specific腾讯qq空间登录
腾讯qq空间登录 时间:2021-01-21 阅读:(
)
ResearchofImprovedAntColonyHybridAlgorithmLiShijun1,a,HanYu1,b,GuHongjun1,c,GongHe1,d,LiJian1,el1CollegeofInformation&Technology,JilinAgriculturalUniversity,Changchun130118,China.
a452835889@qq.
com,b372600730@qq.
com,c330837495@qq.
comd29878671@qq.
com,e2312852319@qq.
comKeywords:antcolonyalgorithm,immunealgorithm,artificialfishswarmalgorithm,hybridalgorithm.
Abstract.
Inordertoextendtheapplicationofantcolonyalgorithm(ACA),manyscholarscombinedtheantcolonyalgorithmwithimmunealgorithm(IA)orotheralgorithmstosolvetheproblemofslowconvergence.
Tofullysolvethetoolongsearchtime,easilyfallingintolocaloptimization,slowconvergenceandsomeotherdefects,theimmunealgorithmandartificialfishswarmalgorithm(AFSA)combinewiththeantcolonyalgorithm,andtheantcolonyhybridalgorithmisproposed.
Thenbysolvingthetravelingsalesmanproblem(TSP),thenewalgorithmissimulated,andtheresultsshowthatimprovingalgorithmiseffectiveandfeasible.
IntroductionTheantcolonyalgorithm(ACA)wasfirstproposedbyItalyscholarDorigoM.
andothersin1991,anovelsimulatedevolutionaryalgorithm,antssearchforapaththroughthesecretionofpheromonescatteredonitspath.
Thentheantsrandomlychoosearoadthatdidn'tpass,releasepheromoneaboutthelengthofthispath.
Buttheamountofinformationreleasedisinverselyproportionaltothelengthofthepath,whichlikelytochoosethepathofalargeramountofinformation,it'sapositivefeedbackmechanism.
Thebestpathistheamountofinformationthatisgettingbiggerandbigger,theamountofinformationontheotherpathisgraduallyreduced,antseventuallyfindoptimalpath.
Bysimulatingants'behaviorsuchasforaging,assignmentandbuildingthegraveyard,weputforwardACA.
It'seasytocombinewithotheralgorithms,andithasastrongrobustnessandexcellentdistributedcomputersystem,andit'seasytocombinewithotheralgorithms.
Thisalgorithmachievedgoodeffectintheacademicfield,theproblemssuchasfunctionoptimization,combinationoptimization,datamining,networkrouting,etc.
ACAbecameahotspotformanyscholarstoanalyzetheoptimizationalgorithm,ithasuniqueandwidelyabilitytosolveproblems.
Improvedthealgorithmitself,andcombinedwithotheralgorithms,appliedtomanyoftheactualfieldofwhich.
Basicprinciplesofantcolonyalgorithm)(tijtFirst,solvingtheTSPproblemasanexample,thespecificimplementationstepsofthebasicACAareasfollows.
Givingncitiesandtwoofthedistancebetweenthetwocities,therequirementstodetermineapassedthrougheachcityonlyonceintheshortestpath.
Inordertosimulatethebehaviorofrealants,weintroducedthefollowingnotation;misthenumberofants.
ijd(i,j=1,2,.
.
.
,n)representsthedistancebetweeniandjinthecity,representstheamountofinformationremainingonthepathbetweeniandjinthetcity,it'susedtosimulatethepheromoneconcentrationkallowedktabu)(tpkijoftheactualants.
.
Wheninitialized,mantswereplacedrandomlyondifferentcities,givingthe)0(ijτamountofinformationwasoneachside.
Eachantkofthatthefirstelementwasassignedtothecitywhereitwaslocated.
indicatethattheantkwastransferredfromcityitocityjprobabilitytime,usingformula(1).
indicatesthatantkallowstochosethecityinthenextstep;αasinformationheuristicfactor,indicatesrelativelocusimportance.
Itreflectsthatantsaccumulatedinformationinthemovementtoplaytherolefortheantmovement;βasexpectationheuristicfactor,indicatesrelativevisibilityimportance,itreflectstheimportancedegreeofheuristicinformationwhenantschosethepathinthemovement.
(1)0j,)()()()()(∈=∑∈elseallowediftttttpkallowedsisisijijkijk,ββηtηtAfternmoments,antkwalkedthroughallthecities,completedacycle.
Thenupdatedtheamountofinformationoneachpathbytheformula(2).
ijτ)2()()()1()(ttntijijijttρt+=+Among,calculatedbytheformula(3),itrepresentstheamountofinformationonthekantinthepath(i,j)intheloop.
Thecalculationmethodisbasedonthecalculationmodel,inthemostcommonlyusedAnt-Cyclemodel,usingformula(4),Qrepresentsthepheromoneintensity,itaffectstheconvergencerateofthealgorithmtosomeextent.
kLrepresentsthetotallengthofthepathofthekantinthiscycle.
(3))()(1∑==mkkijijtttt)4(otherwise,0),i(throughcycleinthisantsonlyKtheIf,)(=jLQtkkijtCombinationofantcolonyalgorithmandimmunealgorithm.
Thebasicideaofthecombinationofantcolonyalgorithmandimmunealgorithm.
CombingIAwithACA,usedACAtosolvetheproblemasantigen,andtheextractionofthevaccinetopheromoneinitialization,ACAproducedantibodiestoassignavaluetoaparameter,appliedtothesolutionofspecificproblems,theobtainedresultsasthecurrentantibodyfitnessvaluebyinoculationofvaccineIA,crossover,mutation,affinityselection,retainedtoadaptgoodantibody,eliminatedadaptationofantibody,theiterative,gottheantibodyinfinally,theparameterACAcombinationwasobtainedforthespecificproblem.
Algorithmbyupdatingbasedonaffinity,thuseffectivelypreventsthe'premature'problem,ledthesearchprocesstotheglobaloptimum.
Theinitialvalueofpheromonewasextractedbytheextractionmechanismofvaccine,avoidedtherandomnessoftheinitialsolution.
Byusingthevaccinationmechanism,crossoverandmutationtoacceleratetheconvergencespeed.
ACAandIAiscalledimmuneantcolonyalgorithm(IAACA).
Thebasicstepsoftheimmuneantcolonyalgorithm.
ImmuneantcolonyalgorithmflowchartisshowninFig.
1.
Fig.
1ImmunealgorithmflowchartCombinationofartificialfishswarmalgorithmandimmuneantcolonyalgorithmThebasicideaofthehybridalgorithm(AFSA-IAACA)basedonartificialfishswarmalgorithmandantcolonyimmunealgorithm.
AFSAhastheadvantagesoffastconvergencespeed,wewilladdedtoeveryiterativeprocessofimmuneantcolonyalgorithmtoacceleratetheconvergencespeedofantcolonyalgorithm,anddependingontheforagingbehaviorofAFSAtohelpimproveIAACAtojumpoutoflocaloptimum.
AFSA-IAACAfortheTSPproblemofadetailedimprovementstrategyandalgorithmdetailedsteps:Step1Attheinitialt=0,mantswererandomlyplacedinthencities,eachpathinitialpheromoneconcentrationis.
)0(constij=tStep2Antscalculatedtransferprobabilitybytheformula(1),selectedtoprojecttransitionpath.
Thencalculatedthepathcongestionatthattimeijqbytheformula(5).
If)(tqijδindicatedthatpathisnottoocrowded,antschosethepathtotransferfrompositionitopositionj.
Otherwise,thepathwastoocrowded,theantselectedapathoftransferinthefeasibleneighborhoodtorandomly.
Amongthem,)(tδiscongestionthresholdinttime,updatedtypebytheformula(6).
Amongthem,cisthethresholdcoefficientofvariation.
(5))()(2∑≠=jiijijijttqtt(6)1)(ctet=δStep3Afternmoment,thekantwentallCitiestocompleteacycle.
Thenupdatedtheinformationoneachpathbytheformula(2).
Step4Repeatedformula(1)and(2),untilthemantschosethesamepathorreachthespecifiedmaximum.
SimulationResultsandAnalysisTable1Comparisonofexperimentalresultsnumberofcities(ACA)(IAACA)(AFSA-IAACA)averageiterationnumberOptimumsolutionaverageiterationnumberOptimumsolutionaverageiterationnumberOptimumsolution101032.
708617982.
708617912.
70861730728423.
631000596423.
631000547423.
631000501465429.
543000962427.
865000715427.
653.
000752103569.
7830001421551.
649000892541.
443000TheresultsshowthattheAFSA-IAACAalgorithmproveditsfeasibility,effectivenessandconvergencebyapplicationandsimulationexperimentintheTSPproblem.
ThealgorithmwillAFSAaddedtoeachiterativeprocessofIAACA,takingadvantageofAFSAwithfastconvergencewhichacceleratetheconvergencespeedofACAandforagingbehaviorofAFSAcouldhelpimprovedtheabilityofACAtojumpoutoflocaloptimum.
Bydoingthis,wecanreducenotonlythenumberofinvalidsearch,butalsothealgorithmintothelocaloptimalsolution,improvetheabilityandconvergencespeedofthealgorithm.
ConclusionsACAhassomeproblems,suchasprematureconvergence,slowconvergence,thecombinationofACAandIAisaneffectivemethodtosolvethesedefects.
ThencombinetheIAACAandAFSAtosolvethesedefectsthatlongsearchtimeandeasilyfallintolocaloptimization,andtoimprovetheabilitytojumpextreme,andsignificantlyimprovetheaccuracyofthealgorithm.
ThesimulationexperimentwascarriedoutbysolvingtheTSPproblem,andresultsshowthattheimprovedalgorithmiseffectiveandfeasible.
AcknowledgmentsTheauthorswishtoexpresstheirgratitudetotheprojects:JilinProvinceEconomicStructuralAdjustmentLeadingFundSpecialProject(No.
2014Y108)andChangchunCityScienceandTechnologyPlanProject(No.
14nk029),KeyTacklingItemofJilinProvinceScience&TechnologyDepartment(No.
20140204045NY),DesignofStandardizedBreedingSystemforRabbitsBasedonInternetofThingsfromEducationDepartmentofJilinProvince,ChangchunCityScienceandTechnologyPlanProject(No.
13KG71),fortheirgeneroussupportofthiswork.
References[1]GuMingjia,XuanShibin,LianKanchao,etal.
QoSroutingalgorithmbasedoncombinationofmodifiedantcolonyalgorithmandartificialfishswarmalgorithm,Computertechnologyanddevelopment,2009,pp.
145-148.
[2]HeYijun,ChenDezhao.
Theconstructionandapplicationofantcolonyalgorithmformulti-objectiveoptimization,HightechnologyCommunication,Beijing,2006,pp.
1241-1245.
[3]CaiLijun,JiangLinbo,YiYeQing.
Geneselectionbasedonantcolonyoptimizationalgorithm,CalculationandApplicationResearch.
Beijing,2008,pp.
2754-2756.
[4]DuanHaibin.
Antcolonyalgorithmanditsapplication,SciencePress,Beijing,2005.
[5]DasguptaD.
Advancesinartificialimmunesystems,IEEEComputationalIntelligenceMagazine,Beijing,2006,pp.
40-49.
[6]JiangXinzi,TongKezong,GaoShang.
Hybridalgorithmofantcolonyalgorithmwithimmunealgorithm,ScienceTechnologyandEngineering,Beijing,2008,pp.
1328-1333.
现在宝塔面板真的是越来越过分了,删除文件、删除数据库、删除站点等操作都需要做计算题!我今天升级到7.7版本,发现删除数据库竟然还加了几秒的延时等待,也无法跳过!宝塔的老板该不会是小学数学老师吧,那么喜欢让我们做计算题!因此我写了个js用于去除各种计算题以及延时等待,同时还去除了软件列表页面的bt企业版广告。只需要执行以下命令即可一键完成!复制以下命令在SSH界面执行:Layout_file="/w...
月付/年付优惠码:zji 下物理服务器/VDS/虚拟主机空间订单八折终身优惠(长期有效)一、ZJI官网点击直达ZJI官方网站二、特惠香港日本服务器香港大埔:http://hkdb.speedtest.zji.net/香港葵湾:http://hkkw.speedtest.zji.net/日本大阪:http://jpsk.speedtest.zji.net/日本大阪一型 ...
乐凝网络怎么样?乐凝网络是一家新兴的云服务器商家,目前主要提供香港CN2 GIA、美国CUVIP、美国CERA、日本东京CN2等云服务器及云挂机宝等服务。乐凝网络提供比同行更多的售后服务,让您在使用过程中更加省心,使用零云服务器,可免费享受超过50项运维服务,1分钟内极速响应,平均20分钟内解决运维问题,助您无忧上云。目前,香港HKBN/美国cera云服务器,低至9.88元/月起,支持24小时无理...
腾讯qq空间登录为你推荐
天气预报哪个好用哪个最准确一般查看天气预报哪个软件好用?985和211哪个好985大学好 还是211是什么意思录音软件哪个好什么软件用来录音更好?网页传奇哪个好玩近有什么好玩的网页传奇介绍么无纺布和熔喷布口罩哪个好活性碳口罩和无纺布口罩有什么不同?无纺布和熔喷布口罩哪个好口罩选择什么样的面料好固定利率和浮动利率哪个好应当选择固定利率,还是选择浮动利率还款?oppo和vivo哪个好vivo和oppo哪个更耐用电动牙刷哪个好飞利浦电动牙刷哪款好?求推荐行车记录仪哪个好请问行车记录仪那个牌子好?
台湾服务器租用 西部数码vps 域名服务器的作用 a5域名交易 ftp空间 阿云浏览器 美国主机评测 justhost 轻博客 php探针 南昌服务器托管 html空间 qingyun 中国电信测网速 电信托管 香港亚马逊 空间登录首页 网购分享 丽萨 石家庄服务器托管 更多