Links花生壳免费域名

花生壳免费域名  时间:2021-01-02  阅读:()
TheStructureofFreeDomainSemiringsP.
Jipsen,G.
StruthChapmanUSheeldApril9,2008P.
Jipsen,G.
Struth(ChapmanUSheeld)FreeDomainSemiringsApril9,20081/1OutlineIntroductionDomainSemiringsFreedomainsemiringRepresentationbybyantichainsofsequencesRepresentationbybinaryrelationsConclusionP.
Jipsen,G.
Struth(ChapmanUSheeld)FreeDomainSemiringsApril9,20082/1IntroductionAsemiringisoftheform(A,+,0,·,1)suchthat(A,+,0)isacommutativemonoid(A,·,1)isamonoid·distributesoverallnitejoinsfromtheleftandrighti.
e.
x(y+z)=xy+xz,(x+y)z=xz+yzandx0=0x=0Asemiringisidempotentifx+x=xISisthevarietyofidempotentsemiringsLemmaAnidempotentsemiringisa(join-)semilatticewith0asbottomelement,withx≤ygivenbyx+y=y(since+isassoc,commuandidempotent)andx≤y=wxz≤wyz(sincew(x+y)z=wxz+wyz)P.
Jipsen,G.
Struth(ChapmanUSheeld)FreeDomainSemiringsApril9,20083/1ExamplesExamplesofsemiringsare:Rings(N,+,0,·,1).
.
.
Examplesofidempotentsemiringsare:Reductsofrelationalgebras(A,+,0,;,1)ReductsofKleenealgebras(A,+,0,·,1)Reductsofresiduatedlattices(A,1)(R∪{∞},max,0)Boundeddistributivelattices(A,∨,0,∧,1).
.
.
P.
Jipsen,G.
Struth(ChapmanUSheeld)FreeDomainSemiringsApril9,20084/1FreemonoidsandsemiringsLetXbeasetofvariables(orgenerators)ThefreemonoidoverXisX=n∈NXnwith1=emptysequenceand·asconcatenationBydistributivity,everytermtinthesignatureofsemiringscanbewrittenasanitejoinoftermsofthefreemonoidXExample:x(y+xz)(x+1)=xyx+xxzx+xy+xxzthefreeidempotentsemiringoverX,denotedbyFIS(X),isisomorphictothesetPn(X)ofallnitesubsetsofwordsoverXHereU+V=U∪VandU·V={uv:u∈U,v∈V}P.
Jipsen,G.
Struth(ChapmanUSheeld)FreeDomainSemiringsApril9,20085/1Decidabilitytheequationaltheoryofidempotentsemiringsisdecidable:Giventermss,t,usedistributivitytowritetermsinnormalformHowever,thequasiequationaltheory(=strictuniversalHorntheory)isundecidablebecause:Thewordproblemforsemigroupsisundecidable(Post)Everysemiringisasemigroupundertheoperation"·"EverysemigroupSisa"·"-subreductofitspowersetsemiringP(Se)(whereSethemonoidextensionofS)theclassof"·"-subreductsofsemiringsistheclassofallsemigroupsP.
Jipsen,G.
Struth(ChapmanUSheeld)FreeDomainSemiringsApril9,20086/1DomainmonoidsAdomainmonoidisanalgebra(M,·,1,d)suchthat(M,·,1)isamonoidandd:M→Misafunctionthatsatises(D1)d(x)x=x(D2)d(xd(y))=d(xy)(D3)d(d(x)y)=d(x)d(y)(D4)d(x)d(y)=d(y)d(x)ThevarietiesofdomainmonoidsisdenotedbyDMLemmad(1)=1[takex=1in(D1)]d(d(x))=d(x)[takex=1in(D2)]d(x)d(x)=d(x)[takey=xin(D3)]d(M)={d(x):x∈M}isameetsemilatticewith1=topelementP.
Jipsen,G.
Struth(ChapmanUSheeld)FreeDomainSemiringsApril9,20087/1DomainsemiringsAdomainsemiringisanalgebra(A,+,0,·,1,d)suchthat(A,+,0,·,1)isasemiring(A,·,1,d)isadomainmonoidandthefollowingadditionalaxiomshold[Desharnais,Struth2008]d(x+y)=d(x)+d(y),d(0)=0andd(x)+1=1xd(x)+x=xx+x=xEverydomainsemiringisanidempotentsemiringThevarietiesofdomainsemiringsisdenotedbyDSP.
Jipsen,G.
Struth(ChapmanUSheeld)FreeDomainSemiringsApril9,20088/1ExamplesofdomainsemiringsExamplesofdomainsemiringsaree.
g.
reductsofrelationalgebraswithd(x)=(x;x)∧1,reductsofKleenealgebraswithdomainModelsofdomainsemiringsinCS:Idempotentsemiringsformedbysetsoftracesofaprogram(whicharealternatingsequencesofstateandactionsymbols)withdomaindenedbystartingstatesoftracesIdempotentsemiringsformedbysetsofpathsinagraphwithdomaindenedbysetsofstartingstatesApplicationsofdomainsemiringsandKleenealgebraswithdomainhavebeenstudiedintensivelyP.
Jipsen,G.
Struth(ChapmanUSheeld)FreeDomainSemiringsApril9,20089/1ApplicationsofdomainsemiringsThedomainoperationmodelsenablednessconditionsforactionsinprogramsandtransitionsystemsThedomainoperationcaneasilybeextendedintoamodaldiamondoperatorthatactsontheunderlyingalgebraofdomainelements[M¨oller,Struth2006]Linksthealgebraicapproachwithmoretraditionallogicsofprogramssuchasdynamic,temporalandHoarelogicsSomestandardsemanticsofprograms,includingtheweakestpreconditionandweakestliberalpreconditionsemantics,canbemodeledinthissettingApplicationscanbefoundinRelMiCSconferenceproceedingsP.
Jipsen,G.
Struth(ChapmanUSheeld)FreeDomainSemiringsApril9,200810/1DomainsemiringsDomainsemiringswereoriginallyintroducedinatwo-sortedsettingThedomainoperationmapsarbitrarysemiringelementstoaspecialBooleansubalgebra[Desharnais,M¨oller,Struth2006]ArbitrarysemiringelementsmodelactionsofaprogramortransitionsystemTheelementsoftheBooleansubalgebramodelthestatesofthatsystemHereweusethesimplerandmoregeneralone-sortedapproachof[Desharnais,Struth2008]P.
Jipsen,G.
Struth(ChapmanUSheeld)FreeDomainSemiringsApril9,200811/1StudyingfreedomainsemiringsThefreedomainsemiringisinterestingforapplications:IdentiesexactlythosetermsofdomainsemiringsthathavethesamedenotationinalldomainsemiringsAllowsthedenitionofecientproofanddecisionproceduresThedomainaxiomsofdomainsemiringsarethesameasforrelationalgebrasandforKleenealgebraswithdomainBothrelationalgebrasandKleenealgebrashaverichandcomplex(quasi)equationaltheoriesRatherstudythesimplerequationaltheoryofdomainsemiringsP.
Jipsen,G.
Struth(ChapmanUSheeld)FreeDomainSemiringsApril9,200812/1OutlineofresultsAim:giveanexplicitdescriptionoffreedomainsemiringsFDS(X)FirstdescribefreedomainmonoidFDM(X)ThenshowthattheseelementsarethejoinirreduciblesofFDS(X)FDS(X)isisomorphictothesetofniteantichainsintheposetofjoinirreduciblesShowFDS(X)isrepresentablebyaconcretealgebraofbinaryrelations,withrelationaldomainasoperationsDS=HSP{Relationaldomainsemirings}Finallyshowanydistributivelatticewithni-aryoperatorsoccursasdomainelementsofsomedomainsemiringwithni1-aryoperatorsP.
Jipsen,G.
Struth(ChapmanUSheeld)FreeDomainSemiringsApril9,200813/1One-generateddomainterms(D1)d(x)x=x(D2)d(xd(y))=d(xy)(D3)d(d(x)y)=d(x)d(y)Asusual,wedenex0=1andxn+1=xnxLemmaInadomainmonoid,ifm≤nthend(xm)xn=xnandd(xm)d(xn)=d(xn)Proof.
Assumingm≤n,wewritexn=xmxnm,andusing(D1)wehaved(xm)xn=d(xm)xmxnm=xmxnm=xnNow(D3)impliesd(xm)d(xn)=d(d(xm)xn)=d(xn)P.
Jipsen,G.
Struth(ChapmanUSheeld)FreeDomainSemiringsApril9,200814/1ExpandednormalformsOnelementsoftheformd(xj),theorderisinducedbythemeet-semilatticestructure:d(xj)≤d(xk)ij≥k,hencetheseelementsformachainForconcatenationsofbasicterms,rewritetheminexpandednormalform:d(xj0)xd(xj1)xd(xj2)x···xd(xjm)whereeachofthejk≥max{1+jk+1,2+jk+2,mk+jm}E.
g.
xd(x3)x2d(x2)=.
.
.
P.
Jipsen,G.
Struth(ChapmanUSheeld)FreeDomainSemiringsApril9,200815/1DecreasingsequencesofnumbersForbrevitydenotesuchatermbythesequence(j0,j1,j2,jm)NotethatthisisalwaysastrictlydecreasingsequenceofnonnegativeintegersLetP=(P,≤)bethesetofallsuchsequences,orderedbyreversepointwiseorderThussequencesofdierentlengtharenotcomparable,andthemaximalelementsofthisposetare(0),(1,0),(2,1,0),.
.
.
correspondingtothetermsd(1)=1,d(x)xd(1)=x,d(x2)xd(x)xd(1)=x2,.
.
.
P.
Jipsen,G.
Struth(ChapmanUSheeld)FreeDomainSemiringsApril9,200816/1Theposetofjoin-irreduciblesbelow1andxd(x5)d(x4)d(x3)d(x2)d(x1)1=d(x0)(5)(4)(3)(2)(1)(0).
.
.
xd(x2)xd(x3)xd(x4)xd(x5)xd(x6)x(1,0)(2,0)(3,0)(4,0)(5,0)(6,0).
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
d(x6)xd(x)d(x6)xd(x2)d(x6)xd(x3)d(x6)xd(x4)xd(x5)(6,1)(6,2)(6,3)(6,4)(6,5)(5,4)=xd(x4)(4,3)=xd(x3)(3,2)=xd(x2)(2,1)=xd(x)(5,3)=d(x5)xd(x3)(4,2)=d(x4)xd(x2)(3,1)=d(x3)xd(x)P.
Jipsen,G.
Struth(ChapmanUSheeld)FreeDomainSemiringsApril9,200817/1Theposetofjoin-irreduciblesbelowx2x2=(2,1,0)(3,1,0)(4,1,0)(5,1,0)(6,1,0).
.
.
.
.
.
.
.
.
.
.
.
.
.
.
(6,2,0)(6,3,0)(6,4,0)(6,5,0).
.
.
.
.
.
.
.
.
.
.
.
(6,4,3)(5,3,2)(4,2,1)(3,2,1)(4,3,2)(5,4,3)P.
Jipsen,G.
Struth(ChapmanUSheeld)FreeDomainSemiringsApril9,200818/1TheproductoftwodecreasingsequencesAmultiplicationisdenedonPbythefollowing"rippleproduct"(j0,j1,j2,jm)·(k0,k1,k2,kn)=(j′0,j′1,j′2,j′m,k1,k2,kn)wherej′m=max(jm,k0)andj′i=max(ji,j′i+1+1)fori=m1,2,1,0Forexample,(7,3,2)·(4,3,1)=(7,5,4,3,1),while(4,3,1)·(7,3,2)=(9,8,7,3,2)CanshowthatthisistheresultofmultiplyingthecorrespondingexpandednormalformsandrewritingresultinexpandednormalformItistediousbutnotdiculttocheckthatthisoperationisassociativeP.
Jipsen,G.
Struth(ChapmanUSheeld)FreeDomainSemiringsApril9,200819/1DomainandpartialorderThedomainofasequence(j0,j1,j2,jm)isthelength-onesequence(j0)Thiscorrespondstothedomaintermd(xj0)LetA(P)bethesetofniteantichainsofPApartialorderisdenedonA(P)bya≤bi↓a↓bThemultiplicationisextendedtoantichainsbyusingthecomplexproduct(i.
e.
U·V={uv:u∈U,v∈V})andbyremovingallnon-maximalelementsP.
Jipsen,G.
Struth(ChapmanUSheeld)FreeDomainSemiringsApril9,200820/1RepresentationTheoremTherstresultshowsthattheone-generatedfreedomainsemiringcanberepresentedintermsofantichainsofdecreasingintegersequencesTheoremThejoinirreduciblesofFDS(x)formaposetthatisisomorphictoPandFDS(x)isisomorphictoA(P)Proof.
(outline)Bydistributivity,eachdomainsemiringtermt(x)canbewrittenasanitejoinofexpandednormalformtermsHenceanyjoinirreducibleelementofFDS(x)canberepresentedbyanexpandednormalformtermToshowthatPistheposetofthesejoinirreducible,itsucestoshowthatallexpandednormalformsarejoinirreducible,andthattwoexpandednormalformtermscanbedistinguishedinsomedomainmonoid(detailsinproceedings)P.
Jipsen,G.
Struth(ChapmanUSheeld)FreeDomainSemiringsApril9,200821/1Exampletermandrelationforj=(4,3,1)j=(4,3,1)tj(x)=d(x4)xd(x3)xd(x)(s)(f)Xj={arrows}P.
Jipsen,G.
Struth(ChapmanUSheeld)FreeDomainSemiringsApril9,200822/1RepresentionofsemiringsbybinaryrelationsFirstnotethatforfreeidempotentsemiringsthisisalwayspossible[Bredihin,Schein1978]ForasetXofgenerators,aconcreteconstructioncanbeobtainedbyconsideringthecomplexalgebraofthefreegroupFGrp(X)Thisisalwaysarepresentablerelationalgebra,withtheelementsofthegroupasdisjointrelationsSincethefreemonoidXisasubsetofthefreegroup,theniteunionsoftherelationscorrespondingtosingletonwordsgivearelationalrepresentationofthefreeidempotentsemiringwithXassetofgeneratorsP.
Jipsen,G.
Struth(ChapmanUSheeld)FreeDomainSemiringsApril9,200823/1RepresentionofsemiringsbybinaryrelationsHowever,notallidempotentsemiringscanberepresentedby∪,semiringsofrelations[Andreka1988,1991]showedthattheclassofalgebrasofrelations,closedunder∪,,thoughdenablebyquasiequations,isnotnitelyaxiomatisableHenceitisstrictlysmallerthanthenitelybasedvarietyofidempotentsemiringsSimilarlytheclassofalgebrasofrelationsclosedunderid,d,whered(R)=R;R∩id,isanon-nitelyaxiomatisablequasivariety,butnotavarietyP.
Jipsen,G.
Struth(ChapmanUSheeld)FreeDomainSemiringsApril9,200824/1RepresentionofsemiringsbybinaryrelationsTheoremTheone-generatedfreedomainsemiringcanberepresentedbyadomainsemiringofbinaryrelationsProof.
(outline)ToseethatFDS(x)canberepresentedbyacollectionofbinaryrelations,withoperationsofunion,compositionanddomain,itsucestoconstructarelationXonasetUsuchthats(X)=t(X)intherelationdomainsemiringP(U*U)foranydistinctpairofelementsofFDS(x)Thisisdonesimilarlytotheproofoftheprecedingtheorem,bytakingXtobetheunion(overdisjointbasesets)ofalltherelationsXjcorrespondingtothesequencesj∈PP.
Jipsen,G.
Struth(ChapmanUSheeld)FreeDomainSemiringsApril9,200825/1n-generatedcase(briey)Sofarouranalysishasconsideredtheone-generatedfreedomainsemiringThen-generatedcaseismorecomplex,buthasrecentlyalsobeenhandledAnormalformisgivenbyd(t0)y1d(t1)y2.
.
.
d(tn1)ynd(tn)wheretiarereducedtermsNormalformisgivenbyareducedtreeRelationalrepresentationsimilartotheone-generatedcaseFutureresearchisalsoaimingtodescribethestructureoffreedomainsemiringsinthepresenceofadditionalaxioms[Desharnais,Struth2008]showthatthedomainalgebrasd(S)inducedbythedomainaxiomscanbeturnedinto(co-)HeytingalgebrasorBooleanalgebrasbyimposingfurtherconstraintsP.
Jipsen,G.
Struth(ChapmanUSheeld)FreeDomainSemiringsApril9,200826/1Anti-domainInparticular,addingthethreeaxiomsa(x)x=0,a(xy)≤a(xa(a(y)))anda(a(x))+a(x)=1foranantidomainfunctiona:S→Stothesemiringaxiomsanddeningdomainasd(x)=a(a(x))sucestoensured(S)isaBooleanalgebrarecoveralltheoremsoftheoriginaltwo-sortedaxiomatisationof[Desharnais,M¨oller,Struth2006]Basedontheseresults,inparticularthestructureofthefreeBooleandomainsemiringscertainlydeservefurtherinvestigationP.
Jipsen,G.
Struth(ChapmanUSheeld)FreeDomainSemiringsApril9,200827/1BooleandomainsemiringsgeneralizeJonsson-TarskiBAOs|xp=d(xp)isamodaloperatorond(A)Ingeneralfisanoperatoriffx+y,fx,fy,andf0,0BAO=BAwithoperatorsB=(B,+,0,·,1,,(fi)i∈I)BDSO=BooleanDSwithoperatorsA=(A,+,0,·,1,a,(gi)i∈I)Dened(A)=(a(a(A)),+,0,·,1,a,(|gi)i∈I)where|gi(p0,pn)=a(a(gi(p0,pn1)·pn))TheoremForanyBAOBthereexistsaBooleanDSOAsuchthatB=d(A)P.
Jipsen,G.
Struth(ChapmanUSheeld)FreeDomainSemiringsApril9,200828/1DomainsemiringsgeneralizeGehrke-JonssonDLOsDLO=bnddistributivelatticeswithoperatorsB=(B,+,0,·,1,,(fi)i∈I)DSO=domainsemiringswithoperatorsA=(A,+,0,·,1,d,(gi)i∈I)Dened(A)=(d(A),+,0,·,1,d,(|gi)i∈I)where|gi(p0,pn)=d(gi(p0,pn1)·pn)TheoremForanyDLOBthereexistsaDSOAsuchthatB=d(A)Aisconstructedfromtherelationaldomainsemiringonthejoin-irreduciblesofthecanonicalextensionofBConclusion:DomainsemiringsgiveasimpleunisortedextensionofthestaticpropositionalframeworktothedynamicframeworkofsequencesP.
Jipsen,G.
Struth(ChapmanUSheeld)FreeDomainSemiringsApril9,200829/1References[H.
Andreka1989]Ontherepresentationproblemofdistributivesemilattice-orderedsemigroups,preprint(1988),AbstractsoftheAMS,Vol10,No2(March1989),p.
174.
[H.
Andreka1991]Representationsofdistributivelattice-orderedsemigroupswithbinaryrelations,AlgebraUniversalis28(1991),12–25.
[G.
Birkho1967]"LatticeTheory",3rded.
,Vol25ofAMSColloquiumPublications,AMS,1967,pp.
viii+420.
[D.
A.
Bredihin,B.
M.
Schein1978]Representationsoforderedsemigroupsandlatticesbybinaryrelations,Colloq.
Math.
39(1978),1–12.
[J.
Desharnais,B.
M¨oller,G.
Struth2006]Kleenealgebrawithdomain,ACMTransactionsonComputationalLogic,Vol7,No4,2006,798–833.
[J.
Desharnais,G.
Struth2008]ModalSemiringsRevisited,ResearchReportCS-08-01,DepartmentofComputerScience,TheUniversityofSheeld,2008.
[W.
McCune2007]Prover9,www.
prover9.
org[B.
M¨oller,G.
Struth2006]Algebrasofmodaloperatorsandpartialcorrectness,TheoreticalComputerScience,351,(2006),221–239.
P.
Jipsen,G.
Struth(ChapmanUSheeld)FreeDomainSemiringsApril9,200830/1

腾讯云新用户省钱秘笈购买云服务器

目前国内云计算市场竞争异常激烈,尤其是国内的腾讯云、阿里云、景安等商家促销活动一波接一波的进行,对于有需要的用户确实得到不小的实惠。但是这样给予国内的主机商确实是比较大的打击,毕竟这些商家的背景和实例强劲,即便是贴本补贴优惠,也是不怕的。前两年阿里一家各种活动促销,确实在国内市场占据主要的市场地位,腾讯云开始两年没有较大的吸引用户,不过这两年的发展还是比较稳健的。我们很多网友在之前肯定也享受到一些...

港云网络(¥1/月活动机器),香港CN2 4核4G 1元/月 美国CN2

港云网络官方网站商家简介港云网络成立于2016年,拥有IDC/ISP/云计算资质,是正规的IDC公司,我们采用优质硬件和网络,为客户提供高速、稳定的云计算服务。公司拥有一流的技术团队,提供7*24小时1对1售后服务,让您无后顾之忧。我们目前提供高防空间、云服务器、物理服务器,高防IP等众多产品,为您提供轻松上云、安全防护。点击进入港云网络官方网站港云网络中秋福利1元领【每人限量1台】,售完下架,活...

腾讯云轻量应用服务器关于多个实例套餐带宽

腾讯云轻量应用服务器又要免费升级配置了,之前已经免费升级过一次了(腾讯云轻量应用服务器套餐配置升级 轻量老用户专享免费升配!),这次在上次的基础上再次升级。也许这就是良心云吧,名不虚传。腾讯云怎么样?腾讯云好不好。腾讯云轻量应用服务器 Lighthouse 是一种易于使用和管理、适合承载轻量级业务负载的云服务器,能帮助个人和企业在云端快速构建网站、博客、电商、论坛等各类应用以及开发测试环境,并提供...

花生壳免费域名为你推荐
国内域名注册国内最好的域名注册服务机构?asp主机asp虚拟主机租用哪里好?虚拟主机代理虚拟主机代理哪家好,应该选择哪个家?美国服务器托管美国服务器租用有哪些系列?香港虚拟空间香港虚拟空间 好不、现在还有人买嘛香港虚拟主机推荐一下香港的虚拟主机公司!韩国虚拟主机韩国虚拟主机好还是香港的好虚拟主机评测网哪里有可靠的免费虚拟主机郑州虚拟主机59互联 亿恩科技 和郑州景安那一个公司的虚拟主机最好!我指的是速度和服务!谢谢!请大家凭良心说话!北京虚拟主机北京服务好的虚拟主机代理商介绍几个?
westhost 美国主机评论 美元争夺战 tier 正版win8.1升级win10 789电视 免费高速空间 超级服务器 厦门电信 lick 百度云空间 lamp兄弟连 阿里云手机官网 国内空间 卡巴斯基试用版下载 北京主机托管 闪讯网 汤博乐 上海联通 香港博客 更多