83.4www.7160.com

www.7160.com  时间:2021-03-17  阅读:()
GeochemicalcontrastsbetweenearlyCretaceousore-bearingandore-barrenhigh-Mgadakitesincentral-easternChina:ImplicationsforpetrogenesisandCu–AumineralizationSheng-AoLiua,,ShuguangLia,,YongshengHea,FangHuangbaCASKeyLaboratoryofCrust-MantleMaterialsandEnvironments,SchoolofEarthandSpaceSciences,UniversityofScienceandTechnologyofChina,Hefei230026,ChinabInstituteofGeochemistryandPetrology,ETHZurich,8092Zurich,SwitzerlandReceived3May2010;acceptedinrevisedform1September2010;availableonline7September2010AbstractAdakitesarecommonlyassociatedwithporphyryCu–Auoredepositsworldwide.
TwogroupsofearlyCretaceousadak-itesoccurwidelyincentral-easternChinabuttheirassociationwithmineralizationcontrastssharply:adakitesfromtheLowerYangtzeRiverBelt(LYRB)hostoneofthelargestporphyryCu–AudepositbeltsinChina,whereasthosefromtheSouthTan-LuFault(STLF),whichisadjacenttotheLYRB,areallore-barren.
Theseadakites,thus,providearareopportunitytoexplorethemainfactorthatcontrolsthegeneticlinksbetweenadakitesandCu–Aumineralization.
Herewereportnewchronological,elementalandSr–Nd–Pbisotopicdataandpresentacomprehensivegeochemicalcomparisonforthesetwogroupsofadakites.
AtagivenSiO2,theSTLFadakitesshowlowerAl2O3andhigherK2O,K2O/Na2O,MgO,Cr,NiandMg#thantheLYRBadakites.
ThesesystematicdierencesmayindicateadrybasalticsourcefortheSTLFadakitesandawater-enrichedbasalticsourcefortheLYRBadakites.
TheSTLFadakiteshavehighSr/Yand(La/Yb)N,whicharepos-itivelycorrelated,andlowSr/LaandCe/Pb,whiletheLYRBadakitesshowlower(La/Yb)NbuthigherSr/Y,Sr/LaandCe/PbthantheSTLFadakites.
Furthermore,theLYRBadakitesarecharacterizedbyhighlyradiogenicPbisotopiccompositionswith206Pb/204Pb(t)upto18.
8,whichareclearlydistinctfromtheSTLFadakiteswithlowradiogenicPb(206Pb/204Pb(t)=15.
8–16.
4).
AlthoughthehighMg#ofthetwogroupsofadakitessuggestreactionwithmantleperidotitesduringmagmaascent,thegeo-chemicalcomparisonsindicatethattheSTLFadakiteswerederivedfrompartialmeltingofthedelaminatedeclogiticlowercontinentalcrust,whiletheLYRBadakiteswerederivedfrompartialmeltingoftheseawater-alteredoceaniccrustthatwasbeingsubductedtowardstheLYRBduringtheearlyCretaceous.
Thepetrogeneticcontrastsbetweenthesetwogroupsofhigh-Mgadakites,therefore,indicatethatthelarge-scaleCu–Aumineralizationisassociatedwithoceanicslabmelting,notdelaminationorrecyclingoftheancientlowercontinentalcrust,aspreviouslyproposed.
2010ElsevierLtd.
Allrightsreserved.
1.
INTRODUCTIONTheLowerYangtzeRiverBelt(LYRB)incentral-easternChina,whichhostsmorethan200copper(gold)-bearingpolymetallicoredeposits,makesuponeofthemostimpor-tantmetallogenicbeltsinChina(PanandDong,1999;Maoetal.
,2006;Houetal.
,2007).
Fieldinvestigationsandchronologicalstudiesrevealthatthesedepositsarecloselyassociated,bothspatiallyandtemporally,withearlyCretaceousintermediatetofelsiccalc-alkalineintrusions(e.
g.
,Chenetal.
,1991,1993;Sunetal.
,2003;Wangetal.
,2006;Xieetal.
,2007).
Geochemicalstudiesfurthershowthatthehostintrusionsexhibitsomedistinctivecompositionalcharacteristicsresemblingmodernadakitesinconvergentplatemargins(Zhangetal.
,2001;Xuetal.
,2002;Wangetal.
,2003,2004a,2004b,2006,2007a;Xieetal.
,2008;Lietal.
,2009;Xieetal.
,2009),asoriginallydenedbyDefantandDrummond(1990).
Theseobservations,thus,appearto0016-7037/$-seefrontmatter2010ElsevierLtd.
Allrightsreserved.
doi:10.
1016/j.
gca.
2010.
09.
003Correspondingauthors.
Tel.
:+865513607647.
E-mailaddresses:lsa@mail.
ustc.
edu.
cn(S.
-A.
Liu),lsg@ustc.
edu.
cn(S.
Li).
www.
elsevier.
com/locate/gcaAvailableonlineatwww.
sciencedirect.
comGeochimicaetCosmochimicaActa74(2010)7160–7178conrmacausalrelationshipbetweenadakiteoradakite-likemagmatismandCu–Auoredeposits,assuggestedbyalargenumberofgeochemicalstudiesofore-bearingintrusionsinporphyrydistrictsofsubductionzonesaroundtheworld(e.
g.
,Thieblemontetal.
,1997;SajonaandMaury,1998;Oyarzunetal.
,2001;Imai,2002;Gonzalez-Partidaetal.
,2003;Raeetal.
,2004;Borisovaetal.
,2006;Chiaradiaetal.
,2009).
Petrogenesisoftheore-bearingadakiticintrusionsintheLYRB,however,hasbeenhotlydebatedinthepastdecade(Zhangetal.
,2001;Xuetal.
,2002;Wangetal.
,2003,2004,2004a,2004b,2006,2007a;Houetal.
,2007;Xieetal.
,2008;Lietal.
,2009;Lingetal.
,2009;Sunetal.
,2010).
Givensimilarbulkchemicalcompositionbuthigher87Sr/86Srandlower143Nd/144Ndrelativetoadakitesfromsubductedoce-anicslabs,theserockswereproposedtohaveoriginatedfrompartialmeltingofthedelaminatedlowercontinentalcrust(LCC)oftheYangtzeBlock,followedbyinteractionwiththemantleperidotites(Xuetal.
,2002;Wangetal.
,2003,2004a,2004b,2006,2007a).
Consequently,delaminationoftheLCChasbeenoftenconsideredanimportantmechanismthatcouldtransferCuandAufromthemantletothecrustviathedelaminatedLCC-derivedadakiticmagmas(Wangetal.
,2003,2004a,2004b,2006,2007a).
Someauthors,however,proposedothermechanismstoformtheseadakites,suchasfractionalcrystallizationofbasalticmagmaspossiblycou-pledwithcrustalcontamination(Wangetal.
,2004;Xieetal.
,2008;Lietal.
,2009),andpartialmeltingofsubductedoceaniccrust,basedontectonicconsiderations(LiandLi,2007;Lingetal.
,2009;Sunetal.
,2010).
SeveralearlyCretaceousdioriticintrusionsdevelopedalongthesouthTan-Lufaultzone(STLF),adjacenttotheLYRBincentral-easternChina,alsoshowhigh-Mgadakiticgeochemicalsignatures.
Derivationbypartialmelt-ingofdelaminatedLCCoftheYangtzeBlockhasbeenpro-posed,buttheseintrusionsshownorelationshipwithoredeposits(Huangetal.
,2008;Zietal.
,2008;Heetal.
,2009).
Thecontrastinglinkstomineralizationbetweenthesetwogroupsofhigh-MgadakitescallintoquestiontheproposedgeneticlinkbetweenLCC-derivedmagmasandCu–Aumineralization.
Becausetheore-bearingandore-barrenhigh-MgadakiteswereintrudedintotheYan-gtzeblockalongadjacentbeltsataboutthesametime,acomprehensivegeochemicalcomparisoncanelucidatedif-ferencesintheirpetrogenesis,andthusprovideanexplora-tionguideforCu–Audeposits,especiallyintheLYRB.
Inthisstudy,wereportnewchronological,elemental,andSr–Nd–Pbisotopicdataforfourore-barrenhigh-MgadakiticintrusionsfromtheSTLFandtworepresentativeore-bearinghigh-MgadakiticintrusionsfromtheLYRB.
Adetailedgeochemicalcomparisonbetweenthemisthenundertaken,inordertobetterconstraintheirpetrogenesisandevaluatetheirimplicationsforCu–Aumineralization.
2.
GEOLOGICALBACKGROUNDANDSAMPLEDESCRIPTIONSEasternChinacomprisesthreemaintectonicblocks:NorthChina,YangtzeandCathaysia(insetofFig.
1).
TheYangtzeBlockisseparatedfromtheNorthChinaBlocktothenorthbytheTriassicDabie-Suluorogenicbelt,andfromtheCathaysiablocktothesouthbyaNeoprote-rozoicsuture.
TheDabie-SuluorogenisthelargestknownultrahighpressuremetamorphicbeltontheEarth.
ItwasformedbynorthwardsubductionoftheYangtzeBlockbe-neaththeNorthChinaBlockintheTriassic(e.
g.
,Lietal.
,1993,2000).
TheSuluorogenistheeasternextensionoftheDabieorogen,displaced$500kmtothenorthbytheleft-lateralmovementoftheTan-LufaultduringtheLateMesozoictime(insetofFig.
1;Zhuetal.
,2005).
Thus,thesouthTan-Lufault(STLF)constitutesatectonicsuturebetweentheYangtzeBlockandtheNorthChinaBlock.
TheLYRBislocatedinthenortheastportionoftheYangtzeBlockincentral-easternChina,referringheretothemiddleandlowerreachesoftheYangtzeRiverextend-ing$400kmfromtheHubeiprovinceinthesouthwesttotheJiangsuprovinceinthenortheast(Fig.
1).
ThisbeltmakesuponeofthemostimportantmetallogenicbeltsinChinaandcomprisessevenmajordepositdistrictsfromsouthwesttonortheastalongtheYangtzeRiver(Fig.
1).
TheoredepositsthroughouttheLYRBmainlyconsistofskarn,porphyryandstrata-boundpolymetallic(Cu,Au,Fe,Mo,Zn,Pb,andAg)deposits(Xing,1999).
Datingoftheore-formingmineralsindicatesthattheyformedintheearlyCretaceous(143–134Ma)andtheskarn,porphyryandstrata-boundmineralizationwerecontemporaneous(Sunetal.
,2003;Maoetal.
,2006;Xieetal.
,2007).
Thehostintrusionsaremainlydioritic(adakite-like)rocksandhaveemplacementagesidenticaltotheformationagesofassociateddeposits($143–134Ma;Chenetal.
,1991;Sunetal.
,2003;Wangetal.
,2003,2004a,2006,2007a;Xieetal.
,2009;Lietal.
,2009),indicativeofspatialandtempo-ralassociationbetweenhostrocksandoredeposits.
Inthisstudy,ninesamplesfromtworepresentativeintrusions(TongguanshanandYueshan;Fig.
1)wereselectedforgeo-chemicalstudies.
Samplesaremainlyfreshquartzdiorite,withplagioclase(30–40%),quartz(20–25%),amphibole(15–25%),K-feldspar(10–15%),biotite(5–10%),andminorzirconandsphene.
TheSTLFrefersheretotheareasadjacenttothesouthsegmentoftheTan-LufaultzoneintheeasternYangtzeBlockandintheeasternmarginoftheDabieorogen,whichisadjacenttotheLYRBonthenorth(Fig.
1).
TheearlyCretaceousdioritictogranodioriticintrusionslocatedintheeasternmarginoftheDabieorogen,southernsectionoftheSTLF,havebeenidentiedashigh-Mgadakiticrocks,e.
g.
,Chituling,Guanghui,andMeichuanintrusions(Huangetal.
,2008;Heetal.
,2009;Liuetal.
2010)(Fig.
1).
InthenorthernsectionoftheSTLF,theearlyCre-taceousGuandian(Zietal.
,2008),Wawuliu,andWawuxueintrusions(Niuetal.
,2002)werealsocategorizedintohigh-Mgadakiticrocks(Fig.
1).
Inthisstudy,weselected16samplesfromfourintrusionsinthenorthernsectionoftheSTLFintheeasternYangtzeBlock,i.
e.
,Fangjiangzhu-ang,Damaocun,XiaolizhuangandQiaotouji(Fig.
1).
Theselocalitiesoccurassmallintrusionshavinganexpo-sureareaofabout8,4,2and10km2,respectively.
Samplesconsistmainlyofmonzoniteandquartzmonzonite,withplagioclase(25–40%),amphibole(20–30%),K-feldspar(15–25%),quartz(10–20%),biotite(5–10%),andminorHigh-MgadakitesandimplicationsforCu–Aumineralization7161zirconandsphene.
Theseintrusionsarenotspatiallyasso-ciatedwithmacigneousrocks,andallareore-barren.
3.
ANALYTICALMETHODSZircongrainswereseparatedfromthefourinvestigatedSTLFintrusionsusingmagneticandheavyliquidsepara-tionmethodsandnallybyhand-pickingunderabinocularmicroscope.
Approximately100–200grainsforeachsampleweremountedinanepoxyresindisctogetherwiththezirconstandardTEMORA(Blacketal.
,2004).
PriortoU–Th–Pbisotopeanalysis,allgrainswerephotographedundertransmitted-andreected-light,andsubsequentlyexaminedusingthecathodoluminescence(CL)imagetech-niquetorevealtheinternalstructuresofindividualzircongrains.
IsotopicanalysiswasperformedusingaCameca-IMS1280intheSIMScenteroftheInstituteofGeologyandGeophysics,ChineseAcademyofScience,followingtheprocedureoutlinedinLietal.
(2010).
Thespotsizeofanionbeamwas$30lm.
MeasuredisotopicratioswerecorrectedforcommonPbusingthemeasurednon-radio-genic204Pb.
U–PbageswerecalculatedusingtheISOPLOTprogramofLudwig(2001).
MajorelementsfortheSTLFsampleswereanalyzedbywet-chemistrymethodsattheLangfanglaboratoryofRegionalGeologicalExplorationBureauofHebeiProvince,China.
Lossesofignition(LOI)weredeterminedbygravi-metricmethods.
Analyticaluncertaintiesforthemajorityofmajorelementswerebetterthan1%.
MajorelementsfortheLYRBsampleswereanalyzedinGo¨ttingenusingaPANalyticalAXIOSadvancedsequentialX-rayspectrome-ter.
Thelong-termanalyticalprecisionwasbetterthan1–2%.
Fortraceelementdetermination,whole-rockpowder($50mg)wasdissolvedinamixtureofHF+HNO3at190°CusingParrbombsfor$72h.
Dissolvedsamplesweredilutedto50mlusing1%HNO3beforeanalyses.
Analyseswereaccomplishedusinganinductivelycoupledplasmamassspectrometer(ICP-MS)attheUniversityofScienceandTechnologyofChina.
DetailedanalyticalproceduresweredescribedinHouandWang(2007).
Reproducibilitywasbet-terthan5%forelementswithconcentrations>10ppmandlessthan10%forthose15spotsyieldedconcordantU–Pbages,withweightedmean206Pb/238Uagesof129.
1±1.
1Ma,128.
1±1.
2Ma,and125.
1±1.
3MafortheFangjiangzhuang,DamaochunandXiaolizhuangintrusions,respectively(Fig.
2a–c).
Analysesof11spotsofzirconsfromtheQiao-toujiintrusionyieldedlargeuncertaintieson207Pb/235Uages(Fig.
2d),whichisprobablyduetolowaccumulatedamountsofradiogenic207Pbintheseyoung(Phanerozoic;seebelow),low-Uzircons(23–65ppm;SupplementaryTableA1).
Nevertheless,allanalysesgavehomogeneous206Pb/238Uageswithaweightedmeanof131.
7±1.
8Ma(Fig.
2d),whichisconsideredasthecrystallizationtimeoftheQiaotoujiintrusion.
ZircondatingresultsandCLimagesdidnotrevealanyinheritedzirconsinanyofthefourintrusions.
Insummary,zirconU–PbdatingresultsofthefourinvestigatedSTLFintrusionsarecomparabletothoseofpreviouslyreportedhigh-MgadakiticintrusionsfromtheSTLF(Huangetal.
,2008;Zietal.
,2008;Heetal.
,2009),whichhavezirconU–Pbagesof132–125Mawithapeakat132–130Ma.
ThereappearstobeageographicFig.
2.
ZirconU–PbconcordiadiagramsandCLimagesofrepresentativezircongrainsfor(a)Fangjiangzhuang,(b)Damaochun,(c)Xiaolizhuang,and(d)Qiaotoujiintrusions.
DataarefromSupplementaryTableA1.
Theuncertaintiesofagesarereportedat1r.
High-MgadakitesandimplicationsforCu–Aumineralization7163Table1Major(wt.
%)andtraceelement(ppm)concentrationsofadakiticintrusionsfromtheSTLFandtheLYRBreportedinthisstudy.
LocationSTLFLYRBSampleDMCDMCDMCDMCXLZXLZXLZXLZFJZFJZFJZFJZQTJQTJQTJQTJYSYSYSYSYSYSTGSTGSTGSNo.
12571246124623451234572237SiO258.
962.
062.
562.
665.
966.
066.
166.
160.
461.
760.
560.
356.
263.
462.
562.
259.
857.
459.
357.
559.
057.
862.
863.
7861.
6TiO20.
810.
720.
690.
680.
520.
490.
430.
470.
650.
680.
750.
660.
620.
550.
590.
660.
620.
780.
680.
770.
690.
770.
540.
550.
57Al2O315.
615.
215.
115.
215.
115.
115.
215.
314.
614.
614.
514.
715.
614.
414.
814.
016.
216.
616.
216.
716.
216.
616.
516.
516.
4TFe2O36.
615.
665.
425.
283.
583.
463.
303.
395.
945.
595.
916.
045.
914.
645.
145.
534.
986.
135.
246.
055.
335.
912.
364.
44.
55MnO0.
110.
090.
090.
090.
060.
060.
050.
050.
100.
090.
090.
100.
100.
080.
080.
090.
090.
100.
090.
100.
090.
100.
070.
070.
06MgO3.
453.
022.
743.
071.
972.
302.
212.
334.
573.
854.
174.
836.
053.
863.
934.
283.
03.
212.
873.
392.
473.
431.
431.
471.
63CaO4.
794.
033.
933.
573.
903.
653.
433.
265.
214.
695.
134.
894.
293.
774.
274.
275.
095.
774.
885.
714.
695.
657.
674.
654.
64Na2O4.
094.
054.
054.
134.
324.
174.
444.
403.
943.
983.
863.
864.
553.
924.
153.
854.
665.
04.
754.
944.
754.
935.
294.
834.
74K2O3.
484.
144.
144.
173.
623.
843.
373.
483.
263.
813.
403.
513.
703.
963.
443.
702.
662.
913.
192.
883.
32.
980.
532.
682.
76P2O50.
410.
340.
320.
330.
200.
190.
180.
370.
350.
360.
390.
350.
350.
250.
280.
290.
340.
470.
380.
440.
380.
460.
250.
260.
27H2O0.
420.
330.
390.
460.
180.
270.
240.
160.
590.
520.
340.
51.
620.
440.
430.
45ndndndndndndndndndLOI0.
950.
890.
840.
920.
830.
851.
120.
811.
000.
770.
941.
132.
430.
870.
811.
03ndndndndndndndndndP98.
899.
799.
599.
799.
899.
999.
799.
899.
699.
899.
399.
999.
499.
499.
699.
597.
498.
397.
698.
597.
098.
697.
599.
297.
2K2O/Na2O0.
851.
021.
021.
010.
840.
920.
760.
790.
830.
960.
880.
910.
811.
010.
830.
960.
570.
580.
670.
580.
690.
600.
100.
550.
58Mg#51525054525757586158596267626061555152534854554042Ba1284120911481143121116701201125717581725190619121983177515631673112711671110119511961191132212221089Rb111.
0134.
0137.
0139.
080.
092.
381.
783.
471.
477.
973.
074.
688.
377.
669.
874.
960.
048.
061.
049.
063.
051.
050.
161.
073.
0Sr9497947697757437828208079117809219391040816876793148717631498170214451659113811211101Y17.
117.
718.
117.
411.
110.
410.
110.
715.
515.
915.
416.
514.
313.
815.
016.
512.
215.
314.
815.
316.
414.
814.
915.
316.
2Sc14.
412.
911.
9116.
917.
46.
847.
1714.
113.
614.
115.
414.
91111.
713.
1ndndndndndndndndndCo20.
516.
515.
715.
510.
810.
810.
110.
320.
215.
419.
921.
324.
416.
018.
519.
815.
020.
017.
018.
014.
018.
05.
08.
09.
0Cr95.
249.
450.
948.
459.
350.
766.
146.
2172154163185263151166176432531381933121519Ni49.
828.
927.
925.
732.
229.
345.
225.
967.
356.
565.
172.
012164.
67880.
1221817211222121010Zr30.
162.
8296.
0212.
0158.
0147.
0166.
0148.
0164.
0139.
0183.
0220.
0162134177163144182158131170180195189189Nb11.
514.
413.
613.
310.
18.
68.
810.
18.
98.
59.
09.
37.
99.
410.
411.
63.
75.
16.
84.
38.
14.
311.
210.
111.
6Th11.
413.
41312.
66.
086.
17.
067.
667.
297.
737.
948.
574.
853.
18.
38.
38.
98.
010.
07.
111.
38.
27.
70.
96.
0Pb24.
524.
726.
124.
216.
6181918.
421.
721.
722.
524.
820.
824.
714.
916.
61514171515184710V1281091201076773686913010713414112899106122112146132153124155596465Hf1.
11.
76.
44.
63.
53.
33.
73.
43.
73.
24.
25.
03.
73.
24.
13.
93.
54.
74.
53.
244.
25.
14.
94.
8Cs5.
65.
76.
36.
01.
21.
31.
41.
43.
13.
02.
82.
71.
41.
530.
80.
82ndndndndndndndndNdTa0.
610.
770.
740.
680.
760.
630.
640.
790.
540.
520.
570.
560.
360.
540.
640.
75ndndndndndndndndNdU3.
33.
22.
92.
71.
51.
61.
92.
11.
92.
01.
91.
81.
71.
75.
62.
42.
42.
12.
61.
932.
220.
31.
5La45.
153.
349.
951.
933.
331.
330.
234.
737.
237.
036.
538.
442.
126.
437.
934.
2334542395144303634Ce86.
7101.
094.
395.
657.
453.
852.
759.
468.
564.
866.
970.
779.
453.
670.
167.
767.
093.
085.
084.
098.
085.
063.
068.
070.
0Pr9.
711.
110.
410.
46.
05.
65.
56.
17.
67.
67.
57.
99.
06.
47.
87.
9ndndndndndndndndNdNd38.
142.
139.
238.
921.
520.
319.
821.
529.
429.
328.
830.
934.
925.
229.
531.
030.
841.
93840.
542.
839.
82830.
134.
2Sm6.
87.
16.
66.
53.
43.
23.
13.
44.
94.
94.
95.
25.
84.
44.
95.
46.
18.
67.
88.
28.
58.
36.
06.
47.
4Eu1.
91.
71.
51.
50.
950.
970.
950.
961.
41.
31.
41.
51.
61.
21.
41.
4ndndndndndndndndnd7164S.
-A.
Liuetal.
/GeochimicaetCosmochimicaActa74(2010)7160–7178agestructureamongtheseintrusions,i.
e.
,intrusionsfurtherapartfromtheTan-Lufault(e.
g.
,DamaochunandXiaolizhuang)areyoungerthanthoselocatedclosertotheTan-Lufault(Fig.
1).
Notably,ore-barrenintrusionsfromtheSTLFareslightlyyoungerthantheore-bearingintrusionsfromtheLYRB.
4.
2.
MajorandtraceelementcompositionsTheintrusionsfromtheSTLFstudiedherearedioriticwithSiO2contentsrangingfrom56.
2to66.
1wt.
%(Table1).
Theycanbeclassiedasmonzoniteandquartzmonzonite(Fig.
3)andbelongtothesub-alkalineseriesbasedontheclassicationofIrvineandBaragar(1971).
TheyhaveAl2O3contentsof14.
0–15.
6wt.
%andK2O/Na2Orangingfrom0.
81to1.
02.
Theseintrusionsarecharacterizedbyprominentenrichmentinlightrareearthelements(LREE)relativetoheavyREE(HREE)with(La/Yb)Nrangingfrom16.
6to26.
7(Fig.
4).
Theyareenrichedinlargeionlithophileelements(LILEs)anddepletedinhigheldstrengthelements(HFSEs),withpronouncednegativeanomaliesofNb,Ta,andTiandpositiveanomaliesofPb(Fig.
4).
ThehighSr(743–1040ppm),lowY(10.
1–18.
1ppm)andHREEcontents(e.
g.
,Yb=0.
90–1.
48ppm)andresultanthighSr/Y(42.
5–81.
2)and(La/Yb)NjointlyindicatethattheSLTFintrusionsstudiedherecanbeclas-siedasadakiticrocks(Fig.
5),asdenedbyDefantandDrummond(1990).
Inaddition,theyhaverelativelyhighMg#(50–67),MgO(1.
97–6.
05wt.
%),Cr(46–263ppm),andNi(26–121ppm)contents(Table1).
SamplesfromtheLYRBstudiedhereexhibitsmallervariationsinmajorelementcompositionthantheSTLFsamples(Table1).
Theycanbemainlygroupedasdioriteandmonzoniteandbelongtothealkalineorsub-alkalineseries(Fig.
3).
TheyhaverelativelyhighAl2O3contentsof16.
2–16.
7wt.
%andlowK2O/Na2Oof0.
10–0.
69.
AllsamplesexhibithighSr(1101–1763ppm),lowY(12.
2–16.
4ppm)andYb(0.
7–1.
8ppm)contentsandhighSr/Y(73.
3–121.
9)and(La/Yb)N(12.
8–23.
2;onesample=36.
9;Table1),whichfallintheadakiteeld(Fig.
5).
Theseintru-sionshavemoderatelyhighMg#(40–55)andMgO(1.
43–3.
43wt.
%),Cr(12–43ppm)andNi(10–22ppm)contents(Table1).
4.
3.
Sr–Nd–PbisotopiccompositionsTheSTLFintrusionsstudiedherehaveinitialSrandNdisotopecompositionswith(87Sr/86Sr)i=0.
70569to0.
70696andeNd(t)=–17.
4to–11.
4(Table2).
SamplesfromtheTongguanshanintrusionintheLYRBhave(87Sr/86Sr)ifrom0.
70720to0.
70730andeNd(t)from–10.
8to–11.
4;samplesfromtheYueshanintrusionshowslightlylower(87Sr/86Sr)i(0.
70648–0.
70670)andhighereNd(t)(–7.
1to–8.
1),comparabletopreviouslyreporteddatafortheYue-shanintrusion((87Sr/86Sr)i=0.
7064–0.
7066;eNd(t)=–6.
6to–8.
7;Wangetal.
,2004a).
InthisstudywereportnewPbisotopicdataforintrusionsfromboththeSTLFandLYRB(Table3).
SamplesfromtheSTLFarecharacterizedbylowradiogenicPbisotopeswith206Pb/204Pb(t)=16.
26–16.
38,207Pb/204Pb(t)=15.
34–15.
40,Gd5.
135.
094.
714.
592.
482.
252.
182.
273.
633.
513.
563.
913.
93.
163.
503.
81ndndndndndndndndndTb0.
630.
650.
610.
580.
330.
30.
30.
320.
480.
480.
480.
520.
490.
430.
460.
52ndndndndndndndndndDy3.
523.
473.
63.
421.
971.
931.
871.
982.
953.
042.
983.
242.
872.
682.
893.
22ndndndndndndndndndHo0.
610.
610.
620.
590.
380.
350.
340.
350.
530.
530.
520.
570.
490.
460.
520.
55ndndndndndndndndndEr1.
441.
511.
621.
420.
980.
940.
930.
971.
321.
441.
421.
541.
171.
251.
261.
49ndndndndndndndndndTm0.
220.
230.
210.
210.
150.
130.
130.
130.
190.
20.
190.
210.
170.
170.
190.
20ndndndndndndndndndYb1.
371.
481.
451.
421.
070.
910.
900.
971.
361.
351.
331.
431.
131.
141.
311.
381.
311.
501.
302.
01.
831.
401.
520.
701.
90Lu0.
210.
220.
210.
20.
150.
140.
140.
140.
190.
20.
190.
210.
150.
170.
180.
20ndndndndndndndndndEu/Eu*0.
930.
720.
700.
740.
991.
231.
231.
131.
040.
971.
071.
030.
931.
030.
990.
88ndndndndndndndndndSr/Y55.
544.
942.
544.
566.
975.
281.
275.
458.
849.
159.
856.
972.
759.
158.
448.
1121.
9115.
2101.
2111.
288.
1112.
176.
473.
368.
0(La/Yb)N23.
625.
824.
726.
222.
324.
724.
125.
719.
619.
719.
719.
326.
716.
620.
817.
818.
221.
523.
214.
020.
322.
514.
336.
912.
8Ce/Pb3.
544.
093.
613.
953.
462.
992.
773.
233.
162.
992.
972.
853.
822.
24.
74.
14.
56.
65.
05.
66.
54.
715.
89.
77.
0Mg#=100molarMg/(Mg+TotalFe);Eu/Eu*=EuN/(SmNGdN)1/2,Ndenotesthechondritenormalization(SunandMcDonough,1989).
nd=notdetermined.
High-MgadakitesandimplicationsforCu–Aumineralization7165and208Pb/204Pb(t)=36.
56–36.
90,whicharesimilartopreviouslyreporteddataoftheChitulinghigh-MgadakiticintrusionsfromtheSTLF(206Pb/204Pb(t)=15.
81–16.
29,207Pb/204Pb(t)=15.
17–15.
30and208Pb/204Pb(t)=36.
62–37.
35;Huangetal.
,2008).
PlagioclasesfromtheYueshanandTongguanshansamplesintheLYRBdisplayhigherradiogenicPbwith206Pb/204Pb=17.
74–17.
90,207Pb/204Pb=15.
48–15.
55,and208Pb/204Pb=37.
94–38.
06.
5.
DISCUSSIONThechemicalandisotopicdatafortheSTLFandLYRBintrusionsreportedinthisstudyandintheliteraturearecompiledherefordiscussion.
Generally,thesetwogroupsofintrusionshaveasimilarSiO2concentrationrange(Fig.
3)withadakiticsignaturethatextendsthroughouttheentirecompositionalrange(Fig.
5).
However,adetailedgeochemicalcomparisonbetweenthemrevealsremarkabledierences(Table4),suggestingthattheyhavedistinctpet-rogenesis,althoughtheywerealmostcontemporaneouslyintrudedintotheYangtzeBlock.
Thegeochemicaldier-encesandtherelevantinterpretationsforthesedierences,Fig.
3.
Totalalkalis(Na2O+K2O)versusSiO2diagramforinvestigatedintrusionsfromtheLYRBandSTLF.
Thedashedlinerepresentsthedivisionbetweenalkalineandsub-alkaline(IrvineandBaragar,1971).
GD:graniticdiorite;MD:monzoniticdiorite;M:monzonite;QM:quartzmonzonite.
Dataarefromthisstudy(Table1)andtheliterature(SupplementaryTablesA2andA3;Niuetal.
,2002;Xuetal.
,2002;Wangetal.
,2001,2002,2003,2004a,2004b,2006,2007a;Huangetal.
,2008;Zietal.
,2008;Heetal.
,2009;Lietal.
,2009).
Fig.
4.
Chondritenormalizedrareearthelementpatterns(aandb)andprimitivemantlenormalizedtraceelementpatterns(candd)forinvestigatedintrusionsfromtheLYRBandSTLF.
ThenormalizingvaluesarefromSunandMcDonough(1989).
LCCisfromRudnickandGao(2003)andN-MORBisfromSunandMcDonough(1989).
DatasourcesfortheLYRBandSTLFsamplesarethesameasinFig.
3.
Fig.
5.
Sr/YversusYclassicationdiagramforinvestigatedintrusionsfromtheLYRBandSTLF(afterDefantandDrum-mond,1990).
DatasourcesarethesameasinFig.
3.
7166S.
-A.
Liuetal.
/GeochimicaetCosmochimicaActa74(2010)7160–7178petrogenesisofthesetwogroupsofadakites,andtheirimplicationsforCu–Aumineralization,arediscussedbelow.
5.
1.
Geochemicaldierencesandpetrogenesis5.
1.
1.
K2OcontentsandK2O/Na2OratiosThemajorgeochemicaldierencesbetweentheLYRBandSTLFhigh-MgadakitesaresummarizedinTable4.
TheLYRBadakitesaresodicwithNa2O=3.
2to7.
2wt.
%andK2O=0.
5to4.
1wt.
%.
TheirK2O/Na2Ora-tiosvaryfrom0.
10to0.
89withanaverageof0.
6.
ThebroadK2O/Na2Orange,coupledwithhighAl2O3contents(average16.
1wt.
%),generallyagreewithoceanicslab-de-rivedadakites(Fig.
6).
Thesecharacteristicsarealsosimilartothoseofexperimentalpartialmeltsgeneratedbymeltingoflow-KMORBatpressuresof1–2GPaandtemperaturesof61100°C(Rappetal.
,1991;WintherandNewton,1991;SenandDunn,1994;WolfandWyllie,1994;RappandWatson,1995;Prouteauetal.
,2001).
Incontrast,theSTLFadakitesaremostlypotassicwithdistinctlyhigherK2Ocon-tents(3.
3–5.
4wt.
%)andK2O/Na2O(0.
65–1.
96;average1.
0)(Fig.
6).
Thesefeaturesaresimilartothoseoflow-MgadakiticrocksfromtheDabieorogen(Fig.
6),whichTable2Whole-rockSrandNdisotopicdataofadakiticintrusionsfromtheSTLFandtheLYRBreportedinthisstudy.
SampleNo.
RbppmSrppm87Rb/86Sr87Sr/86Sr2r(87Sr/86Sr)iSmppmNdppm147Sm/144Nd143Nd/144Nd2reNd(t)STLFDMC-1103.
7942.
90.
31830.
70730120.
706716.
39435.
790.
10800.
511841114.
2DMC-2126.
1800.
20.
45610.
70770110.
706716.
43037.
900.
10260.
511801014.
8DMC-5122.
9768.
10.
46310.
70772100.
706866.
34536.
740.
10440.
511821114.
5DMC-7125.
7757.
30.
48030.
70784110.
706966.
33737.
500.
10220.
511821314.
3XLZ-177.
85784.
80.
28710.
70665130.
706123.
47220.
880.
10050.
511941312.
1XLZ-283.
86776.
00.
31280.
70665130.
706073.
18819.
370.
09950.
511951311.
8XLZ-475.
00828.
70.
26190.
7065590.
706072.
95418.
550.
09630.
511971411.
4XLZ-675.
30808.
80.
26940.
70654100.
706043.
14720.
290.
09380.
511901412.
7FJZ-166.
69957.
00.
20170.
70629100.
705924.
88128.
790.
10250.
511791515.
0FJZ-273.
97847.
70.
25250.
70615110.
705694.
63627.
860.
10060.
511761115.
6FJZ-465.
87953.
00.
20000.
70627110.
705904.
43326.
460.
10130.
511761115.
7FJZ-666.
34958.
20.
20040.
70628100.
705914.
62727.
210.
10280.
511751315.
8QTJ-282.
6910970.
21820.
70716110.
706756.
58139.
780.
10000.
511751215.
8QTJ-372.
60863.
90.
24310.
70658100.
706754.
19524.
090.
10530.
511711316.
7QTJ-462.
68861.
80.
21050.
70666140.
706274.
45326.
480.
10170.
511671317.
4QTJ-567.
42806.
90.
24180.
70668120.
706235.
20030.
200.
10410.
511691517.
0LYRBYS-167.
5613460.
14520.
70669110.
706414.
22025.
550.
09990.
51214108.
1YS-353.
5214140.
10950.
70670130.
7065313.
2682.
700.
09700.
51218107.
2TGS-250.
1710410.
03260.
70728120.
707209.
72952.
950.
11110.
512011110.
8TGS-364.
19929.
60.
19980.
70769100.
707348.
73847.
690.
11080.
511981011.
3TGS-774.
36944.
60.
22770.
70769110.
7072310.
1753.
340.
11540.
511981211.
4InitialSrandNdisotopicratiosforSTLFsamplesarecalculatedbasedonthezirconU–Pbagesobtainedinthisstudy,andforLYRBsamplesarecalculatedbasedont=136Ma(Wangetal.
,2004a).
Table3PbisotopicdataofadakitesfromtheSTLFandtheLYRBreportedinthisstudy.
SampleNo.
206Pb/204Pb2r207Pb/204Pb2r208Pb/204Pb2r206Pb/204Pb(t)207Pb/204Pb(t)208Pb/204Pb(t)STLFDMC-716.
485215.
364236.
941316.
34815.
35836.
734XLZ-616.
389315.
404336.
725616.
25815.
39836.
564FJZ-216.
494315.
352337.
043616.
38415.
34636.
900FJZ-616.
454115.
348137.
008216.
36615.
34336.
869LYRBYS-117.
850315.
532238.
051617.
85015.
53238.
051YS-517.
898115.
503138.
034317.
89815.
50338.
034TGS-217.
828415.
545438.
058817.
82815.
54538.
058TGS-717.
742415.
479337.
940717.
74215.
47937.
940InitialPbisotopicratiosoftheSTLFsamplesarecalculatedusingtheU,Th,andPbcontentsdeterminedbyICP-MSinthisstudyandthezirconU–Pbagesobtainedinthisstudy(TableA1).
TheLYRBsamplesweredeterminedforplagioclasecommonPb.
High-MgadakitesandimplicationsforCu–Aumineralization7167werederivedfrompartialmeltingofeclogiticLCCrocksoftheover-thickenedmountainroot(Wangetal.
,2007b;Heetal.
,2010).
ThedierencesinK2OcontentsandK2O/Na2ObetweentheLYRBandSTLFadakitescanbeexplainedbythepres-enceorabsenceofamphiboleinsources.
Becauseamphi-boleisthemainK-bearingmineral,havingmuchhigherK2Othangarnetandclinopyroxeneinresidualphasesdur-inghigh-pressuremeltingofmetabasalticrocks(e.
g.
,SenandDunn,1994;RappandWatson,1995),thepresenceofamphiboleintheresiduecanbuertheKconcentrationinthemeltandthus,producelow-Ksilicicmelts.
Forin-stance,oceanicadakiteswithNa-enrichmentandK-deple-tion(lowK2O/Na2O)areinterpretedtobeproductsofpartialmeltingoftheMORBcompositions(e.
g.
,amphibo-lites)withgarnet+clinopyroxene+amphiboleintheresid-ual(DefantandDrummond,1990;Rappetal.
,1991;SenandDunn,1994;RappandWatson,1995;Martinetal.
,2005).
Inaddition,someNa-richadakiticrockswerealsosuggestedtoresultfrompartialmeltingofnewlyunderplat-edbasalticmaterialwithresiduesofgarnet,clinopyroxene,andamphibole(PetfordandAtherton,1996).
Incontrast,givenaneclogiteresidualassemblagewithoutamphibole,partialmeltingofdrymacLCCrocks(e.
g.
,eclogites)wouldbeexpectedtogeneratehighKmelts(HuangandHe,2010).
Accordingly,thedierencesinK2OandK2O/Na2ObetweentheLYRBandSTLFadakitesmayreectthekeyroleofwaterduringmelting,asonlywater-bearingmeltinghasamphiboleasaresidualphase.
TheSTLFadak-itescouldoriginatefromadryeclogiticLCC,whereastheLYRBadakiteslikelyoriginatedfrompartialmeltingofhy-drousoceaniccrustwithresidualamphiboleduringmelting.
5.
1.
2.
MgO,Cr,Ni,andMg#BoththeLYRBandSTLFadakitesshowrelativelyhigherMg#andMgOcontentsthanthepristineexperi-mentalmelts(Rappetal.
,1999)(Figs.
7and8).
Forexample,almostalltheLYRBadakitesplotintheeldofslab-derivedadakitesthatareinferredtohaveinteractedwiththemantlewedgeduringascent(e.
g.
,DefantandKepezhinskas,2001)(Fig.
8).
However,atagivenSiO2theSTLFadakitesdisplayhigherMg#,MgO,Cr,andNicontentsthantheLYRBadakitesandoceanicslab-derivedadakites(Figs.
7and8).
Inparticular,theirMg#(upto67),Cr(upto263ppm)andNi(upto121ppm)areequaltoorevenhigherthanthoseoflateMesozoicbasalticigneousrocksintheadjacentLYRBarea(e.
g.
,Mg#SSO(sulde-sulfuroxidebuer),itmustcontainacom-ponentofmeltedoceaniccrust,i.
e.
,adakiticmeltsorsuper-criticaluids.
ThegeneticlinksbetweenadakitesandtheirassociatedporphyryCu–AudepositsintheLYRBremainasubjectofconsiderabledebate.
Thisismainlyduetothelargedis-crepancybetweenpetrogeneticinterpretationsofthehostadakites.
Recently,severalstudies(Wangetal.
,2003,2004a,2004b,2007a)performedsystematicgeochemicalcomparisonsbetweentheore-barrenlow-Mgadakiticgranitoidsincentral-easternChina(e.
g.
,intheDabieoro-gen;Fig.
1)andtheLYRBadakitestoexplainthegenesisofCu–AudepositsintheLYRB.
Theseauthorsconcludedthatthelow-MggranitoidsderiveddirectlyfromLCCmelt-inghadnotpassedthroughthefertilemantle,sothattheyarenotabletogenerateCu–Aumineralization.
Incontrast,theLYRBadakites,whichmighthaveascendedthroughthefertilemantleviaLCCdelaminationasproposedbytheseauthors,couldhavetransferredCuandAufromthemantletothecrust.
SuchanexplanationismainlybasedonahypothesisthattheLCC-derivedmagmasmayalsocarrytheoxidizingpotential,e.
g.
,havingelevatedFe2O3content(Wangetal.
,2006,2007a).
Thisconclusion,how-ever,ischallengedbytheobservationoftheore-barrenhigh-MgadakitesfromtheSTLF.
Asdiscussedinthisstudy,theSTLFhigh-MgadakitesmostlikelyoriginatedfrompartialmeltingoftheYangtzeFig.
12.
InitialPbisotopiccompositionsofadakitesfromtheLYRBandtheSTLF.
Dataarefromthisstudy(Table3)andliterature(SupplementaryTableA5;Chenetal.
,1993;Xuetal.
,2002;Wangetal.
,2006;Huangetal.
,2008;Zhaoetal.
,2010).
EarlyCretaceousmacigneousrocksintheLYRB(Yanetal.
,2008)arealsoshownforcomparison.
TheNorthernHemisphereReferenceline(NHRL)isafterZindlerandHart(1986).
DatasourcesforMORBandmarinesedimentsarethesameasinFig.
11.
High-MgadakitesandimplicationsforCu–Aumineralization7173LCCviadelamination,butnoneofthemshowanyrelation-shipwithCu–Auoredeposits(Huangetal.
,2008;Zietal.
,2008;Heetal.
,2009;thisstudy).
ThissuggeststhatalthoughtheLCC-derivedmagmasmayhaveinteractedwiththemantle,theydidnotgiverisetoCu–Auminerali-zation.
ItisnotsurprisingbecausethethickenedmacLCCshouldberelativelydryduetoitsgenerallithologyofgran-ulite-oreclogite-faciesrocks,whichgenerallycontainlittleH2O(e.
g.
,Xiaetal.
,2006;Yangetal.
,2008),particularlyinthecasefavoringdelamination.
Thisisconsistentwithdis-tinctlyhighK2O/Na2OandMgO(Cr,Ni)intheSTLFhigh-Mgadakitessuggestingdryeclogitesources.
Wethere-foreconcludethatadakiticmeltsderivedfrompartialmelt-ingofthedelaminatedorrecycledLCCarenotfavorableforCu–Aumineralization.
Insharpcontrast,theLYRBadakitescouldbegeneti-callyassociatedwithpartialmeltingofsubductedalteredoceaniccrust.
Thus,thepartialmeltspotentiallyhavehighoxygenfugacity(fo2)(Jugoetal.
,1999;Mungall,2002;KelleyandCottrell,2009).
Studiesoftraceelementalcom-positionsofzirconsfromtheLYRBadakitesshowhighpo-sitiveCeanomalies(Xieetal.
,2009),alsosuggestingmagmaformationatanoxidizedenvironment.
Conse-quently,thehighfo2wouldfacilitatedestabilizationofmantlesuldestoreleasetheirCu–Authataremainlyhostedinsuldes,andcontributetosubsequentenrichmentofCu–Auinthemagmas.
Thelarge-scaleCu–AuoredepositsintheLYRBcouldthusbeduetooceanicslabsubductionandmelting.
Thenewunderstandingofthege-neticlinksbetweenadakitesandrelevantCu–AudepositsintheLYRBincentral-easternChinaisalsoconsistentwithmanystudiesofore-bearingadakitesinmodernsubductionzonesaroundtheworld(Thieblemontetal.
,1997;SajonaandMaury,1998;Oyarzunetal.
,2001;Imai,2002;Gonz-alez-Partidaetal.
,2003;Raeetal.
,2004).
ThisprovidesanimportantexplorationguideforCu–Audeposits,especiallyintheLYRB.
6.
CONCLUSIONSAcomprehensivegeochemicalcomparisonbetweenearlyCretaceousore-bearinghigh-MgadakitesfromtheLYRBandore-barrenhigh-MgadakitesfromtheadjacentSTLFincentral-easternChinarevealsdierentpetrogene-sis,whichprovidesimportantinsightsintothegeneticrela-tionshipsbetweenadakitesandCu–Aumineralization.
(1)TheSTLFadakiteshavetheancientLCC-likeSr–Nd–Pbisotopicsignatureandexhibitagoodposi-tivecorrelationbetweenhighSr/Yand(La/Yb)N.
ThehighK2O,Mg#,MgO,CrandNiandlowCe/PbandSr/LaratiosindicatethattheirinitialmagmaswerederivedfrompartialmeltingofdelaminatedeclogiticLCCunderdrycondition,followedbyinter-actionwiththemantle.
(2)TheLYRBadakiteshaveanEM2-likeSr–Nd–Pbisotopicsignatureandrelativelylow(La/Yb)NbutvariablehighSr/Y,Sr/LaandCe/Pbratios,distinctfrommagmasfromeitherthethickenedordelami-natedLCCbutsimilartooceanicadakitesfromslabmelting.
Inaddition,theirlowerK2O/Na2O,Mg#andMgO,Cr,andNicontentsatgivenSiO2com-paredtotheSTLFadakitesarealsosimilartooce-anicadakites.
TheLYRBadakiteswerederivedfrompartialmeltingofhydrousalteredoceaniccrustwithsediments,notsupportingaderivationbypar-tialmeltingofthedelaminatedLCCproposedinpre-viousstudies.
(3)TheearlyCretaceoushigh-Mgadakitesincentral-easternChinamayberelatedtosubductionofthePacicplate.
MeltingofthesubductedoceaniccrustproducedadakiticmagmatismintheLYRB.
North-westernsubductionoftheIzanagiplateinearlyCre-taceousinducedthedevelopmentofTan-Lufaultandtriggeredthefounderingofthelowercrustalfragmentsnearthefaultzone.
ThedelaminatedLCCwaslaterpartiallymeltedtogeneratetheSTLFhigh-Mgadakites.
(4)TheCu–AumineralizationintheLYRBwaslikelyrelatedtooceanicsubductionandslabmelting.
WhiletheancientLCC-derivedmagma,regardlessofhav-inginteractedwiththemantleornot,doesnotfavorCu–Aumineralization.
ACKNOWLEDGMENTSWearegratefultoXiaoyongYang,YilinXiao,ShichaoAnfortheirhelpwitheldinvestigations.
WethankZhenhuiHou,A.
Reitz,G.
Hartmann,ChaofengLi,JinrongLi,ShizhenLi,XianhuaLi,QiuliLiandYuLiuforassistancewithelementanalysis,Sr,NdandPbisotopemeasurementandzirconU-Pbdating,andJingaoLiufordiscussion.
Wethankthreeanony-mousreviewersforconstructivecommentsandRichWalkerforecienteditingthathavehelpedimprovethemanuscript.
WespeciallythanktheanonymousreviewerforpolishingEng-lish.
S.
-A.
LiuthanksFang-ZhenTengforhelpfuldiscussiononanearlydraftofthispaper.
ThisworkwassupportedbyAcademyofScienceofChina(No.
KZCX1-YW-15-3),theStateKeyBasicResearchDevelopmentProgram(No.
2009CB825002)andNationalNatureScienceFoundationofChina(No.
90814008and40773013).
APPENDIXA.
SUPPLEMENTARYDATASupplementarydataassociatedwiththisarticlecanbefound,intheonlineversion,atdoi:10.
1016/j.
gca.
2010.
09.
003.
REFERENCESAguillon-RoblesA.
,CaimusT.
,BellonH.
,MauryR.
C.
,CottonJ.
,BourgoisJ.
andMichaudF.
(2001)LatemioceneadakitesandNb-enrichedbasaltsfromVizcainoPeninsula,Mexico:indica-torsofEastPacicRisesubductionbelowsouthernBajaCalifornia.
Geology29,531–534.
AltJ.
C.
,HonnorezJ.
,LaverneC.
andEmmermannR.
(1986)Alterationofa1kmsectionthroughtheupperoceaniccrust,DSDPHole504B:themineralogy,chemistry,andevolutionofbasalt-seawaterinteractions.
J.
Geophys.
Res.
91,10309–10335.
BallardJ.
R.
,PalinJ.
M.
andCampbellI.
H.
(2002)RelativeoxidationstatesofmagmasinferredfromCe(IV)/Ce(III)in7174S.
-A.
Liuetal.
/GeochimicaetCosmochimicaActa74(2010)7160–7178zircon:applicationtoporphyrycopperdepositsofnorthernChile.
Contrib.
Mineral.
Petrol.
144,347–364.
BeateB.
,MonzierM.
,SpikingsR.
,CottonJ.
,SilvaJ.
,BourdonE.
andEissenJ.
(2001)Mio–PlioceneadakitegenerationrelatedtoatsubductioninsouthernEcuador:theQuimsacochavolcaniccenter.
EarthPlanet.
Sci.
Lett.
192,561–570.
BlackL.
P.
,KamoS.
L.
,AllenC.
M.
,DavisD.
W.
,AleinikoJ.
N.
,ValleyJ.
W.
,MundilR.
,CampbelI.
H.
,KorschR.
J.
,WilliamsI.
S.
andFoudoulisChri(2004)Improved206Pb/238Umicroprobegeochronologybythemonitoringofatrace-element-relatedmatrixeect;SHRIMP,ID-TIMS,ELA-ICP-MSandoxygenisotopedocumentationforaseriesofzirconstandards.
Chem.
Geol.
205,115–140.
BorisovaA.
Yu.
,PichavantM.
,PolveM.
,WiedenbeckM.
,FreydierR.
andCandaudapF.
(2006)Traceelementgeochem-istryofthe1991Mt.
Pinatubosilicicmelts,Philippines:implicationsforore-formingpotentialofadakiticmagmatism.
Geochim.
Cosmochim.
Acta70,3702–3716.
ChenB.
,JahnB.
M.
andWeiC.
J.
(2002a)PetrogenesisofmesozoicgranitoidsintheDabieUHPcomplex,centralchina:traceelementandNd–Srisotopeevidence.
Lithos60,67–88.
ChenF.
,SiebelW.
,SatirM.
,TerziogluN.
andSakaK.
(2002b)GeochronologyoftheKaraderebasement(NWTurkey)andimplicationsforthegeologicalevolutionoftheIstanbulzone.
Int.
J.
EarthSci.
91,469–481.
ChenJ.
F.
,LiX.
M.
,ZhouT.
X.
andFolandK.
A.
(1991)40Ar/39ArdatingoftheYueshandiorite,Anhuiprovince,andtheestimatedformationtimeoftheassociatedoredeposit.
Geoscience5,91–99(inChinesewithEnglishabstract).
Chen,J.
F.
,Zhou,T.
X.
,Zhang,X.
,Xing,F.
M.
,Xu,X.
,Li,X.
M.
andXu,L.
H.
(1993)Isotopicgeochemistryofcopper-bearingrocksfrommiddle–lowerareaofYangtze.
TheStudyofIsotopicGeochemistry.
ZhejiangUniversityPress,Hangzhou.
pp.
214–229(inChinese).
ChiaradiaM.
,MerinoD.
andSpikingsR.
(2009)Rapidtransitiontolong-liveddeepcrustalmagmaticmaturationandtheformationofgiantporphyry-relatedmineralization(Yanaco-cha,Peru).
EarthPlanet.
Sci.
Lett.
258,593–604.
DefantM.
J.
andDrummondM.
S.
(1990)Derivationofsomemodernarcmagmasbymeltingofyoungsubductedlitho-sphere.
Nature347,662–665.
DefantM.
J.
,RichersonP.
M.
,DeBoerJ.
Z.
,StewartR.
H.
,MauryR.
C.
,BellonH.
,DrummondM.
S.
,FeigensonM.
D.
andJacksonT.
E.
(1991)Dacitegenesisviabothslabmeltinganddierentiation:petrogenesisofLaYeguedavolcaniccomplex.
Panama.
J.
Petrol.
32,1101–1142.
DefantM.
J.
andKepezhinskasP.
(2001)Evidencesuggestsslabmeltinginarcmagmas.
EOS(Transactions,AmericanGeo-physicalUnion)82,65–69.
DePaoloD.
J.
(1981)Traceelementsandisotopiceectsofcombinedwallrockassimilationandfractionalcrystallization.
EarthPlanet.
Sci.
Lett.
53,189–202.
FleetM.
E.
,CrocketJ.
H.
andStoneW.
E.
(1996)Partitioningofplatinumgroupelements(Os,Ir,Ru,Pt,Pd)andgoldbetweensuldeliquidandbasaltmelt.
Geochim.
Cosmochim.
Acta60,2397–2412.
Gonzalez-PartidaE.
,LevresseG.
,Carrillo-ChavezA.
,CheilletzA.
,GasquetD.
andJonesD.
(2003)PaleoceneadakiteAu-Febearingrocks,Mezcala,Mexico:evidencefromgeochemicalcharacteristics.
J.
Geochem.
Explor.
80,25–40.
GuoF.
,FanW.
M.
andLiC.
W.
(2006)GeochemistryoflateMesozoicadakitesfromtheSulubelt,easternChina:magmagenesisandimplicationsforcrustalrecyclingbeneathconti-nentalcollisionalorogens.
Geol.
Mag.
143,1–13.
HeX.
X.
,ZhuX.
K.
,YangC.
andTangS.
H.
(2005)High-precisionanalysisofPbisotoperatiosusingMC–ICP–MS.
Acta.
Geoscientica.
Sinica26,19–22.
He,Y.
S.
,Li,S.
G.
,Hefos,J.
andSchoenberg,I.
(2009)NdisotopiccompositionsofadakitesfromDabieshan:ImplicationsforthesubductedmaclowercrustoftheSouthChinaBlock.
Geochim.
Cosmochim.
ActaA507.
He,Y.
S.
,Li,S.
G.
,Hoefs,J.
,Huang,F.
andLiu,S.
-A.
(2010)Partialmeltsfromthicklowercontinentalcrust:geochemicalcharacterizationandidentication.
Geochim.
Cosmochim.
ActaA392.
HofmannA.
W.
(2003)Samplingmantleheterogeneitythroughoceanicbasalts:isotopesandtraceelements.
InTheMantleandCore.
TreatiseonGeochemistry(ed.
R.
W.
Carlson).
Elservier-Pergamon,Oxford,pp.
61–101.
HouZ.
H.
andWangC.
X.
(2007)Determinationof35traceelementsingeologicalsamplesbyinductivelycoupledplasmamassspectrometry.
J.
Uiv.
Sci.
Tech.
China37,940–944.
HouZ.
Q.
,PanX.
F.
,YangZ.
M.
andQuX.
M.
(2007)PorphyryCu–(Mo–Au)depositsnotrelatedtooceanic-slabsubduction:examplesfromChineseporphyrydepositsincontinentalsettings.
Geoscience21,332–351(inChinesewithEnglishabstract).
HuangF.
,LiS.
andYangW.
(2007)ContributionsofthelowercrusttoMesozoicmantle-derivedmacrocksfromtheNorthChinaCraton:implicationsforlithosphericthinning.
J.
Geol.
Soc.
London280,55–75.
HuangF.
,LiS.
,DongF.
,HeY.
andChenF.
(2008)High-MgadakiticrocksintheDabieorogen,centralChina:implicationsforfounderingmechanismoflowercontinentalcrust.
Chem.
Geol.
255,1–13.
HuangF.
andHeY.
S.
(2010)Partialmeltingofdrymaclowercontinentalcrust:constraintsonformationofC-typeadakites.
ChinSciBull55,2428–2439.
ImaiA.
(2002)MetallogenesisofporphyryCudepositsofthewesternLuzonarc,Philippines:K-Arages,SO3contentsofmicrophenocrysticapatiteandsignicanceofintrusiverocks.
ResourceGeol.
52,147–161.
IckertR.
B.
,ThorkelsonD.
J.
,MarshallD.
D.
andUllrichT.
D.
(2009)EoceneadakiticvolcanisminsouthernBritishColumbia:remeltingofarcbasaltaboveaslabwindow.
Tectonophysics464,164–185.
IrvineT.
N.
andBaragarW.
R.
(1971)Aguidetothechemicalclassicationofthecommonvolcanicrocks.
Can.
J.
EarthSci.
8,523–548.
JugoP.
J.
,CandelaP.
A.
andPiccoliP.
M.
(1999)MagmaticsuldesandAu:Curatiosinporphyrydeposits:anexperimentalstudyofcopperandgoldpartitioningat850°C,100MPainahaplograniticmelt-pyrrhotite-intermediatesolidsolution-goldmetalassemblage,atgassaturation.
Lithos46,573–589.
JahnB.
M.
,WuF.
Y.
,LoC.
H.
andTsaiC.
H.
(1999)Crust-mantleinteractioninducedbydeepsubductionoftheconti-nentalcrust:geochemicalandSr–Ndisotopicevidencefrompost-collisionalmac-ultramacintrusionsofthenorthernDabiecomplex,centralChina.
Chem.
Geol.
157,119–146.
KameiA.
,MiyakeY.
,OwadaM.
andKimuraJ.
-I.
(2009)Apseudoadakitederivedfrompartialmeltingoftonalitictogranodioriticcrust,Kyushu,southwestJapanarc.
Lithos112,615–625.
KelleyK.
A.
andCottrellE.
(2009)Waterandtheoxidationstateofsubductionzonemagmas.
Science325,605–607.
KogisoT.
,TatsumiY.
andNakanoS.
(1997)Traceelementtransportduringdehydrationprocessesinthesubductedoceaniccrust:1.
Experimentsandimplicationsfortheoriginofoceanislandbasalts.
EarthPlanet.
Sci.
Lett.
148,193–205.
High-MgadakitesandimplicationsforCu–Aumineralization7175LangeR.
A.
(1994)TheeectofH2O,CO2,andFonthedensityandviscosityofsilicatemelts.
Rev.
Mineral.
30,331–360.
LiJ.
W.
,ZhaoX.
F.
,ZhouM.
F.
,MaC.
Q.
,SergiodeSouzaZ.
andVasconcelosP.
(2009)LateMesozoicmagmatismfromDayeregion,easternChina:U-Pbages,petrogenesis,andgeodynamicimplications.
Contrib.
Mineral.
Petrol.
157,383–409.
LiQ.
-L.
,LiX.
-H.
,LiuY.
,WuF.
-Y.
,YangJ.
-H.
andMitchellR.
H.
(2010)PreciseU–PbandTh–Pbagedeterminationofkimberliticperovskitesbysecondaryionmassspectrometry.
Chem.
Geol.
269,396–405.
LiS.
G.
,XiaoY.
,LiuD.
,ChenY.
,GeN.
,ZhangZ.
,SunS.
,CongB.
,ZhangR.
,HartS.
R.
andWangS.
(1993)CollisionoftheNorthChinaandYangtzeBlocksandformationofcoesite-bearingeclogites:timingandprocesses.
Chem.
Geol.
109,89–111.
LiS.
G.
,JagoutzE.
,ChenY.
Z.
andLiQ.
L.
(2000)Sm–NdandRb–SrisotopicchronologyandcoolinghistoryofultrahighpressuremetamorphicrocksandtheircountryrocksatShuan-gheintheDabieMountains,CentralChina.
Geochim.
Cosmo-chim.
Acta64,1077–1093.
LiZ.
X.
andLiX.
H.
(2007)Formationofthe1300-km-wideintracontinentalorogenandpostorogenicmagmaticprovinceinMesozoicSouthChina:Aat-slabsubductionmodel.
Geology35,179–182.
LingM.
X.
,WangF.
Y.
andDingX.
,etal.
(2009)CretaceousridgesubductionalongtheLowerYangtzeRiverBelt,easternChina.
Econ.
Geol.
104,303–321.
LiuS.
-A.
,TengF.
-Z.
,HeY.
,KeS.
andLiS.
(2010)Investigationofmagnesiumisotopefractionationduringgranitedierentia-tion:ImplicationforMgisotopiccompositionofthecontinen-talcrust.
EarthPlanet.
Sci.
Lett.
297,646–654.
Ludwig,K.
R.
(2001)UsersManualforIsoplot/Ex(rev.
2.
4.
9):AgeochronologicalToolkitforMicrosoftExcel.
BerkeleyGeo-chronologyCenter.
SpecialPublication,No.
1a:55pp.
LustrinoM.
(2005)Howthedelaminationanddetachmentoflowercrustcaninuencebasalticmagmatism.
EarthSci.
Rev.
72,21–38.
MaoJ.
W.
,WangY.
T.
,LehmannB.
,YuJ.
J.
,DuA.
D.
,MeiY.
X.
,LiY.
F.
,ZangW.
S.
,SteinH.
J.
andZhouT.
F.
(2006)MolybdeniteRe–Osandalbite40Ar/39ArdatingofCu–Au–MoandmagnetiteporphyrysystemsintheYangtzeRivervalleyandmetallogenicimplications.
OreGeol.
Rev.
29,307–324.
MartinH.
,SmithiesR.
H.
,RappR.
,MoyenJ.
F.
andChampionD.
(2005)Anoverviewofadakite,tonalite-trondhjemiten–granodiorite(TTG),andsanukitoid:relationshipsandsomeimplicationsforcrustalevolution.
Lithos79,1–24.
MaruyamaS.
,IsozakiY.
,KimuraG.
andTerabayashiM.
(1997)PaleogeographicmapsoftheJapaneseIslands:platetectonicsynthesisfrom750Matothepresent.
IslandArc6,121–142.
MorrisP.
A.
(1995)SlabmeltingasanexplanationofquaternaryvolcanismandaseismicityinsouthwesternJapan.
Geology23,395–398.
MoyenJ.
F.
(2009)HighSr/YandLa/Ybratios:themeaningofthe'adakiticsignature'.
Lithos112,556–574.
MungallJ.
E.
(2002)Roastingthemantle:slabmeltingandthegenesisofmajorAuandAu-richCudeposits.
Geology30,915–918.
NakamuraK.
,KatoY.
,TamakiK.
andIshiiT.
(2007)Geochem-istryofhydrothermallyalteredbasalticrocksfromtheSouth-westIndianRidgeneartheRodriguezTripleJunction.
Mar.
Geol.
239,125–141.
NiuM.
L.
,ZhuG.
,LiuG.
S.
,WD.
X.
andSongC.
Z.
(2002)TectonicsettinganddeepprocessesofMesozoicmagmatismintheMiddle-southsegmentoftheTan-Lufault[J].
ChineseJ.
Geol.
37,393–404(inChinesewithEnglishabstract).
OyarzunR.
,MarquezA.
,LilloJ.
,LopezI.
andRiveraS.
(2001)GiantversussmallporphyrycopperdepositsofCenozoicageinnorthernChile:adakiticversusnormalcalc-alkalinemagma-tism.
Miner.
Dep.
36,794–798.
PanY.
M.
andDongP.
(1999)ThelowerChangjiang(Yangzi/YangtzeRiver)metallogenicbelt,eastcentralChina:intrusion-andwallrock-hostedCu–Fe–Au,Mo,Zn,Pb,Agdeposits.
OreGeol.
Rev.
15,177–242.
PertermannM.
andHirschmannM.
M.
(2003)AnhydrouspartialmeltingexperimentsonMORB-likeeclogite:phaserelations,phasecompositionsandmineral-meltpartitioningofmajorelementsat2–3GPa.
J.
Petrol.
44,2173–2201.
PetfordN.
andAthertonM.
(1996)Na-richpartialmeltsfromnewlyunderplatedbasalticcrust:theCordilleraBlancabath-olith.
Peru.
J.
Petrol.
37,1491–1521.
PlankT.
andLangmuirC.
H.
(1998)Thechemicalcompositionofsubductingsediment:implicationsforthecrustandmantle.
Chem.
Geol.
145,325–394.
ProuteauG.
,ScailletB.
,PichavantM.
andMauryR.
(2001)Evidenceformantlemetasomatismbyhydroussilicicmeltsderivedfromsubductedoceaniccrust.
Nature40,197–200.
PuigA.
,HerveM.
,SuarezM.
andSaundersA.
D.
(1984)Calc-alkalineandalkalinemioceneandcalc-alkalinerecentvolca-nisminthesouthernmostPatagoniancordillera.
Chile.
J.
Volcano.
Geotherm.
Res.
20,149–163.
RaeA.
J.
,CookeD.
R.
,PhillipsD.
andZaide-DelnM.
(2004)ThenatureofmagmatismatPalinpinongeothermaleld,NegrosIsland,Philippines:Implicationsforgeothermalactivityandregionaltectonics.
J.
Volcano.
Geotherm.
Res.
129,321–342.
RappR.
P.
,WatsonE.
B.
andMillerC.
F.
(1991)Partialmeltingofamphibolite/eclogiteandtheoriginofArcheantrondhjemitesandtonalite.
PrecambrianRes.
51,1–25.
RappR.
P.
andWatsonE.
B.
(1995)Dehydrationmeltingofmetabasaltat8–32kbar:implicationsforcontinentalgrowthandcrust-mantlerecycling.
J.
Petrol.
36,891–931.
RappR.
P.
,ShimizuN.
,NormanM.
D.
andApplegateG.
S.
(1999)Reactionbetweenslab-derivedmeltsandperidotiteinthemantlewedge:experimentalconstraintsat3.
8GPa.
Chem.
Geol.
160,335–356.
RudnickR.
L.
andGaoS.
(2003)Compositionofthecontinentalcrust.
InIntheCrust(ed.
R.
L.
Rudnick)3TreatiseonGeochemistry(eds.
H.
D.
HollandandK.
K.
Turekian).
Elsevier-Pergamon,Oxford,pp.
1–64.
SajonaF.
G.
andMauryR.
C.
(1998)AssociationofadakiteswithgoldandcoppermineralizationinthePhilippines.
C.
R.
Acad.
Sci.
IIAEarthPlanet.
Sci.
326,27–34.
SchianoP.
,CiocchiattiR.
,ShimizuN.
,MauryR.
C.
,JochumK.
P.
andHofmannA.
W.
(1995)Hydrous,silica-richmeltsinthesub-arcmantleandtheirrelationshipwitheruptedarclavas.
Nature377,595–600.
SenC.
andDunnT.
(1994)Dehydrationmeltingofabasalticcompositionamphiboliteat1.
5and2.
0GPa:implicationsfortheoriginofadakites.
Contrib.
Mineral.
Petrol.
117,394–409.
SternC.
R.
andKilianR.
(1996)Roleofthesubductedslab,mantlewedgeandcontinentalcrustinthegenerationofadakitesfromtheAustralVolcanicZone.
Contrib.
Mineral.
Petrol.
123,263–281.
Sun,S.
-S.
andMcDonough,W.
F.
(1989)Chemicalandisotopicsystematicsofoceanicbasalts:implicationsformantlecompo-sitionandprocesses.
InMagmatismintheOceanBasins(eds.
A.
D.
SaundersandM.
J.
Norry(Eds.
)),42,313–345.
SunW.
D.
,XieZ.
,ChenJ.
F.
,ZhangX.
,ChaiZ.
F.
,DuA.
D.
,ZhaoJ.
S.
,ZhangC.
H.
andZhouT.
F.
(2003)Os–Osdatingofcopperandmolybdenumdepositsalongthemiddle7176S.
-A.
Liuetal.
/GeochimicaetCosmochimicaActa74(2010)7160–7178andlowerreachesoftheYangtzeRiver.
China.
Econ.
Geol.
98,175–180.
SunW.
D.
,DingX.
,HuY.
andLiX.
(2007)ThegoldentransformationoftheCretaceousplatesubductionintheWestPacic.
EarthPlanet.
Sci.
Lett.
262,533–542.
SunW.
D.
,LingM.
X.
,YangX.
Y.
,FanW.
M.
,DingX.
andLiangH.
Y.
(2010)Ridgesubductionandporphyrycoppergoldmineralization:anoverview.
Sci.
ChinaEarthSci.
2,127–137.
TaylorS.
R.
andMcLennanS.
M.
(1985)TheContinentalCrust:ItsCompositionandEvolution.
BlackwellScienticPublications,Oxford,100pp.
Thieblemont,D.
,Stein,G.
andLescuyer,J.
L.
(1997)Gisementsepithermauxetporphyriques:Laconnexionadakite.
AcademiedeSciencesParis,ComptesRendus,325,103–109.
WangQ.
,ZhaoZ.
H.
,XiongX.
L.
andXuJ.
F.
(2001)Meltingoftheunderplatedbasalticlowercrust:evidencefromShaxiadakiticsodicquartzdirorite-porphyrites,Anhuiprovince,China.
Geo-chimica30,353–362(inChinesewithEnglishabstract).
WangQ.
,ZhaoZ.
H.
,XuJ.
F.
,LiX.
H.
,BaoZ.
W.
,XiongX.
L.
andLiuY.
M.
(2002)PetrologyandmetallogenesisoftheYanshanianadakite-likerocksintheEasternYangtzeBlock.
Sci.
ChinaSerD.
32,127–136(inChinese).
WangQ.
,XuJ.
F.
,ZhaoZ.
H.
,XiongX.
L.
andBaoZ.
W.
(2003)PetrogenesisoftheMesozoicintrusionrocksintheTonglingArea,AnhuiProvince,ChinaandconstrainttoGeodynamicsprocess.
Sci.
ChinaSerD.
46,801–815.
WangQ.
,XuJ.
F.
,ZhaoZ.
H.
,BaoZ.
W.
,XuW.
andXiongX.
L.
(2004a)Cretaceoushigh-potassiumintrusiverocksintheYue-shan-HongzhenareaofeastChina:adakitesinanextensionaltectonicregimewithinacontinent.
Geochem.
J.
38,417–434.
WangQ.
,ZhaoZ.
H.
,XuJ.
F.
,BaiZ.
H.
,WangJ.
X.
andLiuC.
X.
(2004b)ThegeochemicalcomparisonbetweentheTon-gshankouandYinzuadakiticintrusiverocksinsoutheasternHubei:(delaminated)lowercrustalmeltingandthegenesisofporphyrycopperdeposit.
ActaPetrol.
Sinica.
20,351–360.
WangQ.
,WymanD.
A.
,XuJ.
F.
,ZhaoZ.
H.
,JianP.
,XiongX.
L.
,BaoZ.
W.
,LiC.
F.
andBaiZ.
H.
(2006)PetrogenesisofCretaceousadakiticandshoshoniticigneousrocksintheLuzongarea,AnhuiProvince(easternChina):Implicationsforgeody-namicsandCu–Aumineralization.
Lithos89,424–446.
WangQ.
,WymanD.
A.
,XuJ.
F.
,ZhaoZ.
H.
,JianP.
andZiF.
(2007a)PartialmeltingofthickenedordelaminatedlowercrustinthemiddleofeasternChina:implicationsforCu–Aumineralization.
J.
Geol.
115,149–161.
WangQ.
,WymanD.
A.
andXuJ.
F.
,etal.
(2007b)EarlyCretaceousadakiticgranitesintheNorthernDabieComplex,centralChina:implicationsforpartialmeltinganddelamina-tionofthickenedlowercrust.
Geochim.
Cosmochim.
Acta71,2609–2636.
WangY.
(2006)TheonsetoftheTan-LufaultmovementineasternChina:constraintsfromzircon(SHRIMP)and40Ar/39Ardating.
TerraNova.
18,423–431.
WangY.
J.
,FanW.
M.
,PengT.
P.
,ZhangH.
F.
andGuoF.
(2005)NatureofthemesozoiclithosphericmantleandtectonicdecouplingbeneaththeDabieorogen,CentralChina:evidencefrom40Ar/39Argeochronology,elementalandSr–Nd–Pbiso-topiccompositionsofearlyCretaceousmacigneousrocks.
Chem.
Geol.
220,165–189.
WangY.
L.
,WangY.
,ZhangQ.
,JiaX.
Q.
andHanS.
(2004)ThegeochemicalcharacteristicsofMesozoicintermediate-acidintrusivesoftheTonglingareaanditsmetallogenesis–geody-namicimplications.
ActaPetrol.
Sinica.
20,325–338.
WintherK.
T.
andNewtonR.
C.
(1991)Experimentalmeltingofhydrouslow-Ktholeiite:evidenceontheoriginofArchaeancratons.
Bull.
Geol.
Soc.
Denmark39,213–228.
WolfM.
B.
andWyllieP.
J.
(1994)Dehydration-meltingofamphiboliteat10kbar:theeectsoftemperatureandtime.
Contrib.
Mineral.
Petrol.
115,369–383.
XiaQ.
K.
,YangX.
Z.
,DelouleE.
,ShengY.
M.
andHaoY.
T.
(2006)WaterinthelowercrustalgranulitexenolithsfromNushan,SEChina.
J.
Geophys.
Res.
111,B11202.
doi:10.
1029/2006JB004296.
XieG.
Q.
,MaoJ.
W.
andLiR.
L.
,etal.
(2006)SHRIMPzirconU–PbdatingforvolcanicrocksoftheDasiformationinsoutheastHubeiProvince,middle-lowerreachesoftheYangtzeRiveranditsimplications.
Chin.
Sci.
Bull.
51,3000–3009.
XieG.
Q.
,MaoJ.
W.
,LiR.
L.
,QuW.
J.
,PirajnoF.
andDuA.
D.
(2007)Re–OsmolybdeniteandAr–ArphlogopitedatingofCu–Fe–Au–Mo(W)depositsinsoutheasternHubei.
ChinaMineral.
Petrol.
90,249–270.
XieG.
Q.
,MaoJ.
W.
,LiR.
L.
andFrankP.
B.
(2008)GeochemistryandNd–SrisotopicstudiesoflatemesozoicgranitoidsinthesoutheasternHubeiProvince,middle-lowerYangtzeRiverbelt,EasternChina:petrogenesisandtectonicsetting.
Lithos104,216–230.
XieJ.
C.
,YangX.
Y.
,SunW.
D.
,DuJ.
G.
,XuW.
,WuL.
B.
,WangK.
Y.
andDuX.
W.
(2009)GeochronologicalandgeochemicalconstraintsonformationoftheTonglingmetadeposits,middleYangtzemetallogenicbelt,east-centralChina.
Int.
Geol.
Rev.
51,388–421.
XingF.
M.
(1999)ThemagmaticmetallogeneticbeltaroundtheYangtzeRiverinAnhui.
Geol.
Anhui.
9,272–279(inChinesewithEnglishabstract).
XiongX.
L.
,XiaB.
,XuJ.
F.
,NiuH.
C.
andXiaoW.
S.
(2006)Nadepletioninmodernadakitesviamelt/rockreactionwithinthesub-arcmantle.
Chem.
Geol.
229,273–292.
XuJ.
F.
,ShinjoR.
,DefantM.
J.
,WangQ.
andRappR.
P.
(2002)OriginofMesozoicadakiticintrusiverocksintheNingzhenareaofeastChina:partialmeltingofdelaminatedlowercontinentalcrustGeology30,1111–1114.
YanJ.
,ChenJ.
F.
andXuX.
S.
(2008)GeochemistryofCretaceousmacrocksfromtheLowerYangtzeregion,easternChina:characteristicsandevolutionofthelithosphericmantle.
J.
AsianEarthSci.
33,177–193.
YanJ.
,LiuH.
Q.
,SongC.
Z.
,XuX.
S.
,AnY.
J.
,LiuJ.
andDaiL.
Q.
(2009)ZirconU–PbgeochronologyofthevolcanicrocksfromFanchang–NingwuvolcanicbasinsinthelowerYangtzeregionanditsgeologicalimplications.
Chin.
Sci.
Bull.
54,1–10.
YangW.
andLiS.
G.
(2008)GeochronologyandgeochemistryoftheMesozoicvolcanicrocksinWesternLiaoning:ImplicationsforlithosphericthinningoftheNorthChinaCraton.
Lithos102,88–117.
YangX.
Z.
,XiaQ.
K.
,DelouleE.
,DallaiL.
,FanQ.
C.
andFengMin(2008)Waterinmineralsofthecontinentallithosphericmantleandoverlyinglowercrust:acomparativestudyofperidotiteandgranulitexenolithsfromtheNorthChinaCraton.
Chem.
Geol.
256,33–45.
ZhangQ.
,WangY.
,QianQ.
,YangJ.
H.
,WangY.
L.
,ZhaoT.
P.
andGuoG.
J.
(2001)Thecharacteristicsandtectonic-metall-ogenicsignicancesoftheadakitesinYanshanperiodfromeasternChina.
ActaPetrol.
Sinica.
17,236–244.
ZhangQ.
,JianP.
andLiuD.
Y.
,etal.
(2003)SHRIMPdatingofvolcanicrocksfromNingwuareaanditsgeologicalimplica-tions.
Sci.
ChinaSer.
D46,830–837.
ZhaoH.
J.
,MaoJ.
W.
,XiangJ.
F.
,ZhouZ.
H.
,WeiK.
T.
andKeY.
F.
(2010)MineralogyandSr–Nd–PbisotopiccompositionsofquartzdioriteinTonglushandeposit,HubeiProvince.
ActaPetrol.
Sinica.
26,768–784.
ZiF.
,WangQ.
,TangG.
J.
,SongB.
,XieL.
W.
,YangY.
H.
,LiangX.
R.
,TuX.
L.
andLiuY.
(2008)SHRIMPU–PbzircongeochronologyandgeochemistryoftheGuandianplutoninHigh-MgadakitesandimplicationsforCu–Aumineralization7177centralAanhui,China:petrogenesisandgeodynamicimplica-tions.
Geochimica37,462–480.
ZhuG.
,WangY.
,LiuG.
,NiuM.
,XieC.
andLiC.
(2005)40Ar/39Ardatingofstrike-slipmotionontheTan-Lufaultzone,EastChina.
J.
Struct.
Geol.
27,1379–1398.
ZindlerA.
andHartS.
(1986)Chemicalgeodynamics.
Ann.
Rev.
EarthPl.
Sci.
14,493–571.
Associateeditor:RichardJ.
Walker7178S.
-A.
Liuetal.
/GeochimicaetCosmochimicaActa74(2010)7160–7178

日本CN2、香港CTG(150元/月) E5 2650 16G内存 20M CN2带宽 1T硬盘

提速啦简单介绍下提速啦 是成立于2012年的IDC老兵 长期以来是很多入门级IDC用户的必选商家 便宜 稳定 廉价 是你创业分销的不二之选,目前市场上很多的商家都是从提速啦拿货然后去分销的。提速啦最新物理机活动 爆炸便宜的香港CN2物理服务器 和 日本CN2物理服务器香港CTG E5 2650 16G内存 20M CN2带宽 1T硬盘 150元/月日本CN2 E5 2650 16G内存 20M C...

inux国外美老牌PhotonVPS月$2.5 ,Linux系统首月半价

PhotonVPS 服务商我们是不是已经很久没有见过?曾经也是相当的火爆的,我们中文习惯称作为饭桶VPS主机商。翻看之前的文章,在2015年之前也有较多商家的活动分享的,这几年由于服务商太多,乃至于有一些老牌的服务商都逐渐淡忘。这不有看到PhotonVPS商家发布促销活动。PhotonVPS 商家七月份推出首月半价Linux系统VPS主机,首月低至2.5美元,有洛杉矶、达拉斯、阿什本机房,除提供普...

腾讯云轻量应用服务器关于多个实例套餐带宽

腾讯云轻量应用服务器又要免费升级配置了,之前已经免费升级过一次了(腾讯云轻量应用服务器套餐配置升级 轻量老用户专享免费升配!),这次在上次的基础上再次升级。也许这就是良心云吧,名不虚传。腾讯云怎么样?腾讯云好不好。腾讯云轻量应用服务器 Lighthouse 是一种易于使用和管理、适合承载轻量级业务负载的云服务器,能帮助个人和企业在云端快速构建网站、博客、电商、论坛等各类应用以及开发测试环境,并提供...

www.7160.com为你推荐
著作权登记什么是著作权登记存储备份备份在sd卡的怎么恢复杨紫别祝我生日快乐祝自己生日快乐内涵丰富的话阿丽克丝·布莱肯瑞吉阿丽克斯布莱肯瑞吉演的美国恐怖故事哪两集firetrap我淘宝店还是卖二单就被删,怎么回事!西部妈妈网我爸妈在云南做非法集资了,钱肯定交了很多,我不恨她们。他们叫我明天去看,让我用心的看,,说是什么...lcoc.toptop weenie 是什么?partnersonline国内有哪些知名的ACCA培训机构175qq.comkf.qq.com.地址是什么网页源代码网页源代码是什么,具体讲一下?
短域名 长沙域名注册 免费域名空间申请 duniu zpanel 安云加速器 cpanel 42u机柜尺寸 网络星期一 shopex空间 名片模板psd 申请空间 大容量存储 北京主机 小米数据库 智能骨干网 谁的qq空间最好看 河南移动网 申请网页 流媒体加速 更多