证明《复变函数》第四章习题全解钟玉泉版

天钟变  时间:2021-03-04  阅读:()

第四章解析函数的幂级数表示法

一

1.解: (1)其部分和数列

S4n(

由交错级数收敛性判别及极限运算法则知nimS4n存在,设为nlimS4nl ,又有a4n1

由此得知nlimSnl ,因此级数收敛,但非绝对收敛.

(2),可知原级数绝对收敛.

(3)由于

2.解: (1)R

(2)R

3.证明: (1)如果则级数的收敛半径为

R

(2)由(1)可证其收敛半径为R.

(3)由(1)可证其收敛半径为R.

4.证明:因为,因此n0 n0 n0 n0

级数在zR上绝对收敛且一致收敛.

5.解: (1)因为u1时,时,有

az

(2)因为e平面解析,所以e)

逐项积分得

)

(3)因为

如果,于是上式收敛范围为z,合于逐项积分条件,所以

)

(4) sin)

(5)因为f(z)(1z)2,f(n)(0)(n1)!

从而f(z))

ln(1z)z. . .

2 3 4 5 3 4 5

所以e)

 ()

7.解: (1) sin zsin[(z1)1]sin(z1)cos 1cos(z1)sin 1

=|

)

)

(4)由于3 z的支点为0,,沿负实轴(,0)割开平面,则指定分支就在z11

1

内单值解析, 3 z3 1 [1(z1)]3 ,再利用二项式展开.

8

(2) 6 sin z

6z)

故为15级零点.

9.证明:因为z0为f(z)的m阶零点f(z)a

又因为z0为g(z)的n阶零点,g(z)bb(z

如果mn,则f(z)g(z)(zz0)n[bnbn1(zz0)]

故z0为f(z)g(z)的n阶零点.

如果nm,同理可得z0为f(z)g(z)的m阶零点.

如果mn,当ambm0时, z0为f(z)g(z)的m阶零点; 当ambm0时,零点z0的阶数大于n.f(z)g(z)a

故z0为f(z)g(z)的mn阶零点.

由此可见

如果nm,则z0为f(z)/g(z)的nm阶零点,

如果mn,则z0为f(z)/g(z)的mn阶零点,

如果mn,则z0为f(z)/g(z)的可去奇点.

10.证明:利用定理4. 17,因z0为解析函数f(z)的至少n级零点,则有f(z)(zz0)m g(z) mn

其中

同理(z)(zz0)n(z0) ,其中(z0),则本题得证.

11.解: (1)不存在

(2)不存在

(3)不存在

(4)存在

12.证明:因为f(z)在z0点解析,由泰勒定理f(z))

再由题设f(n)(z0)0,n1,2,,则f(z)f(z0),(zKD)

由唯一性定理得f(z)f(z0),(zD).

13.证明: (反证法)假设f(z0)是f(z )在D内的最小值,因f(z0)0,则

是内恒为常数,与题设矛盾,故f(z0)不可能是f(z )在D内的最小值.

14.证明: (反证法)设f(z)在D内处处不为零,则由最小,最大模原理,在D内f(z )既不能达到最小值,也不能达到最大值.

而题设f(z )在闭域D上连续,故f(z )在闭域D上有最大值M和最小值m,而由上所述,这些都只能在边界C上达到,但题设f(z )在C上为常数,故

Mf(z)m zC

再由最大,最小模原理,mf(z)Mm zD,即f(z)m zD

由上, f(z )在闭域D上恒为常数,由第二章习题(一) 6 (3)知, f(z)在D内必为常数,矛盾.

(二)

1.证明:由于级数fn(z)收敛于f(z),故0,N() ,当nN及一切zE,

有sn(z)f(z))推得sn(z)g(z)f(z)g(z)

故得证.

2.证明:该级数的部分和sn(z)z(z2z)(znzn1)zn

显然,对任何z(z1),有.

另一方面,对于任何固定的n,取z不可能任意小,这就证得级数在圆z1内非一致收敛.

3.证明: (1),两边取极限

(2) ee)

z(1z

(3)因为在0|z|1内任意一点z e

所以|ez1 ||z|||

另一方面 |ez1 ||z|

4.证明:由柯西不等式||时

|f(z)a0 |,

因此|f(z) ||f(z)a0a0 ||a0 ||f(z)a0 |

故f(z)在|z|上无零点.

5.证明 因为

=

对任意自然数m,k若mk 则

=

因此根据逐项可积公式即得

6.证明取rR,则对一切正整数kn时

|f(

于是由r的任意性知对一切kn均有f(k)(0)=0

故f(z)n cnzn,即f(z)是一个至多n次的多项式或常数.k0

7.证明: (1)设z0是f(z)的m阶零点,于是在z0的某邻域K内f(z)

取,(0) ,于是在区域N(z0,)内f(z)

一致收敛,逐项积分可得



令F(z)

故z0是F(z)的m1阶零点.

(2)设(z),作函数

F(z)(z),则

F(z)

由(1)知z0是F(z)的m1阶零点,故

(z)阶零点.

8.证明:设f1(z)u(x,y)iv(x,y)f2(z)u(x,0)iv(x,0)

依唯一性定理,在L上有f(z)f1(z) ,而L每一点都是L的极限点,而且

LG,f1(z),f2(z)都在G内解析,由唯一性定理有f1(z)f2(z) .

9.证明: (反证法)设存在这样的周线C,I(C)D,且有一复数A,使得f(z)A,在C内部I(C)有无穷多个根,即f(z)A0在C内部I(C)有无穷多个零点,必存在零点列znz0D,从而由唯一性定理,f(z)A(zD) ,与题设矛盾.

10.证明:由最大模原理M(r)mzarxf(z) ,显然M(r)是单调上升函数,若存在r1r2,使得M(r1)M(r2),即在zr2内存在点z1r1e) ,即在内点达到最大模,由最大模原理知f(z)恒为常数.

HostYun 新上美国CN2 GIA VPS 月15元

HostYun 商家以前是玩具主机商,这两年好像发展还挺迅速的,有点在要做点事情的味道。在前面也有多次介绍到HostYun商家新增的多款机房方案,价格相对还是比较便宜的。到目前为止,我们可以看到商家提供的VPS主机包括KVM和XEN架构,数据中心可选日本、韩国、香港和美国的多个地区机房,电信双程CN2 GIA线路,香港和日本机房,均为国内直连线路。近期,HostYun上线低价版美国CN2 GIA ...

HostYun:联通AS9929线路,最低月付18元起,最高500Mbps带宽,洛杉矶机房

最近AS9929线路比较火,联通A网,对标电信CN2,HostYun也推出了走联通AS9929线路的VPS主机,基于KVM架构,开设在洛杉矶机房,采用SSD硬盘,分为入门和高带宽型,最高提供500Mbps带宽,可使用9折优惠码,最低每月仅18元起。这是一家成立于2008年的VPS主机品牌,原主机分享组织(hostshare.cn),商家以提供低端廉价VPS产品而广为人知,是小成本投入学习练手首选。...

半月湾($59.99/年),升级带宽至200M起步 三网CN2 GIA线路

在前面的文章中就有介绍到半月湾Half Moon Bay Cloud服务商有提供洛杉矶DC5数据中心云服务器,这个堪比我们可能熟悉的某服务商,如果我们有用过的话会发现这个服务商的价格比较贵,而且一直缺货。这里,于是半月湾服务商看到机会来了,于是有新增同机房的CN2 GIA优化线路。在之前的文章中介绍到Half Moon Bay Cloud DC5机房且进行过测评。这次的变化是从原来基础的年付49....

天钟变为你推荐
microcenter美国哪里可以买插头转换器百度关键词工具常见百度关键词挖掘方法分别是什么请列举?haokandianyingwang谁给个好看的电影网站看看。m.kan84.net经常使用http://www.feikan.cc看电影的进来帮我下啊www.kknnn.com求有颜色的网站!要免费的www.se222se.com原来的www站到底222eee怎么了莫非不是不能222eee在收视com了,/?求解www.03024.comwww.sohu.com是什么www.zhiboba.com看NBA直播的网站哪个知道baqizi.cc汉字的故事100字www.ca800.comPLC好学吗
域名大全 lamp cpanel paypal认证 正版win8.1升级win10 网站实时监控 免费全能空间 毫秒英文 vip购优汇 双11秒杀 服务器托管什么意思 百度云1t 厦门电信 空间首页登陆 申请免费空间 宿迁服务器 移动王卡 中美互联网论坛 ftp是什么东西 中国域名根服务器 更多