderwell-wateredconditions.
ThedayandnightRERsweremonitoredonCol-0(blackcircles)andWs-3(crosses)fromleafemergencetomiddevelopment(see"MaterialsandMethods";SupplementalFig.
S1).
TheinsetshowsthesmoothingprocessfortheRER.
AsshownhereforCol-0,asecond-degreepolynomialwasttedindependentlytothedayRER(dottedline)andtothenightRER(solidline).
Then,thegrowthpatternsweredrawnfromleafemergencetoleafmiddevelopmentbyjoiningthepredictedvaluesforthesuccessivelightanddarkperiods.
Thesameunitsareusedforthemaingraphandtheinset.
Blackrectanglesandgraybandsindicatethenightperiods.
Valuesshownaremeans6SE(n$10).
ControlofLeafExpansion:FromCarbontoWaterPlantPhysiol.
Vol.
156,2011805https://plantphysiol.
orgDownloadedonDecember24,2020.
-PublishedbyCopyright(c)2020AmericanSocietyofPlantBiologists.
Allrightsreserved.
degradeit(Casparetal.
,1991).
Maltose,themajorproductofstarchbreakdownatnight,cannotexitthechloroplastinmaltoseexcess1(mex1;Niittyla¨etal.
,2004).
Finally,maltosecytosolicmetabolismisim-pairedindisproportionatingenzyme2(dpe2;Chiaetal.
,2004;LuandSharkey,2004).
Asaresult,starchturn-overwasstronglyaffectedinthesemutants(Fig.
3,AandB,insets).
Strikingly,allmutationscausedastrongreductionofleafexpansionatnight(Fig.
3,AandB),especiallyintheearlystages,withRERduringtherst3dfollowingemergencebeing0.
80,0.
58,0.
49,and0.
48d21loweratnightthanindaytimeforpgm,sex1,mex1,anddpe2,respectively.
Bycomparison,earlyreduc-tionsinRERatnightforCol-0andWs-3wereonly0.
15and0.
23d21lowerthandaytimeRER.
Lateronduringleafdevelopment,thedifferencesbetweenwild-typeplantsandstarchmutantstendedtovanish.
Thisstronglysupportsthehypothesisthatearlynightreductionsinleafexpansioninthewild-typeplantsareundermetaboliccontrol.
Ampliedgrowthinhibitionsduringthenightinthestarchmutantscouldhaveresultedeitherfromthelackofcarbonorthetriggeringofthesignalingcascadeassociatedwithlowlevelsofsugars(SmithandStitt,2007).
Bycon-Figure2.
Effectsofhydraulicchangesonexpansionpatterns.
Pointsrepresentobservedandlinesrepresentsmoothedvalues.
Blackrectanglesandgraybandsindicatethenightperiods.
Valuesshownaremeans6SE(n$10).
A,Kineticsofstomatalmutants.
Expansionpatternsareshownforaba4,amildABA-decientmutant,andofNCED6-OE,anABAoveraccumulator.
Theinsetshowsstomatalconductance(Gs)andnetphotosynthesis(Pn).
LettersindicatesignicantdifferencesbetweengenotypesafteraKruskal-Wallistest.
Diurnalstomatalconductanceofmutantswasaffectedasexpected(n=10).
Netphotosynthesiswasonlyslightlyaffectedintheoveraccumulator(n=4).
B,EffectsoflowVPDontheexpansionpatternofCol-0.
Well-wateredCol-0wasgrowneitherunderstandardVPD(0.
8kPaduringtheday;black)orlowVPD(0.
3kPaduringtheday;turquoise).
CandD,Kineticsofwater-stressedplants.
ExpansionpatternsareshownforCol-0(C)andWs-3(D)plantssubjectedtoamildwaterdecit(0.
23gwaterg21drysoil)oraseverewaterdecit(0.
18gwaterg21drysoil)andthewell-wateredcontrol(0.
35gwaterg21drysoil).
Notetheamplicationofdiurnaldepressionsunderconditionslimitingwateravailability(aba4;waterstresses)andtheirdiminutionwhenwaterlossbytranspirationisreduced(NCED6-OE;lowVPD).
Pantinetal.
806PlantPhysiol.
Vol.
156,2011https://plantphysiol.
orgDownloadedonDecember24,2020.
-PublishedbyCopyright(c)2020AmericanSocietyofPlantBiologists.
Allrightsreserved.
Figure3.
Effectsofmetabolicchangesonexpansionpatterns.
Pointsrepresentobservedandlinesrepresentsmoothedvalues.
Blackrectanglesandgraybandsindicatethenightperiods.
Valuesshownaremeans6SE(n$10).
AandB,Kineticsofstarchmutants.
A,Expansionpatternsofpgm,astarchlessmutant,andofmex1,amutantimpairedinmaltoseexport(thepredominantrouteforcarbohydratesupplyatnight),bothintheCol-0background.
B,Expansionpatternsofsex1,astarchaccumulator,andofdpe2,whichisaffectedintheconversionfrommaltosetoSucatnight,bothintheWs-3background.
Insetsshowstarchturnover.
Thestarchcontent(inmmolofhexoseequivalentsperunitofdryweight[DW])wasmeasuredattheendofthedayandattheendofthenight.
LettersindicatesignicantdifferencesbetweenvaluesafteraLSDtestadjustedusingtheBonferronimethod(n=4).
CtoE,Kineticsofplantsunderlowlight.
ExpansionpatternsareshownforCol-0(C),pgm(D),andsex1(E)subjectedtolowlight(PPFDat70mmolm22s21versus220mmolm22s21forthecontrol).
F,Effectofirradianceonnetphotosynthesis(Pn).
LettersindicatesignicantdifferencesbetweentreatmentsafteraKruskal-Wallistest(n=6).
G,EffectofirradianceonSLA.
LettersindicatesignicantdifferencesbetweentreatmentsafteraKruskal-Wallistest(n=4).
Notetheamplicationofearlynocturnaldepressionsinstarchmutants,furtherincreasedunderlowlight.
Theweakeffectonthewildtypeisdiscussedinthetext.
ControlofLeafExpansion:FromCarbontoWaterPlantPhysiol.
Vol.
156,2011807https://plantphysiol.
orgDownloadedonDecember24,2020.
-PublishedbyCopyright(c)2020AmericanSocietyofPlantBiologists.
Allrightsreserved.
trast,wild-typeplantsdevelopbuffersystemsagainstcarbonstarvation,suchasdescribedinthewholerosetteofCol-0,whosecarbonbudgetisadjustedduringthedaytoavoidexhaustionduringthedarkperiod(Gibonetal.
,2004,2009;Bla¨singetal.
,2005).
BufferingCarbonStarvationUnderverylowlight(30mmolm22s21),leafexpan-sioninwild-typeArabidopsishasbeenshowntobereducedatnight(Wieseetal.
,2007),butthatstudydidnotconsidertheinuenceofleafontogeny.
Tofurtherchallengethehypothesisofacarbonlimitationofleafexpansionduringtheearlystagesofleafdevelopment,Col-0,pgm,andsex1wereexposedtolow-lightcondi-tions(70mmolm22s21)for4d.
Surprisingly,thislow-lighttreatmenthadnoeffectonthegrowthpatternofCol-0(Fig.
3C)duringtheearlystagescomparedwithstandardlight(220mmolm22s21).
Atlaterstages,lowlighttendedtoincreasetheexpansionrate,butnightRERwasstillhigherthandayRERby0.
16d21asunderstandardlight.
Bycontrastandasexpected,starchmutants(Fig.
3,DandE)underlowlightdisplayedthroughoutdevelopmentafurtherdecreaseofnightRERcomparedwithstandardlight,whiledaytimeRERwasincreasedatlaterstagesasinthewildtype.
Theseresultsraisethequestiononhowthewildtypemanagedtomaintainleafexpansiondespiteseverelightreduction.
Decreasingthelightbytwo-thirdslowerednetassimilationratebyasimilarpro-portion(Fig.
3F),butthespecicleafarea(SLA)nearlydoubledunderlowlight(Fig.
3G).
Thisimpliesthattheplantessentiallymaintainedsurfaceexpansiondespitelowercarbonavailabilitybyadjustingleafthicknessordensity.
AnincreaseinSLAunderlowlightisclassicallyobservedinavarietyofspeciesandawiderangeofconditions,includingspeciesinnat-uralhabitats(Boardman,1977),cropplants(Tardieuetal.
,1999),orArabidopsis(PigliucciandKolodynska,2002;CooksonandGranier,2006).
Similarlyintobacco(Nicotianatabacum),SLAandcarboncontributiontostructuralweightadjustedtophotosyntheticcapacity(Fichtneretal.
,1993).
Starchdynamicscouldalsohaveadjustedinresponsetothecarbonbalance,asdemon-stratedundervariousdaylengths(Gibonetal.
,2004,2009)andunderlowirradiance(ChattertonandSilvius,1981).
Together,ourresultstwiththegeneralviewthatplantsuseanarsenalofresponsesallowingthemtone-tunethebalancebetweensurfaceexpansionandstructuralgrowth.
Thisabilitytooptimizelightinterceptionunderlimitedirradiancebyreducingthecarboninvestmentperunitofleafarea(i.
e.
prioritizingsurfaceexpansion)representsastrongecologicalad-vantage(Poorteretal.
,2009).
Ourstudyalsosuggeststhatbufferingsystemsagainstcarbonuctuationsaremoreefcientinmaintainingleafexpansionundercarbon-limitingconditionsthanthemechanismsre-sponsibleforattractingwatertogrowingcellswhencompetitionforwaterishigh.
Thismakessensebe-causemaintainingsurfaceexpansionrepresentsanadvantageunderlowlightandadisadvantageunderwaterstress,withrespecttophotosynthesisandtran-spiration,respectively.
Howthisresponseisachievedisnotknown.
Nevertheless,veryefcientbufferingsystemsareactingtopreventcarbonstarvation,redi-rectgeneexpression,andslowdowngrowth(SmithandStitt,2007).
Thesebufferingsystemsforcarbonarelikelytobemediatedbysugarsensing(SmithandStitt,2007;Stittetal.
,2007)andtorelyonshort-termpooldynamics(e.
g.
starch;Gibonetal.
,2004,2009)oronlong-termchangesincarboninvestmentsintostruc-tures(Boardman,1977;Poorteretal.
,2009),asseeninourstudythroughamuchhigherSLAintheleavesofshadedplants.
Undermoredrasticcarbonconditions,asinstarchmutants(thisstudy)orunderverylowlight(Wieseetal.
,2007),limitedcarbonavailabilitymayultimatelyimpactleafexpansion.
SevereWaterStressRestorestheWild-TypePhenotypeinStarchMutantsToevaluatethepossibleinteractionsbetweencarbonandhydrauliclimitations,weexposedthestarchmu-tantstosoilwaterdecits.
Inallmutants,aseverewaterdecitresultedinastronglyreducedexpansionduringdayphasesandapracticallyunalteredexpan-sionduringnights.
Asaresult,allmutantsdisplayedapatternthatresembledthatofthewell-wateredwild-typeplants(SupplementalFig.
S4).
Thisisconsistentwiththesuperimpositionofthegradualinuenceofhydrauliclimitationsinthedaytimeoverthegrowthpatternofstarchmutants,characterizedbynightre-ductionofRER.
Additionally,besidespenalizingthehydraulicstatus,droughtcouldalsohaveimprovedthecarbonstatusofthestarchmutants.
Thisinterpre-tationisinlinewitharecentreview(Mulleretal.
,2011)showingthatdroughtimprovesthecarbonsta-tusofplantsduetoahighersensitivitytodroughtforleafgrowththanforcarbonassimilation,leadingtocarbonaccumulation(foranexemplicationinArabi-dopsis,seeHummeletal.
,2010).
Onthewhole,theabilitytorestorequalitativelythewild-typephenotypewithstarchmutantsunderwaterstressindicatesthatexpansionpatterns,includingthoseofthewild-typeplants,resultfromadynamicandplasticcombinationofmetabolicandhydraulicconstraints.
ADevelopmentalSwitchfromMetabolicLimitationstoHydraulicLimitationsofLeafExpansionInordertoanalyzethewholedatasetwithinacommonstatisticalprocedure,expansionpatternswerenormalizedaccordingtothetimeaxisandaclusteringwasperformedbasedonthedifferencebetweennightanddayRERs,ascomputedbyttingapolynomialindependentlytothedayandnightvalues(Fig.
4A).
ThestatisticalsignicanceofthisdifferenceforeachtreatmentateachtimestepisplottedinFigure4B.
Vertically,thisclusteringresultedinanorderedcontin-uumofgenotypicandenvironmentalconditionslead-Pantinetal.
808PlantPhysiol.
Vol.
156,2011https://plantphysiol.
orgDownloadedonDecember24,2020.
-PublishedbyCopyright(c)2020AmericanSocietyofPlantBiologists.
Allrightsreserved.
ingtosituationsrangingfrompredominantnightde-pressions(topofFigure4Aingreen)topredominantdaydepressions(bottomofFigure4Ainpurple)duringleafdevelopment.
Consistentwithouranalysislinkingnightdepressionstometabolicconstraint,allstarchmutantsunderwell-wateredormoderatewaterstressconditions(exceptdpe2)clusteredinthetoppartofFigure4A,withhighlysignicantnightreductionsofRERextendingseveraldaysafterleafemergence.
pgmandsex1underlowlightwererankedattheupperextremeoftheclustering.
Underseverewaterdecit,growthpatternsofallstarchmutantsshifteddownwithinthegroupoftheirwell-wateredwildtypes,inbothCol-0andWs-3backgrounds.
LeafexpansionofNCED6-OEwaspoorlyaffectedbywatershortageandclusteredatanysoilwatercontentwiththelowVPDtreatment,formingagroupcharacterizedbyweak,nonsignicantday/nightuctuationsofexpansionas-sociatedwithprobablelowuctuationsoftranspira-tion.
Thelastgroup,locatedatthebottomofthecluster,withstrong,highlysignicantdepressionsofdaytimeRER,wascomposedofallgenetic(aba4mutant)orenvironmental(soilwaterdecits)situationsthatin-creasedhydrauliclimitation.
Thehorizontalcolorgra-dientclearlyindicatedthatnightdepressionsoccurredpreferentiallyintheearlystageswhereasdaydepres-sionsweremorepronouncedinthelaterstages,withaswitchingpoint(whiteandreddiagonalsinFig.
4,AandB,respectively)followingthebalancebetweenmetabolicandhydraulicconstraint.
Asawhole,theconsistentrankingofthisclusteringgatheredfromenvironmentalandgeneticperturbationsshowsthatduringthecourseofontogeny,thecontrolofleafexpansionswitchesfrommetabolicstohydraulics.
Theseresultsimplythatevenunderwell-wateredconditions,leafexpansionbecomesmoreandmoreFigure4.
Heatmapoftheexpansionpatterns.
A,HierarchicalclusteringanalysisofthedifferencebetweennightanddayRER.
Thetimeaxisofallkineticswasnormalizedaccordingtoleafmiddevelopment(t50).
Then,asecond-degreepolynomialwasttedindependentlytothedayandnightRERs,andthedifferencebetweennightanddaywascomputedfor100successiveiterationsbetweent0(emergence)andt50.
These100variableswereusedtoclassifythekineticsusingtheEuclideandistances.
Thecomputedvariableswerethenassociatedwithacolor.
ClosenesstogreenindicatesadayRERsuperiortothenightRER,whileclosenesstopurpleindicatestheopposite.
Theleftpartoftherectanglesbesidebranchesofthedendrogramisacolorcodeforthegenotype,whiletherightpartisfortheenvironment.
Thereisnoaddedrightpartwhengenotypewasgrownundercontrolconditions(wellwatered,standardlight).
Blackisforthewildtype.
Tan(starchmutants)andbrown(lowlight)areforsupposedenhancedmetabolicconstraints.
Gold(aba4),orange(moderatewaterstress),andred(severewaterstress)areforsupposedenhancedhydraulicconstraints.
Steelblue(NCED6-OE)andturquoise(lowVPD)areforsupposedreducedhydraulicconstraints.
Notethatmutantsandenvironmentaltreatmentssupposedtomodifymetabolicorhydraulicconstraintsclusteredinaconsistentway.
Notealsothatmetabolicconstraintsarepredominantlyassociatedwithearly,nocturnalRERdepressions,whereashydraulicconstraintsareassociatedwithlater,diurnalRERdepressions.
B,SignicanceofthedifferencebetweennightanddayRER.
Condenceintervalsofthepolynomialregressionswerecalculatedatseveralcondencelevelsforeachiteration.
GreenindicatesthatthedifferencebetweennightanddayRERisveryhighlysignicant,whileredindicatesnosignicantdifference.
ControlofLeafExpansion:FromCarbontoWaterPlantPhysiol.
Vol.
156,2011809https://plantphysiol.
orgDownloadedonDecember24,2020.
-PublishedbyCopyright(c)2020AmericanSocietyofPlantBiologists.
Allrightsreserved.
limitedbywateruxesastheleafdevelops.
Watersupplytothegrowingtissues,therefore,appearsasakeypointtobalancetheincreasingcompetitionforwaterbetweengrowthandtranspirationastheleafexpands.
Theimpactongrowthofthiscompetitionhasbeenwelldocumentedinmonocotsbutalsoindicotssuchassunower(Boyer,1968),castorbean(Ricinuscommunis;Poireetal.
,2010a),andseveralhalophyticspecies(Rozemaetal.
,1987).
However,toourknowledge,ourstudyistherstonereportingaprogressiveestablishmentofhydraulicconstraintonleafgrowthduringitsontogeny.
Anincreasinghy-draulicconstraintduringdevelopmentcouldbeme-diatedbyvariousmeans.
First,xylemarchitecturecouldbecomelimitingduetoadecreasedveindensityastheleafexpands,asrecentlyreportedinArabidop-sis(Rolland-Laganetal.
,2009).
Moreover,hydraulicconductivitycoulddecreasewithtissuematuration,asshownalongfescueleaves(Martreetal.
,2000,2001;MartreandDurand,2001)andindevelopingleavesofhorsechestnut(Aesculushippocastum;Nardinietal.
,2010).
Alternatively,aquaporin-mediatedwatertrans-portmaybecomegraduallylimiting,assuggestedinthemaizeleaffromthespatialpatternoftranscriptionlevelsalongthematurationzone(Hachezetal.
,2008).
Thegloballengtheningoftheextravascularpathwayastheleafexpandsmayalsoexertanincreasingre-sistancetowaterowwithinthewholeleaf(Cochardetal.
,2004;Brodribbetal.
,2007).
Lastly,stomatadynamicsandsensitivitytoABAcouldbedependentonleafage,assuggestedincotton(Gossypiumhirsu-tum;Jordanetal.
,1975).
However,thedevelopmentalpatternofstomatalorxylemfunctioningremainsunknownforthegrowingleavesofArabidopsis.
Asarstinsightintothemechanismsunderlyingahydraulicdevelopmentalswitch,wedeterminedtur-gorinyoung(1dafteremergence)andolder(8d)leavesinwell-wateredCol-0attheendofbothdayandnight.
Leafturgorincreasedwithdevelopment(Fig.
5A),whichtswithearlierobservationsinmaize(TangandBoyer,2002;Bouchabkeetal.
,2006).
Inthosestudies,thiswasattributedeithertoadepressionofwaterpotentialinducedbythevolumetricgrowthortochangesinrheologicalparameterswithleafdevel-opment.
Moreinterestingly,ourresultsalsoshowedacleardevelopmentalswitchintheday/nightturgordifference:justafteremergence,turgorwassigni-cantlyloweratnight(0.
31MPaduringthedayversus0.
18MPaatnight;P,0.
05),whileasignicantdropinturgorwasobservedduringthedayatthelaterstage(0.
44MPaduringthedayversus0.
56MPaatnight;P,0.
01).
SimilardropsindaytimeturgorwererecentlyreportedinArabidopsisleavesusingapatch-pressuretechnique(Acheetal.
,2010).
Ourstudysuggeststhatveryyoungleavesarenotsubjectedtothisdaytimedropandthatthisdevelopmentalswitchintheday/nightturgorcouldbeinvolvedinthedevelopmentalswitchintheday/nightleafexpan-sion.
Whentheclusteringwasrestrictedtotherstthirdofthekinetics(e.
g.
3dfollowingemergenceforthewild-typeplantsundercontrolconditions),wild-typeplantsclusteredforemostwiththestarchmutants(SupplementalFig.
S5).
Thisimpliesthatleafgrowthsensitivitytometaboliccontroloccursintheearly,presumablyheterotrophicstages.
Accordingly,leafexpansionsensitivitytoshadinginmaize(Ben-Haj-SalahandTardieu,1996;Mulleretal.
,2001),sunower(GranierandTardieu,1999;Tardieuetal.
,1999),orArabidopsis(CooksonandGranier,2006)wasen-hancedintheyoungleaf.
Insinkorgans,thegrowthpatternwasalsoalteredatnight,asshownforArabi-dopsisroots(YazdanbakhshandFisahn,2010)orpotato(Solanumtuberosum)internodes(Kehretal.
,1998).
Furthermore,closerelationshipsbetweenlocalcarbohydrateavailabilityandgrowthrateobservedinseveralsinkorganssupporttheviewthatgrowthdependenceuponcarbonisanemergentfeatureofFigure5.
Ontogeneticshiftsinleafturgorandcarbohydratestores.
Measurementswereperformedattheendofdayandnightonleavesaged1and8dafteremergenceonthewell-wateredCol-0plants.
Valuesshownaremeans6SE.
A,Leafturgor.
Turgorpressurewasdeterminedasthedifferencebetweenleafwaterpotentialandosmoticpotential.
Mean,SE,andABCcondenceintervalwerecomputedusinganonparametricbootstrapmethod.
Singleanddoubleasterisksindicatesignicantdifferencesbetweendayandnightturgoratthe0.
95and0.
99condencelevels,respectively.
BandC,Carbohydratestores.
Thesolublesugar(B)andstarch(C)contentsweremeasured(inmmolofhexoseequivalentperunitoffreshweight[FW])attheendofdayandnight.
LettersindicatesignicantdifferencesbetweenvaluesafteraKruskal-Wallistest(n$6).
Pantinetal.
810PlantPhysiol.
Vol.
156,2011https://plantphysiol.
orgDownloadedonDecember24,2020.
-PublishedbyCopyright(c)2020AmericanSocietyofPlantBiologists.
Allrightsreserved.
sinkorgans(Mulleretal.
,2011).
Thus,thepredomi-nanceofcarbonlimitationatleafemergenceanditsdisappearanceduringleafdevelopmentcouldbelinkedtoaprogressivesink-to-sourcetransition.
Inseveraldicots,thesink-to-sourcetransition(themo-mentwhentheleafbecomesanetcarbonexporter)hasbeenshowntotakeplacewhentheleafis30%to60%fullyexpanded,butthisviewhasnotbeenrevisitedforalongwhile(forreview,seeTurgeon,1989).
Asfarasweknow,theimpactofsink-to-sourcebalanceonpatternsofleafexpansionhasneverbeendemon-strated.
Theyoungleafmustrelyoncarbohydrateimportfromolderleaves,becauseitsmetabolicre-quirementsaremaximalwhenitsproductioncapacityisminimal(Turgeon,1989).
Indeed,whilephotosyn-theticmachineryisdeveloping(Dale,1985),relativeexpansionrateandrelativecelldivisionrateareattheirhighestlevels(CooksonandGranier,2006),in-creasingcarbonneedsforrespiration(Dale,1985)andcarboncostssuchasthoseassociatedwiththesynthe-sisofnewstructuralcompoundsandcellequipment,includingwalls,nucleicacids,andproteins(Piquesetal.
,2009).
Recenttranscriptomicdataalongadevel-opmentalgradientinmaizeleafsupportthisinterpre-tation(Lietal.
,2010).
ThisisalsoexempliedinthestudyofSchurretal.
(2000),wheretheyoungleavesofcastorbeanshowedalowchlorophyllcontent,anegativenetassimilationrate,andanintenserespira-tionrate,whileleafgrowthratewasreducedatnight.
Toevaluateifleafcarbonbudgetscouldbeaffectedbyontogeny,wemeasuredcarbohydratestoresofyoung(1dafteremergence)andolder(8d)leavesinwell-wateredCol-0attheendofdayandnight.
Solublesugarcontents(Fig.
5B)werenotsignicantlydifferentbetweentheendofthedayandtheendofthenight.
Starchcontent(Fig.
5C)attheendofthedaywasthreetofourtimesthatofsolublesugarsandwasalmostexhaustedattheendofthenight,suggestingthatstarchisamajorcontributortotheleafdiurnalcarbonbalance.
Interestingly,theamountofstarchstoredattheendofthedayinthejustemergedleafwas40%lowerthanintheolderleaf.
Thecarbohydratestoresattheendofthedaywerethuslowerintheyoungleafdespiteitsmaximalgrowthrate,whichtswiththeideaofasteepermetabolicconstraintintheyoungleaf.
Besideshydraulicsandmetabolics,thecircadianclockmayplayanintertwinedroleinthecontrolofleafgrowth.
Recently,itwasfoundthatunderextendedlight,leafexpansionrateatashorttimescaleinArabidopsiskeepsonalternatingwithasimilarperiodasundernormalday/nightconditions(Poireetal.
,2010b),highlightingacircadiancontrolofleafexpan-sion.
Thedevelopmentalswitchoftheday/nightpat-ternpresentedinthisstudyanditsmodulationprovideevidencethatontogeny,genetics,andtheenvironmentcanallovercomeendogenousrhythms.
Theextenttowhichtheclockcouldinterferewithourresultsisnotthescopeofthisstudy,butwehypothesizethatcircadianrhythmcouldacttoamplifyandanticipateleafresponse,notablytometabolicorhydrauliccon-straints.
Indeed,theclockhasbeenshowntoorches-tratethetranscriptionofpathwaysrelatedtocentralprocesses,includingphotosynthesis,carbonmetabo-lism,orwaterinuxthroughaquaporins,togetherwithcellwalldynamics(Harmeretal.
,2000).
Further-more,sugarsthemselvescanmodifytheexpressionofclock-regulatedgenes(Bla¨singetal.
,2005),whileconversely,starchbreakdownisundercircadiancon-trol(Grafetal.
,2010).
StomatalconductanceandphotosynthesisarealsosubjecttoapartialcircadiancontrolinArabidopsis(Doddetal.
,2005).
Recently,itwasshownthatwaterdynamicsaswellasaquaporingeneexpressioninArabidopsisrootsoscillatedwiththecircadianrhythm(Takaseetal.
,2011).
Finally,rootxylempressure(Henzleretal.
,1999)andleafhydrau-licconductance(Nardinietal.
,2005)havebeenshowntobeclockdependent.
Thus,weraisethehypothesisthattheinuenceoftheclockonthedualpatternsreportedhere,althoughnotexcludable,couldbeatleastpartlyintegratedwiththemetabolicandhydrau-licprocessesdiscussedabove.
CONCLUSIONWhethercarbonorwateristhemainlimitationofleafgrowthisamatterofdebateintheliterature.
Here,weprovidegeneticandenvironmentalevidencethatthecontrolofleafexpansionswitchesfrommetabolicstohydraulicsduringthecourseofleafontogenyinArabidopsis.
Wedemonstratethatthisdevelopmen-talswitchisassociatedwithconsistentontogeneticchangesinday/nightleafturgorandstarchavailabil-ity.
Carboninuenceonleafexpansionoccursmainlyatnightduringtheearlyphasesofleafdevelopment,maybeduetoalimitedlocalstarchavailabilitywithrespecttoanintensecarbondemand,andisbufferedbyne-tuningstructuralgrowth.
Theseadjustmentsmaintainsurfaceexpansion(andthusenergycapture)underlimitinglightconditions,partlyuncouplingleafexpansionfromcarbonavailability.
Bycontrast,astheleafdevelops,hydraulicsexertincreasingconstraintduringthedaytimebyalteringleafturgor.
Toourknowledge,theestablishmentofanincreasingwaterlimitationofleafgrowthhasnotbeenreportedbefore.
Althoughofyetunknownnature,theselimitationscouldbeduetoadecreasingcapacityofthehydraulicnetworktosupplywatertothegrowingtissues.
Towhatextentthisdevelopmentalswitchcanbeextrap-olatedtootherspeciesremainsanopenquestion.
Thesink-to-sourcetransitionofleavesisageneralfeatureinplants.
Ifthistransitionisthecauseoftheweaken-ingofmetabolicconstraintonleafexpansion,itistemptingtospeculatethatthisresponseisconservedacrossspecies.
Bycontrast,iftheontogeneticestab-lishmentofhydraulicconstraintonleafexpansionisrelatedtothehydraulicnetworkarchitecture,whichishighlyvariableacrossspecies,thelevelofhydraulicconstraintonleafexpansionisexpectedtobespeciesControlofLeafExpansion:FromCarbontoWaterPlantPhysiol.
Vol.
156,2011811https://plantphysiol.
orgDownloadedonDecember24,2020.
-PublishedbyCopyright(c)2020AmericanSocietyofPlantBiologists.
Allrightsreserved.
dependent.
Asuperimpositionofmolecularandphys-iologicalinformationduringleafdevelopmenttothegrowthkineticsreportedhereisnowrequiredtofurtherdeciphertheconcertedactionsofcarbonandwateronleafexpansion.
MATERIALSANDMETHODSGrowthConditionsSeedsofArabidopsis(Arabidopsisthaliana)weresowninpotslledwithamixture(1:1,v/v)ofloamysoilandorganiccompost.
Oncegerminated,theyweregrowningrowthchambersata10-hphotoperiodunderaphotosyntheticphotonuxdensity(PPFD)of220mmolm22s21.
AirtemperatureandVPDwere21°Cand0.
8kPa,respectively,duringthedayand17°Cand0.
3kPaatnight.
Eachpotwasweighedtwiceadayandwateredwithone-tenth-strengthHoaglandsolution,sothatitssoilwatercontentwasmaintainedatawell-wateredlevel(0.
35gwaterg21drysoil)equivalenttoapredawnwaterpotentialof20.
3MPa(Hummeletal.
,2010).
Whenplantshad10visibleleaves,irrigationwassuspendedfortheplantsexposedtowaterstress,untilsoilwatercontentreachedatargetvaluecorrespondingtoamildwaterdecit(0.
23gwaterg21drysoil,20.
7MPa)oraseverewaterdecit(0.
18gwaterg21drysoil,21.
1MPa).
Firstmeasurementsoccurredwhenthesoilwatercontenthadstabilizedtothetargetvaluefor4d.
Forthelow-VPDexperiment,thetargetVPDwasmaintainedat0.
3kPaduringthedayand0.
1kPaatnightfrom4dbeforethebeginningofmeasurements.
Forthelow-lighttreatment,aneutralshadingveilreducedPPFDto70mmolm22s21,beginningalso4dbeforemeasurements.
PlantMaterialTheaba4mutantisimpairedinneoxanthinsynthesisanddisplaysamildphenotypecomparedwithotherABA-decientmutants,asABAcanbeproducedbyanalternativepathway(Northetal.
,2007).
Bycontrast,NCED6-OEoverexpressesa9-cis-epoxycarotenoiddioxygenaseleadingtoABAover-accumulation(Lefebvreetal.
,2006).
Thestarchlessmutantpgmlackstheplastidphosphoglucomutase(Casparetal.
,1985).
Bycontrast,thesex1mutant(Casparetal.
,1991)accumulatesalargeamountofstarch,asitisimpairedinana-glucanwaterdikinaseinvolvedintheearlystepsofstarchbreakdown(Ritteetal.
,2002).
Themex1mutantisimpairedinamaltosetransporteratthechloroplastenvelope,whichrepresentsthepredominantrouteforcarbohy-drateexportfromchloroplastsatnight(Niittyla¨etal.
,2004).
Thedpe2mutantisaffectedinthecytosolicdisproportionatingenzymeinvolvedinthecon-versionfrommaltosetoSucatnight(Chiaetal.
,2004;LuandSharkey,2004).
AllmutantswereintheCol-0background(N1092),exceptsex1anddpe2,whichwereintheWs-3background(N1638).
Accordingly,bothaccessionswereusedinourexperiments.
MonitoringLeafGrowthattheDay/NightTimeScaleInordertoevaluateleafgrowthlimitationsduringitsdevelopment(whichcanlastmorethan1month;Aguirrezabaletal.
,2006)regardlessofwholeplantchangeslikeoraltransition(Christopheetal.
,2008),wedevelopedanapproachwheretheexpansionofserialleavesoveronediurnalandonenocturnalphaseisusedtoinfertheexpansionofareconstructedleafoversuccessivedays.
Ourapproach,justiedinSupplementalMaterialsandMethodsS1andfullydescribedinSupplementalFiguresS1toS3,consistedofthreeconsecutivezenithalphotographs:therstoneatthebeginningofadayperiod,thesecondoneattheendofthesamedayperiod,andthethirdoneattheendofthesubsequentnight.
Thiswasrepeated3dlaterundermaintainedenvironmentalregimesasareplicate.
Duringeachacquisition,photographsweretakenwithinlessthan15minutilizingthephenotypingautomatondevelopedbyourgroup(Granieretal.
,2006).
WeextractedtheareaofsuccessiveleavesfromthedigitalphotographsusingasemiautomatedprogramdevelopedontheImageJsoftware(Rasband,2009).
Thelastdigita-lizedleafwaschosentorepresentmorethanhalfoftheareaofthelargestvisiblematureleaf(e.
g.
13leavesinthewell-wateredCol-0).
Whenappropri-ate,aseriesofindependentphotographswastakentoconsiderhyponastyandtheareaofeachleafwascorrectedforitsangle(SupplementalFig.
S3).
Foreachleafrank,theRERwascomputedasthelocalslopeofthenaturallogarithmofthearea(S)asafunctionofthermaltimetocorrectforthelineareffectsoftemperature(Granieretal.
,2002)andrecalculatedatareferencetemperatureof20°C,asmostlyencounteredintheliterature(SupplementalFig.
S1,step5).
Hence,thediurnal(respectivelynocturnal)RERbetweenti,thebeginningoftheday(respectivelynight),andtj,theendoftheday(respec-tivelynight),wascomputedasfollows:RERtitjlnSjSitjtiTTbase*dt3TrefTbasewhereTisthetemperature,Tbaseisthebasetemperatureof3°C,andTrefisthereferencetemperature(setat20°C).
RERwasexpressedinmm2mm22d21at20°C(notedd21elsewhereinthetext).
Whencalculatedover24-hintervals,thedailyRERcontinuouslydecreasedasafunctionoftime,meaningthatleafareaincreasewasalwayslessthanexponential,inlinewiththesigmoidpatternofdailyevolutionofleafarea(SupplementalFig.
S1,step3).
Thephyllochronofeachgenotype3environmentcombinationwasdeducedfromleafnumbercounts(seebelow).
Theageofeachleaffromitsemergencewasthencomputedas:agephyllochron3leafrankfromthetop1timedelaysincefirstpictureallowingustogathertheserialleafranksinasinglereconstructedtimeseries.
Thisswitchfromaspatialpatterntoatemporaltimecoursewaspossiblebecausesuccessiveleavesdisplayedsimilarfeatures(GrootandMeicenheimer,2000)duringthis10-hphotoperiod,whichpostponedtheinuenceofower-ing.
TheleftpanelofSupplementalFigureS2Ashowsthedynamicsofleafemergenceforwell-wateredCol-0,andthedoublearrowshowstheperiodoftheexperiment.
TherightpanelofSupplementalFigureS2Ashowstheassociatedphyllochron(inverseofleafemergencerate)anditsstabilityduringtheperiodcorrespondingtotheemergenceoftheoldestdigitalizedleafuntilthedayofmeasurement(doublearrow).
SupplementalFigureS2Bshowsforwell-wateredCol-0andpgmthemeasuredareaforareconstructedleafagainstthelogisticalttingusingthedataobtainedfromasingleleaffollowedduringseveraldays.
R2valueswerehighandequivalentbetweenthereconstructedandthesingleleaf(0.
905against0.
935and0.
917against0.
896forCol-0andpgm,respectively).
Then,afterdiscretizationtoprovideaday/nightrepre-sentationofthedata,second-degreepolynomialswereindependentlyttedtothedayRERandtothenightRER(Fig.
1,inset;SupplementalFig.
S1,step6),therebysmoothingkineticsandallowingfurtherstatisticalanalyses.
Thegrowthpatternsweredrawnfromemergencetohalfexpansionoftheleaf(t50)beforegrowthsloweddown,involvingotherprocessesthantheonesanalyzedhere.
t50wasdeterminedforeachgenotype3environmentcombinationafterttingalogisticalfunction(Aguirrezabaletal.
,2006)onthenightdataset,asexempliedinstep3ofSupplementalFigureS1.
Weprovedthatunderwell-wateredconditions,theexpansionpatternofthereconstructedleafwasverysimilartothatobtainedifonesingleleafwasfollowedover9d(SupplementalFig.
S2C).
TherewasatendencyforthesingleleaftodisplayasmallerRERintheearlystages,maybeduetoawhole-planteffect(seethedifferencebetweentherstandlastimagesinbothanalyses),buttheday/nightdifferenceswerealmostconservedandbothtreatmentsclusteredcloselytogetherwhenthesingleleafwasintroducedinthehierarchicalanalysis(SupplementalFig.
S2D,thicklines).
Usingthisframework,wewereabletoobservehighlyreproduc-ibleuctuationsofexpansionratesduringleafdevelopmentinseveralreplicatedexperiments(SupplementalFig.
S1E).
PhysiologicalMeasurementsWecharacterizedmutantsorenvironmentsbyprovidinghydraulicormetabolicmarkersmeasuredonfullyexpandedleavesoronthewholeplant.
Stomatalconductancewascalculatedasthesumoftheconductancesmea-suredonbothsidesofafullyexpandedleafon10replicatesusingadiffusionporometer(AP4;D-TDevices).
ThenetCO2assimilationratewasmeasuredwithawholeplantchamberdesignedforArabidopsisandconnectedtoagasanalyzer(CIRAS-2;PPSystems)onfourtosixindividualplants.
SLAwasmeasuredasdescribedbyHummeletal.
(2010)onfourwholerosettes.
Starchandsolublesugar(asthesumofGlc,Fru,andSuc)contentswereanalyzedbyenzymaticassayasdescribedbyHummeletal.
(2010)usingmaterialharvestedattheendsofdayandnight,eitheronfullyexpandedleavesoffourindividualplants(Fig.
3)oronpoolsofabout50leavesaged1or8dthatwerereplicatedthreetimesindependentlyandatleasttwicetechnically(Fig.
5).
Leafturgorwasdeterminedonleavesaged1or8dattheendsofdayandPantinetal.
812PlantPhysiol.
Vol.
156,2011https://plantphysiol.
orgDownloadedonDecember24,2020.
-PublishedbyCopyright(c)2020AmericanSocietyofPlantBiologists.
Allrightsreserved.
nightasthedifferencebetweenwaterandosmoticpotential.
Forwaterpotentialmeasurements,leaveswereharvestedandimmediatelyinsertedinasealedchambercarryingathermocouple(C-52;Wescor)connectedtoawetbulbdepressionpsychrometer(Psypro;Wescor).
Afoliardiscwaspunchedforthe8-d-oldleaves,whichwerelargerthanthe7-mmdiametersampleholder.
Atleast25replicateswereperformed.
Forosmoticpotential,apoolofleaveswasharvestedinliquidnitrogenandstoredat260°C.
Sampleswerethentransferredinto0.
8-mmlters(NucleoSpinlters;Macherey-Nagel)insertedinacollectiontubeandcentrifugedat4°C.
Samplesof10mLoftheresultingsap(n=8fortheearlystageandn=48forthelaterstage)wereanalyzedusingavaporpressureosmometer(Vapro5520;Wescor).
StatisticalAnalysesAllgraphicsandstatisticalanalyseswereperformedwiththeRsoftware(RDevelopmentCoreTeam,2008).
MeancomparisonswereperformedwiththeLSDtestadjustedusingtheBonferronimethodorwiththeKruskal-Wallistestwhenheteroscedasticitywasdetected.
Fortheheatmap,thetimeaxisofallkineticswasnormalizedaccordingtotheirt50.
Then,asecond-degreepolynomialwasttedindependentlytothedayandnightRERs,andtheirdifferencewascomputedfor100successiveiterationsbetweent0(emergence)andt50toprovideacontinuousvisualizationofthedifferencedynamics.
These100variableswereusedforthehierarchicalclusteringofthekinetics,whichwasperformedwiththeEuclideandistances.
Condenceintervalsofthepolynomialregressionswerecalculatedatthe0.
5,0.
9,0.
95,0.
99,0.
999,and0.
9999condencelevelsforeachiteration.
ThelevelfromwhichdaycondenceintervalandnightcondenceintervaloverlappedsetthesignicanceofthedifferencebetweendayandnightRER.
Asturgorwasdeterminedusingtwovariablesmeasuredonindependentsamples,anonparametricstratiedbootstrapwasperformedtoobtainthemeanandSEofthecomputedvariable.
Thenonparametricapproximatebootstrapcondenceintervalswerethencalculatedatthe0.
9,0.
95,0.
99,and0.
999condencelevelstoevaluatethesignicanceofthedifferencebetweendayandnightateachinvestigatedstage.
SupplementalDataThefollowingmaterialsareavailableintheonlineversionofthisarticle.
SupplementalFigureS1.
ProcessfromplantimagestoRERpatterns.
SupplementalFigureS2.
Validationoftheleafreconstructionmethod.
SupplementalFigureS3.
Takinghyponastyintoaccount.
SupplementalFigureS4.
Effectofaseveremetabolicandhydraulicconstraintincombination.
SupplementalFigureS5.
Heatmapoftheexpansionpatternsfortherstthirdofthekinetics.
SupplementalMaterialsandMethodsS1.
Fromleafranktoleafage:usesandprinciples.
ACKNOWLEDGMENTSWethankSamuelZeemanandAnnieMarion-PollforsupplyingseedsofstarchandABAmutants,respectively.
WearegratefultoNathalieWuytsfordevelopingtheImageJprogramtoassistleafareaextraction.
Finally,weacknowledgeChristopheMaurelandtwoanonymousreviewersfortheirsuggestionstoimprovethemanuscript.
ReceivedMarch12,2011;acceptedApril4,2011;publishedApril6,2011.
LITERATURECITEDAcevedoE,HsiaoTC,HendersonDW(1971)Immediateandsubsequentgrowthresponsesofmaizeleavestochangesinwaterstatus.
PlantPhysiol48:631–636AcheP,BauerH,KollistH,Al-RasheidKAS,LautnerS,HartungW,HedrichR(2010)Stomatalactiondirectlyfeedsbackonleafturgor:newinsightsintotheregulationoftheplantwaterstatusfromnon-invasivepressureprobemeasurements.
PlantJ62:1072–1082AguirrezabalLAN,Bouchier-CombaudS,RadziejwoskiA,DauzatM,CooksonSJ,GranierC(2006)PlasticitytosoilwaterdecitinArabi-dopsisthaliana:dissectionofleafdevelopmentintounderlyinggrowthdynamicandcellularvariablesrevealsinvisiblephenotypes.
PlantCellEnviron29:2216–2227AguirrezabalLAN,DeleensE,TardieuF(1994)RootelongationrateisaccountedforbyinterceptedPPFDandsource-sinkrelationsineldandlaboratory-grownsunower.
PlantCellEnviron17:443–450Ben-Haj-SalahH,TardieuF(1996)Quantitativeanalysisofthecombinedeffectsoftemperature,evaporativedemandandlightonleafelongationrateinwell-wateredeldandlaboratory-grownmaizeplants.
JExpBot47:1689–1698Ben-Haj-SalahH,TardieuF(1997)Controlofleafexpansionrateofdroughtedmaizeplantsundeructuatingevaporativedemand:asuperpositionofhydraulicandchemicalmessagesPlantPhysiol114:893–900BergmannDC,SackFD(2007)Stomataldevelopment.
AnnuRevPlantBiol58:163–181Bla¨singOE,GibonY,Gu¨ntherM,Ho¨hneM,MorcuendeR,OsunaD,ThimmO,UsadelB,ScheibleW-R,StittM(2005)SugarsandcircadianregulationmakemajorcontributionstotheglobalregulationofdiurnalgeneexpressioninArabidopsis.
PlantCell17:3257–3281BoardmanNK(1977)Comparativephotosynthesisofsunandshadeplants.
AnnuRevPlantPhysiol28:355–377BouchabkeO,TardieuF,SimonneauT(2006)Leafgrowthandturgoringrowingcellsofmaize(ZeamaysL.
)respondtoevaporativedemandundermoderateirrigationbutnotinwater-saturatedsoil.
PlantCellEnviron29:1138–1148BoyerJS(1968)Relationshipofwaterpotentialtogrowthofleaves.
PlantPhysiol43:1056–1062BoyerJS(1988)Cellenlargementandgrowth-inducedwaterpotentials.
PhysiolPlant73:311–316BrodribbTJ,FeildTS,JordanGJ(2007)Leafmaximumphotosyntheticrateandvenationarelinkedbyhydraulics.
PlantPhysiol144:1890–1898BrouquisseR,JamesF,RaymondP,PradetA(1991)Studyofglucosestarvationinexcisedmaizeroottips.
PlantPhysiol96:619–626CasparT,HuberSC,SomervilleC(1985)Alterationsingrowth,photo-synthesis,andrespirationinastarchlessmutantofArabidopsisthaliana(L.
)decientinchloroplastphosphoglucomutaseactivity.
PlantPhysiol79:11–17CasparT,LinTP,KakefudaG,BenbowL,PreissJ,SomervilleC(1991)MutantsofArabidopsiswithalteredregulationofstarchdegradation.
PlantPhysiol95:1181–1188ChattertonNJ,SilviusJE(1981)Photosynthatepartitioningintostarchinsoybeanleaves.
II.
Irradiancelevelanddailyphotosyntheticperioddurationeffects.
PlantPhysiol67:257–260ChiaT,ThorneycroftD,ChappleA,MesserliG,ChenJ,ZeemanSC,SmithSM,SmithAM(2004)AcytosolicglucosyltransferaseisrequiredforconversionofstarchtosucroseinArabidopsisleavesatnight.
PlantJ37:853–863ChristRA(1978)Theelongationrateofwheatleaves.
II.
Effectofsuddenlightchangeontheelongationrate.
JExpBot29:611–618ChristopheA,LetortV,HummelI,Courne`deP-H,deReffyeP,LecoeurJ(2008)Amodel-basedanalysisofthedynamicsofcarbonbalanceatthewhole-plantlevelinArabidopsisthaliana.
FunctPlantBiol35:1147–1162Clifton-BrownJC,JonesMB(1999)Alterationoftranspirationrate,bychangingairvapourpressuredecit,inuencesleafextensionratetransientlyinMiscanthus.
JExpBot50:1393–1401CochardH,NardiniA,CollL(2004)Hydraulicarchitectureofleafblades:whereisthemainresistancePlantCellEnviron27:1257–1267CooksonSJ,GranierC(2006)Adynamicanalysisoftheshade-inducedplasticityinArabidopsisthalianarosetteleafdevelopmentrevealsnewcomponentsoftheshade-adaptativeresponse.
AnnBot(Lond)97:443–452CutlerJM,SteponkusPL,WachMJ,ShahanKW(1980)Dynamicaspectsandenhancementofleafelongationinrice.
PlantPhysiol66:147–152DaleJE(1985)Thecarbonrelationsofthedevelopingleaf.
InNRBaker,WJDavies,CKOng,eds,ControlofLeafGrowth.
CambridgeUniversityPress,NewYork,pp239–266DaleJE(1988)Thecontrolofleafexpansion.
AnnuRevPlantPhysiolPlantMolBiol39:267–295DoddAN,SalathiaN,HallA,KeveiE,TothR,NagyF,HibberdJM,ControlofLeafExpansion:FromCarbontoWaterPlantPhysiol.
Vol.
156,2011813https://plantphysiol.
orgDownloadedonDecember24,2020.
-PublishedbyCopyright(c)2020AmericanSocietyofPlantBiologists.
Allrightsreserved.
MillarAJ,WebbAAR(2005)Plantcircadianclocksincreasephoto-synthesis,growth,survival,andcompetitiveadvantage.
Science309:630–633DosioGAA,TardieuF,TurcO(2011)Floretinitiation,tissueexpansionandcarbonavailabilityatthemeristemofthesunowercapitulumasaffectedbywaterorlightdecits.
NewPhytol189:94–105DurandJL,OnillonB,SchnyderH,RademacherI(1995)Droughteffectsoncellularandspatialparametersofleafgrowthintallfescue.
JExpBot46:1147–1157EhlertC,MaurelC,TardieuF,SimonneauT(2009)Aquaporin-mediatedreductioninmaizeroothydraulicconductivityimpactscellturgorandleafelongationevenwithoutchangingtranspiration.
PlantPhysiol150:1093–1104FichtnerK,QuickWP,SchulzeED,MooneyHA,RodermelSR,BogoradL,StittM(1993)Decreasedribulose-1,5-bisphosphatecarboxylase-oxygenaseintransgenictobaccotransformedwith"antisense"rbcS.
V.
Relationshipbetweenphotosyntheticrate,storagestrategy,biomassallocationandvegetativeplantgrowthatthreedifferentnitrogensupplies.
Planta190:1–9FreixesS,ThibaudMC,TardieuF,MullerB(2002)RootelongationandbranchingisrelatedtolocalhexoseconcentrationinArabidopsisthalianaseedlings.
PlantCellEnviron25:1357–1366GibonY,Bla¨singOE,Palacios-RojasN,PankovicD,HendriksJHM,FisahnJ,Ho¨hneM,Gu¨ntherM,StittM(2004)Adjustmentofdiurnalstarchturnovertoshortdays:depletionofsugarduringthenightleadstoatemporaryinhibitionofcarbohydrateutilization,accumulationofsugarsandpost-translationalactivationofADP-glucosepyrophosphor-ylaseinthefollowinglightperiod.
PlantJ39:847–862GibonY,PylE-T,SulpiceR,LunnJE,Ho¨hneM,Gu¨ntherM,StittM(2009)Adjustmentofgrowth,starchturnover,proteincontentandcentralmetabolismtoadecreaseofthecarbonsupplywhenArabi-dopsisisgrowninveryshortphotoperiods.
PlantCellEnviron32:859–874GrafA,SchlerethA,StittM,SmithAM(2010)CircadiancontrolofcarbohydrateavailabilityforgrowthinArabidopsisplantsatnight.
ProcNatlAcadSciUSA107:9458–9463GranierC,AguirrezabalL,ChenuK,CooksonSJ,DauzatM,HamardP,ThiouxJ-J,RollandG,Bouchier-CombaudS,LebaudyA,etal(2006)PHENOPSIS,anautomatedplatformforreproduciblephenotypingofplantresponsestosoilwaterdecitinArabidopsisthalianapermittedtheidenticationofanaccessionwithlowsensitivitytosoilwaterdecit.
NewPhytol169:623–635GranierC,MassonnetC,TurcO,MullerB,ChenuK,TardieuF(2002)IndividualleafdevelopmentinArabidopsisthaliana:astablethermal-time-basedprogramme.
AnnBot(Lond)89:595–604GranierC,TardieuF(1999)Leafexpansionandcelldivisionareaffectedbyreducingabsorbedlightbeforebutnotafterthedeclineincelldivisionrateinthesunowerleaf.
PlantCellEnviron22:1365–1376GrimmerC,KomorE(1999)AssimilateexportbyleavesofRicinuscommunisL.
growingundernormalandelevatedcarbondioxideconcentrations:thesamerateduringtheday,adifferentrateatnight.
Planta209:275–281GrootEP,MeicenheimerRD(2000)Short-day-grownArabidopsisthalianasatisestheassumptionsoftheplastochronindexasatimevariableindevelopment.
IntJPlantSci161:749–756HachezC,HeinenRB,DrayeX,ChaumontF(2008)Theexpressionpatternofplasmamembraneaquaporinsinmaizeleafhighlightstheirroleinhydraulicregulation.
PlantMolBiol68:337–353HarmerSL,HogeneschJB,StraumeM,ChangHS,HanB,ZhuT,WangX,KrepsJA,KaySA(2000)OrchestratedtranscriptionofkeypathwaysinArabidopsisbythecircadianclock.
Science290:2110–2113HenzlerT,WaterhouseRN,SmythAJ,CarvajalM,CookeDT,Scha¨ffnerAR,SteudleE,ClarksonDT(1999)DiurnalvariationsinhydraulicconductivityandrootpressurecanbecorrelatedwiththeexpressionofputativeaquaporinsintherootsofLotusjaponicus.
Planta210:50–60HsiaoTC(1973)Plantresponsestowaterstress.
AnnuRevPlantPhysiol24:519–570HummelI,PantinF,SulpiceR,PiquesMC,RollandG,DauzatM,ChristopheA,PerventM,BouteilleM,StittM,etal(2010)Arabidopsisplantsacclimatetowaterdecitatlowcostthroughchangesofcarbonusage:anintegratedperspectiveusinggrowth,metabolite,enzyme,andgeneexpressionanalysis.
PlantPhysiol154:357–372JordanWR,BrownKW,ThomasJC(1975)Leafageasadeterminantinstomatalcontrolofwaterlossfromcottonduringwaterstress.
PlantPhysiol56:595–599KehrJ,HustiakF,WalzC,WillmitzerL,FisahnJ(1998)Transgenicplantschangedincarbonallocationpatterndisplayashiftindiurnalgrowthpattern.
PlantJ16:497–503KerstiensG(2006)Watertransportinplantcuticles:anupdate.
JExpBot57:2493–2499LacointeA,MinchinPEH(2008)Modellingphloemandxylemtransportwithinacomplexarchitecture.
FunctPlantBiol35:772–780LefebvreV,NorthH,FreyA,SottaB,SeoM,OkamotoM,NambaraE,Marion-PollA(2006)FunctionalanalysisofArabidopsisNCED6andNCED9genesindicatesthatABAsynthesizedintheendospermisinvolvedintheinductionofseeddormancy.
PlantJ45:309–319LiP,PonnalaL,GandotraN,WangL,SiY,TaustaSL,KebromTH,ProvartN,PatelR,MyersCR,etal(2010)Thedevelopmentaldynamicsofthemaizeleaftranscriptome.
NatGenet42:1060–1067LockhartJA(1965)Ananalysisofirreversibleplantcellelongation.
JTheorBiol8:264–275LuY,SharkeyTD(2004)Theroleofamylomaltaseinmaltosemetabolisminthecytosolofphotosyntheticcells.
Planta218:466–473MartreP,CochardH,DurandJL(2001)Hydraulicarchitectureandwaterowingrowinggrasstillers(FestucaarundinaceaSchreb.
).
PlantCellEnviron24:65–76MartreP,DurandJL(2001)QuantitativeanalysisofvasculatureintheleavesofFestucaarundinacea(Poaceae):implicationsforaxialwatertransport.
IntJPlantSci162:755–766MartreP,DurandJL,CochardH(2000)Changesinaxialhydraulicconductivityalongelongatingleafbladesinrelationtoxylemmatura-tionintallfescue.
NewPhytol146:235–247MinchinPEH,ThorpeMR,FarrarJF(1993)Asimplemechanisticmodelofphloemtransportwhichexplainssinkpriority.
JExpBot44:947–955MonteithJL(1977)ClimateandtheefciencyofcropproductioninBritain.
PhilosTransRSocB281:277–294MullerB,PantinF,GenardM,TurcO,FreixesS,PiquesMC,GibonY(2011)Waterdecitsuncouplegrowthfromphotosynthesis,increaseCcontent,andmodifytherelationshipsbetweenCandgrowthinsinkorgans.
JExpBot62:1715–1729MullerB,ReymondM,TardieuF(2001)Theelongationrateatthebaseofamaizeleafshowsaninvariantpatternduringboththesteady-stateelongationandtheestablishmentoftheelongationzone.
JExpBot52:1259–1268NardiniA,RaimondoF,LoGulloMA,SalleoS(2010)Leafminershelpusunderstandleafhydraulicdesign.
PlantCellEnviron33:1091–1100NardiniA,SalleoS,AndriS(2005)Circadianregulationofleafhydraulicconductanceinsunower(HelianthusannuusL.
cvMargot).
PlantCellEnviron28:750–759Niittyla¨T,MesserliG,TrevisanM,ChenJ,SmithAM,ZeemanSC(2004)Apreviouslyunknownmaltosetransporteressentialforstarchdegra-dationinleaves.
Science303:87–89NorthHM,DeAlmeidaA,BoutinJP,FreyA,ToA,BotranL,SottaB,Marion-PollA(2007)TheArabidopsisABA-decientmutantaba4demonstratesthatthemajorrouteforstress-inducedABAaccumulationisvianeoxanthinisomers.
PlantJ50:810–824PigliucciM,KolodynskaA(2002)PhenotypicplasticitytolightintensityinArabidopsisthaliana:invarianceofreactionnormsandphenotypicintegration.
EvolEcol16:27–47PiquesM,SchulzeWX,Ho¨hneM,UsadelB,GibonY,RohwerJ,StittM(2009)Ribosomeandtranscriptcopynumbers,polysomeoccupancyandenzymedynamicsinArabidopsis.
MolSystBiol5:314PoireR,SchneiderH,ThorpeMR,KuhnAJ,SchurrU,WalterA(2010a)Rootcoolingstronglyaffectsdielleafgrowthdynamics,waterandcarbohydraterelationsinRicinuscommunis.
PlantCellEnviron33:408–417PoireR,Wiese-KlinkenbergA,ParentB,MielewczikM,SchurrU,TardieuF,WalterA(2010b)Dieltime-coursesofleafgrowthinmonocotanddicotspecies:endogenousrhythmsandtemperatureeffects.
JExpBot61:1751–1759PoorterH,NiinemetsU¨,PoorterL,WrightIJ,VillarR(2009)Causesandconsequencesofvariationinleafmassperarea(LMA):ameta-analysis.
NewPhytol182:565–588RDevelopmentCoreTeam(2008)R:ALanguageandEnvironmentforStatisticalComputing.
RFoundationforStatisticalComputing,Vienna.
http://www.
R-project.
orgPantinetal.
814PlantPhysiol.
Vol.
156,2011https://plantphysiol.
orgDownloadedonDecember24,2020.
-PublishedbyCopyright(c)2020AmericanSocietyofPlantBiologists.
Allrightsreserved.
RasbandWS(2009)ImageJ.
U.
S.
NationalInstitutesofHealth,Bethesda,MD.
http://rsb.
info.
nih.
gov/ij/RasseDP,TocquinP(2006)LeafcarbohydratecontrolsoverArabidopsisgrowthandresponsetoelevatedCO2:anexperimentallybasedmodel.
NewPhytol172:500–513RichardsonA,WojciechowskiT,FrankeR,SchreiberL,KerstiensG,JarvisM,FrickeW(2007)Cuticularpermeanceinrelationtowaxandcutindevelopmentalongthegrowingbarley(Hordeumvulgare)leaf.
Planta225:1471–1481RitteG,LloydJR,EckermannN,RottmannA,KossmannJ,SteupM(2002)Thestarch-relatedR1proteinisanalpha-glucan,waterdikinase.
ProcNatlAcadSciUSA99:7166–7171Rolland-LaganAG,AminM,PakulskaM(2009)Quantifyingleafvena-tionpatterns:two-dimensionalmaps.
PlantJ57:195–205RozemaJ,ArpW,DiggelenJ,KokE,LetschertJ(1987)Anecophysiolog-icalcomparisonofmeasurementsofthediurnalrhythmoftheleafelongationandchangesoftheleafthicknessofsalt-resistantDicoty-ledonaeandMonocotyledonae.
JExpBot38:442–453SchnyderH,NelsonCJ(1988)Diurnalgrowthoftallfescueleafblades.
I.
Spatialdistributionofgrowth,depositionofwater,andassimilateimportintheelongationzone.
PlantPhysiol86:1070–1076SchurrU,HeckenbergerU,HerdelK,WalterA,FeilR(2000)LeafdevelopmentinRicinuscommunisduringdroughtstress:dynamicsofgrowthprocesses,ofcellularstructureandofsink-sourcetransition.
JExpBot51:1515–1529SmithAM,StittM(2007)Coordinationofcarbonsupplyandplantgrowth.
PlantCellEnviron30:1126–1149StittM,GibonY,LunnJE,PiquesM(2007)Multilevelgenomicsanalysisofcarbonsignallingduringlowcarbonavailability:coordinatingthesupplyandutilisationofcarboninauctuatingenvironment.
FunctPlantBiol34:526–549SulpiceR,PylE-T,IshiharaH,TrenkampS,SteinfathM,Witucka-WallH,GibonY,UsadelB,PoreeF,PiquesMC,etal(2009)Starchasamajorintegratorintheregulationofplantgrowth.
ProcNatlAcadSciUSA106:10348–10353TakaseT,IshikawaH,MurakamiH,KikuchiJ,Sato-NaraK,SuzukiH(2011)ThecircadianclockmodulateswaterdynamicsandaquaporinexpressioninArabidopsisroots.
PlantCellPhysiol52:373–383TangAC,BoyerJS(2002)Growth-inducedwaterpotentialsandthegrowthofmaizeleaves.
JExpBot53:489–503TangAC,BoyerJS(2008)Xylemtensionaffectsgrowth-inducedwaterpotentialanddailyelongationofmaizeleaves.
JExpBot59:753–764TardieuF,GranierC,MullerB(1999)Modellingleafexpansioninauctuatingenvironment:arechangesinspecicleafareaaconsequenceofchangesinexpansionrateNewPhytol143:33–43TardieuF,ParentB,SimonneauT(2010)Controlofleafgrowthbyabscisicacid:hydraulicornon-hydraulicprocessesPlantCellEnviron33:636–647TardieuF,ReymondM,HamardP,GranierC,MullerB(2000)Spatialdistributionsofexpansionrate,celldivisionrateandcellsizeinmaizeleaves:asynthesisoftheeffectsofsoilwaterstatus,evaporativede-mandandtemperature.
JExpBot51:1505–1514TardieuF,TuberosaR(2010)Dissectionandmodellingofabioticstresstoleranceinplants.
CurrOpinPlantBiol13:206–212TurgeonR(1989)Thesink-sourcetransitioninleaves.
AnnuRevPlantPhysiolPlantMolBiol40:119–138vandenHonertTH(1948)Watertransportinplantsasacatenaryprocess.
DiscussFaradaySoc3:146–153WalterA,SchurrU(2005)Dynamicsofleafandrootgrowth:endogenouscontrolversusenvironmentalimpact.
AnnBot(Lond)95:891–900WalterA,SilkWK,SchurrU(2009)Environmentaleffectsonspatialandtemporalpatternsofleafandrootgrowth.
AnnuRevPlantBiol60:279–304WieseA,ChristMM,VirnichO,SchurrU,WalterA(2007)Spatio-temporalleafgrowthpatternsofArabidopsisthalianaandevidenceforsugarcontrolofthedielleafgrowthcycle.
NewPhytol174:752–761YazdanbakhshN,FisahnJ(2010)AnalysisofArabidopsisthalianarootgrowthkineticswithhightemporalandspatialresolution.
AnnBot(Lond)105:783–791ControlofLeafExpansion:FromCarbontoWaterPlantPhysiol.
Vol.
156,2011815https://plantphysiol.
orgDownloadedonDecember24,2020.
-PublishedbyCopyright(c)2020AmericanSocietyofPlantBiologists.
Allrightsreserved.

优林云(53元)哈尔滨电信2核2G

优林怎么样?优林好不好?优林 是一家国人VPS主机商,成立于2016年,主营国内外服务器产品。云服务器基于hyper-v和kvm虚拟架构,国内速度还不错。今天优林给我们带来促销的是国内东北地区哈尔滨云服务器!全部是独享带宽!首月5折 续费5折续费!地区CPU内存硬盘带宽价格购买哈尔滨电信2核2G50G1M53元直达链接哈尔滨电信4核4G50G1M83元直达链接哈尔滨电信8核8G50G1M131元直...

UCloud:全球大促降价,云服务器全网最低价,1核1G快杰云服务器47元/年

ucloud:全球大促活动降价了!这次云服务器全网最低价,也算是让利用户了,UCloud商家调低了之前的促销活动价格,并且新增了1核1G内存配置快杰型云服务器,价格是47元/年(也可选2元首月),这是全网同配置最便宜的云服务器了!UCloud全球大促活动促销机型有快杰型云服务器和通用型云服务器,促销机房国内海外都有,覆盖全球20个城市,具体有北京、上海、广州、香港、 台北、日本东京、越南胡志明市、...

棉花云1折起(49元), 国内BGP 美国 香港 日本

棉花云官网棉花云隶属于江西乐网科技有限公司,前身是2014年就运营的2014IDC,专注海外线路已有7年有余,是国内较早从事海外专线的互联网基础服务提供商。公司专注为用户提供低价高性能云计算产品,致力于云计算应用的易用性开发,并引导云计算在国内普及。目前公司研发以及运营云服务基础设施服务平台(IaaS),面向全球客户提供基于云计算的IT解决方案与客户服务(SaaS),拥有丰富的国内BGP、双线高防...

kosskeb4为你推荐
域名注册商如何成为一个域名注册商呀虚拟主机价格个人虚拟主机选择多大的价格多少的合适?美国虚拟空间美国虚拟主机无限空间是什么意思?vps汽车的VPS是什么,和GPS有什么区别中文域名注册查询如何注册中文域名?请问个人怎样注册中文域名。cn的,个人注册别人公司的可以吗?违法吗?或者怎样才能注册免费虚拟主机申请求免费可以申请的域名和虚拟主机域名购买域名购买的流程是什么?100m网站空间100M网站空间可以存多少张图片和多少文字?免费网站空间申请需要一个免费的网站空间申请地址。虚拟主机评测网哪里有可靠的免费虚拟主机
域名抢注工具 企业主机 精品网 老左博客 seovip 创宇云 阿里云代金券 全能主机 个人免费空间 电子邮件服务器 帽子云 柚子舍官网 adroit web服务器安全 百度云加速 vul 国外网页代理 建站技术 西部数码主机 studentmain 更多