denedsolved

solved  时间:2021-01-17  阅读:()
PlanetaryMagnetospheres:SolvedProblemsandProblemSet1SolvedProblems1.
Inclassicalelectromagnetictheory,themagneticmomentLassociatedwithacircularcurrent'loop'ofradiusRwhichcarriesacurrentIisgivenbytheproductofcurrentandlooparea:L=IπR2.
ApplythisdenitiontothecurrentcarriedbyaparticleofchargeqandmassmgyratinginasingleplaneaboutamagneticeldofstrengthB.
Theparticlethusmovesonacircularorbitwithspeedv⊥andradiusrg=mv⊥/(qB).
Showthatthemagneticmomentassociatedwiththecurrentrepresentedbytheparticle'smotionisequaltotherstadiabaticinvariantdiscussedinlectures,i.
e.
=W⊥/B,theratioofgyrationalkineticenergytoeldstrength.
SolutionCurrentischargeperunittimewhichpassesaxedpoint.
Fortheparticle,thismaybewrittenI=q/T,whereTisthegyroperiod,i.
e.
I=q2B/(2πm).
TheareaoftheorbitalcircleisA=πr2g=πm2v2⊥/(q2B2).
HenceIA=12mv2⊥/B=W⊥/B.
2.
Foranidealcollisionlessplasmaofbulkvelocityu,Ohm'sLawreducestoE=u*B,whereEistheconvectiveelectriceld.
ShowthatthevelocitycomponentperpendiculartoBisgivenbyu⊥=E*B/B2.
SolutionUsingthegivendenitionofE,wemaywriteE*B/B2=(u*B)*B/B2.
Now,(u*B)*B/B2=(B2u(B·u)B)/B2.
Ifwedeneaunitvectorb=B/B,wehaveE*B/B2=u(b·u)b=uu||=u⊥.
3.
FollowingonfromQuestion2,ageneralplasmaowuissometimesdescribedbyitscorrespondingpatternofconvectiveelectriceldE.
IfEcanbedescribedasthegradientofascalarpotentialthroughE=φE,thenwehaveu⊥=φE*B/B2.
Assumeforsimplicitythatu||=0.
Considerplasmamotionina'magnetosphericequatorial'planewhichcontainstheEarth-Sunlineandisper-pendiculartotheEarth'smagneticdipoleaxis.
Explainwhythe'streamlines'oftheplasmaowinthisplane(curveswhichhavealocaltangentvectorparalleltou)arealsocurvesofconstantφE(i.
e.
equipotentialcurves).
Inthisequatorialplane,wemaywriteφEasthesumoftwoterms:φE=φCR+φCONV.
Thersttermisthecorotationpotentialanddominatesclosetotheplanet.
Itisgivenby:φCR=EBER3E/r,whereEistheEarth'sangularvelocityofrotation,BEistheequatorialeldstrengthattheEarth'ssurface,REistheEarth'sradiusandrisradialdistancefromtheplanet'scentre.
Thesecondtermistheconvectionpotentialanddescribessunwardows(associatedwithmagnetotailreconnec-tion)whichcarryplasmafromthemagnetotailtowardsthedayside:φCONV=Eoy,1whereEoistheconvectionelectriceld(assumedconstant)andyistheCartesiancoordinatemeasuredalonganaxis(lyingintheequatorialplane)whichpassesthroughtheEarth'scentre(theorigin)andisperpendiculartotheupstreamsolarwinddirection(solarwindowsalongthenegativexdirection).
yispositivetowardsdusk.
Thereisa'stagnation'pointintheow,lyingonthepositiveyaxis,whoselocationmaybeestimatedasthepointwherethemagnitudesofthetwopotentialtermsareequal.
Showthattheradialdistanceofthestagnationpointisgiven(inunitsofEarthradii)by:rsp/RE=(EBERE/EO)1/2UsingreasonablevaluesfortheEarthparameters,andavalueEO=1mV/m,calculatersp/REfortheEarth'smagnetosphere.
HowdoesvariabilityinEOaffectthisdistanceForJupiter,theplanet'sverystrongeld,sizeandrotationratecausersptolieoutsidetheactualmagnetosphere-whatisthephysicalmeaningofthisresultSolutionSettingthemagnitudesofφCONVandφCRtobeequal,andusingthefactthattheradialdistancerisequaltoyforapointonthepositiveyaxis,weobtain:EBER3E/r=EOr→(r/RE)=EBERE/EOUsingtheEOvaluegiven(andtransformingtoMKSunits),arotationperiodof24hoursfortheEarth,aradiusof6370kmfortheEarth,andBE=3*105T,weobtain:(rsp/RE)=EBERE/EO=(2π/(24*3600))*3*105*6730*103/103=3.
83AnincreaseinEOrepresentsastrongerowassociatedwiththeDungeycycle,andaconsequentlysmallerstagnationdistance,whichapproximatelyrepresentsthetransitiondistancefromsunwardowintheoutermag-netospheretocorotationalowintheplasmasphere.
Jupiter'sstagnationpointlyingoutsideitsmagnetospheremeansthatthedaysideequatorialmagnetosphereofJupiterisdominatedbyrotationalows(morecorrectly,(sub)corotationalwithrespecttotheplanet-seethelecturenotes).
4.
ThemagneticeldstrengthBduetotheEarth'sdipoleeldmaybeexpressedas:B=(BER3E/r3)(3cos2θ+1)1/2,(1)whereBEistheequatorialeldstrengthattheEarth'ssurface,REistheEarth'sradiusandrisradialdistancefromtheplanet'scentre.
θdenotesmagneticcolatitude(themagneticequatorisdenedbyθ=π/2).
ThefollowingformulaisforthepitchangleαcassociatedwiththelossconeatapointPwheretheeldstrengthisBP:sin2αc=BP/BS,(2)whereBSisthemagneticeldatthesurfaceoftheplanetwhichismagneticallyconnectedtothepointPalongthesameeldline.
Calculatethevalueαcasafunctionofdistanceforlocationsinthemagneticequatorialplane,usingthedipoleapproximation.
Youmayndthefollowingformulafortheshapeofadipolemagneticeldlineuseful:r=LREsin2θ,(3)whereLREistheequatorialcrossingdistanceoftheeldline.
2SolutionForanymagneticequatorialpointatdistanceLRE,adipoleeldlinepassingthroughthatpointwillintersecttheEarth'ssurfaceatacolatitudeθigivenby:RE=LREsin2θi→sinθi=1/L→cosθi=±(L1)/L(4)HencethemagneticeldmagnitudeBSisgivenby:BS=(BER3E/R3E)(3cos2θi+1)1/2=BE(3(11/L)+1)1/2.
(5)Wecanalsoevaluatethedipoleformulaatθ=π/2,r=LREtoobtainBP:BP=BE/L3.
(6)Itfollowsthat:sin2αc=BP/BS=L3(3(11/L)+1)1/2(7)Usingthisformulatoevaluatesin2αc,henceαc,asafunctionofL,weobtainthefollowingplot:5.
ThemagneticsignaturesofinterchangeobservedbyGalileoinJupiter'smagnetosphereindicatethattheinward-movinguxtubeshavemagneticeldstrengthstypicallyhigherthanthesurroundingplasma.
Ifthetotal(plasmaplusmagnetic)pressureinsidetheuxtubeisequaltothatoftheambientplasmaoutside,showthatthesmallchangeineldstrengthδB(insideminusoutsideeld)isrelatedtoacorrespondingchangeinplasmapressureδpasfollows:δp/po=2(δB/Bo)(1/βo)(8)3wherethesubscript'o'indicatesquantitiesoutsidetheuxtube,andβ,asusual,equalstheratioofplasmapressuretomagneticpressure.
Usingthisformula,calculateδp/poforvalues:(i)Bo=1700nT,δB=10nT,βo=0.
05;and(ii)Bo=1700nT,δB=25nT,βo=0.
05.
SolutionThesumofthemagneticandplasmapressuresoutsidetheuxtubemaybewrittenasB2o/(2o)+po.
Ifthisquantityremainsconstantaswecrossintotheuxtube,wemayexpressthisbytakingazerodifferentialbetweeninsideandoutside,asfollows:d(B2/(2o)+p)=0≈2BoδB/(2o)+δp.
Rearranginganddividingbypo,weobtainδp/po≈Bo(δB/o)(1/po)=2(δB/Bo)(1/βo),since,bydenitionpo=βo(B2o/(2o)).
Usingthisapproximationandthevaluesgiven,weobtainvaluesofδp/poofabout(i)-0.
24and(ii)-0.
59.
6.
ConsiderthetypicalinformationforMercuryandtheEarthinthetablefromthelecturenoteswhichcomparesthemagnetopausestand-offdistancesofvariousplanets.
Assumingthatthedipolemagneticpressureoftheplanetbalancessolarwinddynamicpressureatthemagnetopausestandoffpoint,calculatetheratioofsolarwinddynamicpressuresjustupstreamofMercury'sandtheEarth'smagnetospheres.
SolutionThetableinquestionindicatesthatthedipolemagneticpressureatMercury'sdaysidemagnetopauseisapproxi-matelyproportionalto(ignoringdipoletilteffects)[MM/(1.
4RM)3]2(i.
e.
themagneticpressureisproportionaltothesquareoftheexpectedeldstrength).
HereMMisMercury'smagneticdipolemoment.
FortheEarth,thisquantitywillbe[ME/(10RE)3]2.
Takingtheratio,weobtain(MM/ME)2(106/1.
46)(RE/RM)6.
Usingreasonablevaluesoftheplanetaryradii,thisevaluatesto6.
7.
(N.
B.
IthinkthevalueofthemagneticmomentofMercuryshouldbemorelike4*104ME,basedonMessengerdata-notealsotheusualvariabilityexpectedinsolarwindparameters).
7.
ChapmanandFerraro(1930)developedamodelofaplasmacloudinteractingwiththeEarth'sdipolemagneticeld.
Thismodelmaybeappliedtoinvestigatethebehaviourofthemagneticeldgeneratedbythemagne-topausecurrents.
Inthispicture,theEarth'smagneticdipoleissituatedattheorigin(Earthcentre)andthedipoleaxisisorthogonaltotheupstreamsolarwinddirection.
Themagnetopauseisthenmodelledasaninniteconductingplane,perpendiculartotheupstreamsolarwindvelocity,andsituatedaperpendiculardistanceofRMPfromtheplanet'sdipoleaxis.
MagnetopausecurrentsowonthisplaneandgenerateanadditionaleldwithintheEarth'smagnetospherewhichisequivalenttothatofanidenticalmagneticdipole,knownasthe'im-agedipole',situatedoutsidethemagnetosphereatadistance2RMPfromtheEarth'scentrealongthedirectionanti-paralleltotheupstreamsolarwindvelocity.
WedenethexaxistopassthroughtheEarth'scentre(wherex=0)alongthisdirection.
Usingthismodel,calculateandmakeaplotoftheratioBTOT/BDIPasafunctionofdistancealongthexaxis,fromtheEarth'ssurfacetothemagnetopauseplane.
Here,BTOTisthetotalmagneticeldstrengthduetotheactualandimagedipolescombined,andBDIPistheeldstrengthduetotheplanetarydipolealone.
SolutionFortheplanetarydipolealone,theeldstrengthoutsidetheEarthandinsidethemagnetopause,alongthexaxis,isgivenbythefunctionBD(x)=(BER3E/|x|3)(usingthenomenclatureofQuestion4).
Nowwemayexpresstheeldoftheimagedipolesituatedatx=2RMPasthefunctionBD(x2RMP)=(BER3E/|x2RMP|3).
Addingthetwo,weobtain:BT(x)=BD(x)(1+|x|3/|x2RMP|3).
HenceBT(x)/BD(x)=(1+|x|3/|x2RMP|3),whichisalwaysgreaterthanunity.
Aplotofthisquantityversusx/REisgivenbelow,usingareasonablevalueRMP=10RE.
45ProblemSet1:'PlanetaryMagnetospheres'Section1.
Considertheinductionequationforanideal,collisionlessplasmathreadedbymagneticeldB,andhavingbulkowvelocityu:Bt=*(u*B)Consideracontinuous'patch'ofplasma(seeNotes)whichisdenedbyasurfaceS,boundedinspacebyacurveΓ.
Astheplasmamoves,ΓwillgenerallychangeshapeandtheareaofSwillgenerallychangevalue.
ConsideraninnitesimallysmallelementofthemovingcurveΓwhichisdenedbyavectorincrementdl.
Showthat,duringaninnitesimaltimestepdt,themotionofthiselementchangesthemagneticuxΦBthroughthepatchbyanamount:dΦB=B·((udt)*dl),whereBanduarethelocalvaluesofeldandvelocity.
Hence,showthattheconvective,orco-movingtimederivativeofthemagneticuxthroughthepatchmaybewritten:DΦBDt=t(ΦB)+ΓB·(u*dl),whereΦBisequaltothesurfaceintegralSB·dS.
MakinguseofanappropriateMaxwell'sequationandOhm'slawfortheplasma,demonstratethevalidityofthe'frozen-in'condition,i.
e.
DΦBDt=0.
2.
InSolvedProblem4,youwillndtheformulaforthemagneticeldstrengththeEarth'sdipoleeld,andtheequationdescribingtheshapeofadipolarmagneticeldline.
Thecorrespondingradialandmeridionaldipoleeldcomponentsaregivenby:Br=2BEcosθ/(r/RE)3Bθ=BEsinθ/(r/RE)3Usingthisinformationandappropriatephysicalconstants,calculatethegradientdriftvelocityug=W⊥qB3B*B(seeNotes)ofprotonswiththefollowingproperties,driftingintheEarth'smagnetosphere:(a)W⊥=1keVand10keV,r=8RE,θ=90(i.
e.
equatorial).
(b)W⊥=1keVand10keV,θ=60,choosersothatprotonisonsameeldlineasthoseinitem1above.
(c)W⊥=1keVand10keV,θ=30,choosersothatprotonisonsameeldlineasthoseinitems1and2above.
3.
InSolvedProblem7,ChapmanandFerraro's'inniteconductingplane'carriescurrentswhichamplifythemagneticeldneartheEarth'smagnetopausebyafactoroftwo.
Usethe'pressurebalance'argumentfromthelecturestocalculatethechangeintroducedinthestandoffdistanceRMPofactitiousplanet'smagnetopause,atxedsolarwinddynamicpressure,whentheeldisampliedinthisway(assumetwicethestrengthofapuredipoleeldatthemagnetopause).
Considernowaddinganinteriorplasmapressurenearthemagnetopauseofthisctitiousplanet,suchthattheplasmaβparameterthereattainsavalue5.
WhateffectdoesthishaveonRMP64.
Consideractitiousmagnetospherewhererotationaleffectsarenotimportant,andtheonlyforcesareduetotheplasmapressuregradientandthemagneticJ*Bforce.
Ifthesystemisinperfectforcebalance(i.
e.
thesumofthesetwoforcesatanypointisidenticallyzero),explainwhytheplasmapressurewillbeuniformallthewayalongamagneticeldlineNowconsideranidealizedmagnetospherewhererotationplaysanimportantroleinforcebalance,andthemagneticeldissymmetricabouttherotational/magneticequatorialplane.
Themagneticforce,centrifugalforceandplasmapressuregradientalwaysaddtozeroatanypointinthesystem(weneglectallotherforcesforsimplicity).
Byconsideringforcebalanceinthedirectionparalleltothepoloidalmagneticeld(zeroBφ),explainwhytheadditionofthecentrifugalforceontheplasmacausesplasmapressuretochangealongthemagneticeldline.
Demonstratewhytheproleoftheplasmapressurecanbedescribedbytheequation:P(ρ)=P0exp[(ρ2ρ20)/(2l2)],(9)whereρ=rsinθdenotescylindricalradialdistance,theeldlinecrossestheequatoratρ=ρ0,andthescalelengthl≈(2kT/miω2)1/2.
Assumptions:theplasmatemperatureTandangularvelocityωareconstantalongaeldline;theplasmaisquasi-neutral,behavesasanidealgas,andiscomposedofionsofmassmiandelectronsofmassme.
7Solutions1.
Theelementdlchangespositionbyudtinthetimestep.
Thecorrespondingsurfaceareacoveredbytheelementduringthismotionisthusaparallelogramhavingthesevectorsasedges,andmaythusbewrittendS=(udt)*dl-heretheusualconventionisfollowed,whereasurfaceelementisrepresentedbyavectorlyingorthogonaltoitself.
dΦB,bydenition,isthescalarproductofmagneticeldandsurfacevector,i.
e.
theuxofmagneticeldthroughthesurface.
TheintegralrepresentsthechangeinΦBduetothemotionofalloftheelementsdlwhichmakeupthemovingperimeterΓ.
Ingeneral,however,themagneticelditselfwillhaveanexplicittimedependence-i.
e.
anobserverataxedpointinspacewillseeBchangewithtime.
Duetothiseffect,thechangeinΦBcanbewrittendΦB=dtSBtdS.
Theco-movingderivativeis:dΦBdt+dΦBdt,whichis:ΓB·(u*dl)+SBtdS=Γdl·(B*u)+S*E·dS=Γdl·(B*u)+ΓE·dlwhereEdenotestheelectriceld,andwehaveused*E=BtUsingtheidealizedOhm'sLawE=u*B,weobtain:dΦBdt=Γ(B*u)·dl+Γ(u*B)·dl,whichiszero.
2.
IfIhaven'tmadeanyerrors,theevaluationofB*Bgives(helpfromMathematica!
):3B2ER6Esinθ(1+cos2θ)r7(1+3cos2θ)φToobtainug,wemultiplythisexpressionbyW⊥/(qB3)andobtain:(W⊥/q)3r2sinθ(1+cos2θ)BER3E(3cos2θ+1)2φ=(W⊥/q)3(LREsin2θ)2sinθ(1+cos2θ)BER3E(3cos2θ+1)2φ(10)Herewehaveeliminatedrusingthedipoleeldlineformula(L=8forthisproblem).
IfweuseappropriatevaluesRE=6370km,andBE=3*105T,weobtainthefollowingvaluesfortheenergyW⊥=1keV:|ug|≈1005m/s(θ=90),1.
05m/s(θ=60),0.
524m/s(θ=30).
ForthecaseW⊥=10keV,multiplythesevaluesbyten.
(Thisproblemrequiresmuchalgebra,sopleaseletmeknowifyouspotanymistakes!
)83.
Balancingmagneticpressureofapuredipolewiththesolarwinddynamicpressure:BDIP(RMP)2/(2o)=12oBER3ER3MP2=PSWRMP=12o1/6B2ER6EPSW1/6(11)Lookingatthisequality,weseethatifwereplaceBDIP(RMP)by2BDIP(RMP),thenRMPwillincreasefromthepuredipolevaluebyafactor41/6≈1.
26.
Ifwenowintroducetheplasmaβvalueaswell(ratioofplasmapressuretomagneticpressure),thenthetotalpressure(plasmaplusmagnetic)atthemagnetopausecanbewritten:(1+β)(2BDIP(RMP))2/(2o)Sothepressurebalancebecomes:(1+β)(2BDIP(RMP))2/(2o)=12o(1+β)2BER3ER3MP2=PSWRMP=12o1/6(1+β)1/641/6B2ER6EPSW1/6Hencethenon-zeroplasmapressureincreasesRMPbyanadditionalfactor(1+β)1/6=61/6≈1.
35.
4.
Theequationofforcebalanceparalleltothemagneticeldis:dPds+N2(mi+me)ρω2cosψ=0,whereNistotalparticlenumberdensityandψistheanglebetweentheelddirectionandthecylindricalradialdirection(i.
e.
thelocaldirectionperpendicularlyoutwardsfromtheaxisofsymmetry).
Notethatwedon'tneedtoconsideranyotherforce,sincetheparallelcomponentofJ*Biszero,bydenition.
Sincethecentrifugaltermalwayspointsoutwards(positivedirection),werequiredPdstobenegative,i.
e.
pressurePmustincreaseaswetravelalongaeldlinefrompolarregionstoequator(connementofplasmaintoadisc-likeshape).
Sinceanelementoflengthdsalongtheeldcorrespondstoachangedρ=dscosψ,wehave:dPdρ+P2kT(mi+me)ρω2=0,whereP=NkTfortheplasma.
Integratingbetweenanarbitrarypointontheeldlineandtheequator(denotedbysubscript'0'):dPP=(mi+me)ω22kTρdρ,ln(P0/P)=(mi+me)ω22kT12(ρ20ρ2)P=P0exp[(ρ2ρ20)/(2l2)],wherel2=2kT(mi+me)ω2≈2kTmiω2,sincemi>>me.
9ProblemSet21.
Explainwhythevolumeofaunitmagneticuxtube(i.
e.
thevolumeperunitmagneticux)isgivenbytheintegraldsBalongtheeldline,wheredsislengthelementalongtheeld,andB(s)islocaleldstrength.
Considernowacoldplasma(quasi-neutral,withonespeciesofpositiveion)inarotatingmagnetosphere(asinProblemSet1).
ShowthatthenumberofionsNicontainedperunitmagneticuxcanbeexpressedas:Ni=Po2kTexp[(ρ2ρ2o)/(2l2)]dsB,(12)wheretheintegralisagainalongtheeldline,pressureisdenotedbyP,cylindricalradialdistancebyρ,andquantitiesatthemagneticequatoraresubscriptedwith'o'.
listhelengthscalefromProblemSet1,whichinvolvesthetemperatureTandplasmaangularvelocityω,bothconstantalongtheeldline.
2.
Derivetherst-orderdensityandtemperatureperturbationsgiveninthesectionon'InterchangeMotions':σn(1)=n·uu·nσP(1)=γP(·u)u·PYoumaynditusefultoconsidertheperturbedequationsforconservationofmass,andforadiabaticchangeinplasmapressure(thissecondconditionmaybeexpressedasD(Pnγ)Dt=0-azerocomovingtimederivative).
Forsimplicity,assumethattheunperturbedplasmahaszerovelocity.
3.
ConsiderasphericallysymmetricinwardowofmaterialbeingaccretedontoastarofmassM.
Assumethatthematerialisfreelyfallingundertheinuenceofthestar'sgravity,startingfromrestatinnitedistance.
Theaccretionrate˙Misconstantandequalto4πr2ρMv,whererisradialdistancefromthestar'scentre,ρMisdensityofthematerialandvisthevelocity.
Explainwhythisequalityisvalidinthesteady-stateow.
Assumenowaverysimpliedestimateforthemagneticeldstrengthforthestar,basedonadipole'sradialdependence:B(r)/r3,whereisthestar'smagneticmoment(weignoretheangulardependenceforsimplicity).
Usingthisinformation,showthattheapproximateAlfv`enradiusRAofthesystem,wherethedynamicpressureoftheinow(ρMv2)equalsthemagneticpressureofthestar,satisesthedependence:RA∝4/7˙M2/7M1/710ProblemSet31.
The'propeller'mechanismmayacttoejectinfallingmaterialfromthemagnetosphericboundaryofarapidlyrotating,magnetizedstar.
Inasimplepicture,materialinstantaneously'attaches'totherotatingeldatthemagnetosphericradiusRandstartstorotatewiththestellarangularvelocityS.
Thepropellermechanismiseffectivewhenthevelocityofthe'attached'materialexceedsthelocalescapevelocityfromthestar.
Showthatthisconditionisequivalentto:R>21/3Rc,whereRcisthecorotationradius(i.
e.
theradiusatwhichtheangularvelocityofacircularorbitaboutthestarisequaltoS).
2.
ConsideraPolarbinarystarsystemwherethemagneticdipoleofthewhitedwarfisorthogonaltotheorbitalplaneofthetwostars.
Assumethatthemagneticeldatandinsidethecouplingregion,whereaccretingmaterialstartstoowalongeldlines,isdominatedbythedipolareldofthewhitedwarf.
Calculatetherangeinradialdistance(inunitsofwhitedwarfradii)coveredbythecouplingregioncorrespondingtoan'arc-shaped'accretionshockonthewhitedwarfsurfaceextendingbetweenmagneticcolatitudesof20and28.
BywhatfactordoestheeldstrengthchangeoverthecouplingregionConsideranindividual'blob'intheaccretingmaterialwhichischannelledbythemagneticeldontothewhitedwarfsurface.
δArepresentsthe'cross-section'areaoftheblob,locallyperpendiculartotheeld.
Estimate,usingadipoleeldmodel,thefactorbywhichδAchangesastheblobfallsfromtheinneredgeofthecouplingregiontothewhitedwarfsurface.
(Ifradialdistanceisdenotedbyrandmagneticcolatitudebyθ,theequationofadipoleeldlineisr=LRwdsin2θ,whereLRwdisthedistanceatwhichtheeldlinecrossesthemagneticequator.
Themagneticeldstrengthduetothedipoleisproportionaltothequantityr3(1+3cos2θ)1/2).
3.
ConsideraPolarsystemwithasingleactiveaccretionshockwhichemitselectroncyclotronradiation.
'Peaks'inthecontinuumemissionofthesystemoccuratwavelengthscorrespondingtoharmonicsoftheelectroncyclotronfrequency.
Iftwooftheadjacentharmonicpeaksoccuratopticalwavelengthsof7146Aand6125A,estimatethemagneticeldstrengthatthelocationoftheemissionregiononthewhitedwarfsurface.
4.
ConsiderGhoshandLamb'spictureofthemagnetictorqueactingbetweenamagnetized,accretingstaranditssurroundingaccretiondisc.
Whatwouldhappentothecorotationradiusfollowinganunusualtransientepisodeofstronglyenhancedaccretion,which'spinsup'thestartoahigherangularvelocityIfthemagnetosphericradiusRinstantlyreturnstoits'quiet'valueimmediatelyfollowingthisepisode,butnowthecorotationradiusliesinside21/3R.
Whatwouldhappentotherateofaccretionontothestar'ssurfaceWhatwouldhappentotheareasofthediscwhichareattachedto'forward-swept'and'backswept'eldlinesWhatwouldbetheconsequencesforthespinrateofthestar11

SunthyCloud阿里云国际版分销商注册教程,即可PayPal信用卡分销商服务器

阿里云国际版注册认证教程-免绑卡-免实名买服务器安全、便宜、可靠、良心,支持人民币充值,提供代理折扣简介SunthyCloud成立于2015年,是阿里云国际版正规战略级渠道商,也是阿里云国际版最大的分销商,专业为全球企业客户提供阿里云国际版开户注册、认证、充值等服务,通过SunthyCloud开通阿里云国际版只需要一个邮箱,不需要PayPal信用卡就可以帮你开通、充值、新购、续费阿里云国际版,服务...

WHloud Date鲸云数据($9.00/月), 韩国,日本,香港

WHloud Date(鲸云数据),原做大数据和软件开发的团队,现在转变成云计算服务,面对海内外用户提供中国大陆,韩国,日本,香港等多个地方节点服务。24*7小时的在线支持,较为全面的虚拟化构架以及全方面的技术支持!官方网站:https://www.whloud.com/WHloud Date 韩国BGP云主机少量补货随时可以开通,随时可以用,两小时内提交退款,可在工作日期间全额原路返回!支持pa...

如何低价香港服务器购买?有没有便宜的香港服务器推荐?

如何低价香港服务器购买?想要做一个个人博客,想用香港服务器,避免繁琐备案,性能不需要多高,只是记录一些日常而已,也没啥视频之类的东西,想问问各位大佬有没有低价的香港服务器推荐?香港距大陆近,相比美国服务器最大的优势在于延迟低,ping值低,但是带宽紧张,普遍都是1M,一般戏称其为“毛细血管”。同时价格普遍高,优质稳定的一般价格不菲。大厂云梯队阿里云、腾讯云两家都有香港服务器,要注意的是尽量不要选择...

solved为你推荐
美国免费主机免费主机可以建几个站?asp主机ASP环境是不是所有的主机都默认支持?免费vps服务器请推荐一个免费的云服务器?手机网站空间我想建一手机网站,那位推荐一个域名便宜点的手机建站网址,空间小也没关系。便宜虚拟主机哪里有国内便宜虚拟主机淘宝虚拟主机淘宝买万网虚拟主机怎么变别真假虚拟主机99idc如何选择虚拟主机的的操作系统以及更换操作系统是注意事项shopex虚拟主机西部数码虚拟主机,适合做独立shopex或者echsop网店吗,我想开网店,推荐一下哪个型号的好新网域名新网的网址是多少?域名多少钱?免费二级域名哪里有免费域名,免费二级域名,越短越好。无广告。
什么是域名解析 sharktech 罗马假日广场 google镜像 idc测评网 iisphpmysql 网络星期一 60g硬盘 好玩的桌面 免费静态空间 国外在线代理 linux空间 169邮箱 电信主机 如何注册阿里云邮箱 香港亚马逊 重庆电信服务器托管 免费asp空间申请 photobucket 服务器论坛 更多