approximatedwww.niuav.com

www.niuav.com  时间:2021-03-19  阅读:()
WeiandYangAdvancesinDierenceEquations2013,2013:20http://www.
advancesindifferenceequations.
com/content/2013/1/20RESEARCHOpenAccessAnewapproachtoquantizedstabilizationofastochasticsystemwithmultiplicativenoiseLiWei*andYuanhuaYang*Correspondence:weili@mail.
sdu.
edu.
cnSchoolofControlScienceandEngineering,ShandongUniversity,Jinan,ChinaAbstractAnewquantization-dependentLyapunovfunctionisproposedtoanalyzethequantizedfeedbackstabilizationproblemofsystemswithmultiplicativenoise.
Forconvenienceoftheproof,onlyasingle-inputcaseisconsidered(whichcanbegeneralizedtoamulti-inputchannel).
Conditionsforthesystemstobequantizedmean-squarepoly-quadraticallystabilizedarederived,andtheanalysisofH∞performanceandcontrollerdesignisconductedforagivenlogarithmicquantizer.
Themostsignicantfeatureistheutilizationofaquantization-dependentLyapunovfunction,leadingtolessconservativeresults,whichisshownboththeoreticallyandthroughnumericalexamples.
Keywords:multiplicativenoise;discrete-timesystems;mean-squarestability;logarithmicquantizer;Lyapunovfunction1IntroductionRapidadvancementofdigitalnetworkshaswitnessedagrowinginterestininvestigat-ingeortsofsignalquantizationonfeedbackcontrolsystems.
Theemergingnetwork-basedcontrolsystemwhereinformationexchangebetweenthecontrollerandtheplantisthroughadigitalchannelwithlimitedcapacitieshasfurtherstrengthenedtheimportanceofthestudyonquantizedfeedbackcontrol.
Dierentfromtheclassicalcontroltheorywheredatatransmissionisassumedtohaveaninniteprecision,transmissionsubjecttoquantizationorlimiteddatacapacityindigitalnetworks,thetoolsinclassicalcontroltheorymaybeinvalid,sonewtoolsneedtobedevelopedfortheanalysisanddesignofquantizedfeedbacksystems.
Thestudyofquantizedfeedbackcontrolcanbetracedbackto[].
Mostoftheearlyre-searchfocusesontheunderstandingandmitigationofthequantizationeects,whilethequantizationerrorisconsideredtoimpairtheperformance[].
Inmoderncontrolthe-orywherethequantizerisalwaysconsideredasaninformationencoderanddecoder,onemainproblemishowmuchinformationhastobetransmittedinordertomakethesystemachieveacertainobjectivefortheclosed-loopsystem.
Foradiscrete-timesystemwithasingle-inputchannel,whenthestaticquantizerisconsidered,[]showstheminimumdatarateforthesystemtobestabilizedisprovedtobecharacterizedbytheunstablerootsofthesystemmatrix,andthecoarsestquantizerislogarithmic.
[]considersthecasewhentheinputchannelsubjecttoBernoullipacketsdropouts,theminimumdatarateisrelatednotonlytotheunstablerootsofthesystemmatrix,butalsowiththepacketsdropoutprobability.
Asforadiscrete-timesystemwithsingleinputsubjecttomultiplicativenoises2013WeiandYang;licenseeSpringer.
ThisisanOpenAccessarticledistributedunderthetermsoftheCreativeCommonsAttributionLicense(http://creativecommons.
org/licenses/by/2.
0),whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalworkisproperlycited.
WeiandYangAdvancesinDierenceEquations2013,2013:20Page2of11http://www.
advancesindifferenceequations.
com/content/2013/1/20in[],thecoarseststaticquantizerforthesystemtobequadraticallymean-squarestabi-lizedisprovedtobelogarithmicwithinnitelevels,andthequantizationdensitycanbeapproximatedbysolvingaRiccatiequation;comprehensivestudyonfeedbackcontrolsys-temswithlogarithmicquantizersisnotgiven.
Asectorboundapproachisproposedin[]tocharacterizethequantizationerrorcausedbyalogarithmicquantizer,bywhichmanyquantizedproblemcanbesolvedbytherobusttools.
Theresultsarealsoextendedtoadaptivecontrolin[,]andtheLQR-typeproblemin[].
Basedonthecharacterizationofthequantizederror,[]giveslessconservativeconditionsofthequantizationdensitytoachievestabilitybystudyingthepropertiesofthelogarithmicquantizerfurther;[]useamethodbasedonTsypkin-typeLyapunovfunctionstostudytheabsolutestabilityanal-ysisofquantizedfeedbackcontrolofadiscrete-timelinearsystem,lessconservativecon-ditionsthanthoseinthequadraticframeworkarederived.
[]showedthatanite-levellogarithmicquantizersucestoapproachthewell-knownminimumaveragedatarateforstabilizinganunstablelineardiscrete-timesystemundertwobasicnetworkcongu-rations,andexplicitnite-levellogarithmicquantizersandthecorrespondingcontrollerstoapproachtheminimumaveragedataratearederived.
Fornetworkedsystems,[]givesthequantizedoutput-feedbackcontrollerforthecontrolwithdatapacketsdropout.
Inthispaper,anewapproachtotheanalysisandsynthesisofquantizedfeedbackcontrolforstochasticsystemswithmultiplicativenoiseisproposed.
Usinglogarithmicquantizedstate-feedbackcontrol,resultsformean-squarestabilizationandH∞performanceanal-ysisaswellasthecontrollersynthesisaregiven.
Lessconservativeresultsarederivedbytheutilizationofaquantization-dependentLyapunovfunction,whichisshownboththe-oreticallyandthroughanumericalexample.
Notations:P>(P≥)meansPisasymmetricpositive(semi-positive)matrix.
PTstandsforthetranspositionofmatrixP.
Thespaceofasquaresummableinnitese-quenceisdenotedbyl[,∞),andforw={w(t)}∈l[,∞),itsnormisgivenbyw=∞|w(t)|.
2Stabilityandstabilization2.
1ProblemformulationConsiderthefollowinglineardiscrete-timesystemswithmultiplicativenoise:x(t+)=A+Aξ(t)x(t)+B+Bξ(t)u(t),x()=x,()wherex(t)∈Rnisthesystemstatevectorwithknowninitialstatex;u(t)∈Rmisthecontrolinput;ξ(t)∈RistheprocessnoisewithEξ(t)=,Eξ(t)ξ(j)=σδtj,andisuncor-relatedwithinitialstatex.
Asprovedin[],thecoarseststaticquantizerforthesystem()tobequadraticallymean-squarestabilizedviaquantizedstate-feedbackisprovedtobelogarithmic.
Supposeuisascalarthathastobequantized,thelogarithmicquantizerisinthefollowingform:q(u)=uiif+δui,ifu=,–Q(–u)ifu,()whereρisthequantizeddensityofthelogarithmicquantizerq,whichcanbecomputedusingtheapproachgivenin[],withδ=–ρ+ρ.
()Forthemulti-inputcasewithdierentquantizers,thestate-feedbackcontrolwithoutquantizationisintheformofv(t)=Kx(t)Kx(t)···Kmx(t),()whichhastobetransmittedthroughadigitalnetworksubjecttologarithmicquantizersasgivenin(),anddenotethequantizedcontrolasu(t)=qv(t)=q(Kx(t))q(Kx(t))···qm(Kmx(t)),()whereqi,i=,.
.
.
,marequantizerswithdierentquantizationdensity.
Withoutlossofgenerality,inthispaperonlyasingle-inputcasewithm=isconsideredforsimplicity,whichcanbegeneralizedtoamulti-inputcase.
Foraquantizerasgivenintheformof(),asillustratedin[],usingthesectorboundapproach,thequantizationerrore(t)canbecharacterizedase(t)=qv(t)–v(t)=fKx(t)–Kx(t)=(t)Kx(t),()where(t)∈[–δ,δ]withδgivenby(),sotheclosed-loopsystemwithquantizedfeedbackisgivenbyx(t+)=A+Aξ(t)x(t)+B+Bξ(t)+(t)Kx(t).
()Wemainlyfocusonthederivationoflessconservativesucientconditionsforthesystemtoachievecertainperformance.
Tomakethepaperself-contained,thedenitionsforthesystem()tobemean-squarestableandmean-squarepoly-quadraticalstableareintro-duced.
DenitionTheclosedsystem()iscalledmean-squarestablewithquantizedfeedbackcontrolintheformof()ifthereexistsacontrolLyapunovfunctionVP(x)=xT(t)Px(t)satisfyingEVPx(t+)–EVPx(t),Q>,VandVsatisfying–Q[A+(–δ)BK]TViσ[A+(–δ)BK]TViQi–Vi–VTiQi–Vi–VTi,Q>,VandVsatisfying()and().
()and()():SupposethereexistmatricesQ>,Q>,VandVsatisfying()and().
First,asQi>,wehave(Vi–Qi)TQ–i(Vi–Qi)≥,whichimplies–VTiQ–iVi≤Qi–VTi–Vi.
()From()and()wehave–Q[A+(–δ)BK]TViσ[A+(–δ)BK]TVi–VTiQ–iVi–VTiQ–iVi,Q>,VandKsatisfying–Q[AV+(–δ)BK]Tσ[AV+(–δ)BK]TQi–V–VTQi–V–VTandQ>,VandKsatisfying()and().
Fromthe(,)block,weknowthatQi–V–VTQi>,soVisnonsingular.
Performingdiag{V–T,V–T,V–T}anddiag{V–,V–,V–}to()and(),respectively,yields–V–TQV–V–T[AV+(–δ)BK]TV–σV–T[AV+(–δ)BK]TV–V–TQiV––V–T–V–V–TQiV––V–T–V–,Q>,VandVsatisfying()and(),andusingthecontrollergaingivenin(),thesystem()canachievemean-squarepoly-quadraticallystability.
TheoremisbasedonTheorembysettingV=V=V,whichincreasestheconser-vativeness;thefollowingtheoremgivesalessconservativecondition.
TheoremConsiderthesystemin()andthestatefeedbackcontrollawin().
Givenalogarithmicquantizerasin(),theclosed-loopsystemin()ismean-squarepoly-quadraticallystableifthereexistmatricesQi>,Xi>,ViandKsatisfying–Q[A+(–δ)BK]T[A+(–δ)BK]T–VTi–ViVTi–XiVTi–ViVTiXi,Q>,VandV.
WhenTheo-remisusedtocomputethecoarsestquantizationdensityδmaxsuchthattheclosed-loopquantizedsystemismean-squarepoly-quadraticallystable,thatis,()and()arebilin-earmatrixinequalities.
Inthiscase,alinesearch(suchasthebisectionmethod)hastobeperformedtothevariablesδin()and(),andndδmaxiteratively,whichcanbereferredto[–].
2.
4IllustrativeexampleInthispart,anexampleisgiventoshowthatthenewproposedLyapunovfunctioncanleadtolessconservativeconditionsofthequantizationdensityforthesystemtoachievestability.
ExampleForthestochasticdiscrete-timesystem(),considerthescalarcaseofthefollowingform:A=A=.
–.
–.
.
.
–.
,B=B=T,()Eξ(t)=,Eξ(t)=σ=.
.
Itcanbeprovedthatthesystemwithoutcontrolpartisunstableinthemean-squaresense.
Supposethatthestate-feedbackin()isgivenbyK=[.
–.
],andthequantizerweuseislogarithmicintheformof().
Wewanttodeterminethemaximumsectorboundδmaxbelowwhichthestochasticsystemwithquantizedstatefeedbackismean-squareasymptoticallystable.
TablegivesthemaximumboundofδmaxusingtheLyapunovfunc-tionrelatedtothequantizationdensityproposedinthispaperandthegeneralcontrolLyapunovfunction.
WeiandYangAdvancesinDierenceEquations2013,2013:20Page9of11http://www.
advancesindifferenceequations.
com/content/2013/1/20Table1ComparisonofquantizationdensityMethodsδmaxρinfQuadraticapproach0.
44500.
3841Quantizationdependentapproach0.
49960.
33373ExtensiontoH∞performanceanalysisForthesystemx(t+)=A+Aξ(t)x(t)+B+Bξ(t)u(t)+Gw(t),()z(t)=Cx(t)+Du(t)+Fw(t),()wherethestatex(t),theinputu(t)andthesystemnoiseξ(t)aredenedasthoseofthesystem(),z(t)∈Rnisthecontroloutput.
A,A,B,B,C,D,G,Faresystemmatriceswithproperdimensions.
Supposethequantizerisgiventobelogarithmicintheformof()andthequantizationdensityisknown,sotheclosed-loopsystemwiththequantizedstatefeedbackcontrolisgivenasfollows:x(t+)=A+Aξ(t)x(t)+B+Bξ(t)+(t)Kx(t)+Gw(t),()z(t)=Cx(t)+D+(t)Kx(t)+Fw(t),()where(t)∈[–δ,δ].
DeningW={w(t)}∈l[,∞),theobjectiveofthispartistoderivetheconditionsforthesystem()and()tobemean-squareasymptoticallystablewithanH∞disturbanceattentionlevelγ,thatis,z(t),Q=QT>,VandVsatisfying–Q[A+(–δ)BK]TVi[C+(–δ)DK]Tσ[A+(–δ)BK]TVi–γIGTViFTQi–Vi–VTi–IQi–Vi–VTi<,()–Q[A+(+δ)BK]TVi[C+(+δ)DK]Tσ[A+(+δ)BK]TVi–γIGTViFTQi–Vi–VTi–IQi–Vi–VTi<,i∈{,}.
()ProofThetheoremisprovenbasedontheLyapunovfunctiondenedin().
First,()and()imply()and(),whichguaranteestheclosed-loopsystemin()and()toWeiandYangAdvancesinDierenceEquations2013,2013:20Page10of11http://www.
advancesindifferenceequations.
com/content/2013/1/20bemean-squarestablebyTheorem.
ToprovetheH∞performance,assumezeroinitialconditionsandconsiderthefollowingindex:=∞EzT(t)z(t)–γEwT(t)w(t)≤∞EzT(t)z(t)–γEwT(t)w(t)+EVx(t),()whereEVx(t)=ExT(t+)Q(t+)x(t+)–xT(t)Q(t)x(t).
()Then,alongthesolutionsof()and(),wehave=∞ηT(t)η(t),()withη(t)=x(t)w(t),=,where=A++(t)BKTQ(t+)A++(t)BK–Q(t)+σA++(t)BKTQ(t+)A++(t)BK+C++(t)DKTC++(t)DK,()=A++(t)BKTQ(t+)G+C++(t)DKTF,()=GTQ(t+)G+FTF–γI.
()Ontheotherhand,bysimilarreasoningasintheproofofTheorem,wecanconcludefrom()and()that<.
Thenfrom()weknowthatTheproofiscompleted.
4ConclusionTheproblemofquantizedstate-feedbackcontrolforastochasticsystemwithmulti-plicativenoiseshasbeeninvestigatedthroughaquantization-dependentapproach.
Con-ditionsformean-squarepoly-quadraticalstabilityareobtainedbyintroducinganewquantization-dependentLyapunovfunctionapproachforlinearstatefeedbackwithalog-arithmicquantizer,whichareshowntobelessconservativethanthosederivedbyacom-monLyapunovfunction.
Moreover,H∞performanceanalysishasalsobeenproposedinthequantization-dependentframework.
However,itisworthpointingoutthatthoughlessconservativeconditionsareobtained,dierentfromthederivationofthecoarsestquan-tizer,theexplicitrelationofthesystemmatricesandquantizationdensityisnotgiven.
Theanalysisofrelationbetweenthequantizationdensityandthesystemmatricesandthestatisticalpropertiesofnoisesintheproposedquantization-dependentframeworkisasubjectworthfurtherresearching.
WeiandYangAdvancesinDierenceEquations2013,2013:20Page11of11http://www.
advancesindifferenceequations.
com/content/2013/1/20CompetinginterestsTheauthorsdeclarethattheyhavenocompetinginterests.
Authors'contributionsLWcarriedouttheproofofthemainpartofthisarticle,YYcorrectedthemanuscriptandparticipatedinitsdesignandcoordination.
Allauthorshavereadandapprovedthenalmanuscript.
AcknowledgementsWewouldliketothanktheeditor-in-chief,theassociateeditorandthereviewersfortheirvaluablecommentsonthepaperwhichhaveledtosignicantimprovementonthepresentationandqualityofthepaper.
ThisworkissupportedbytheTaishanScholarConstructionEngineeringbyShandongGovernment,theNationalNaturalScienceFoundation(No.
61174141),andtheMajorStateBasicResearchDevelopmentProgramofChina(973Program)(No.
2009cb320600),YangtseRiveScholarBonusSchemes(No.
31400080963017),NationalNaturalScienceFoundation(No.
61034007).
Received:20July2012Accepted:18December2012Published:23January2013References1.
Kalman,RE:Nonlinearaspectsofsampled-datacontrolsystems.
In:Proc.
SymposiumonNonlinearCircuitTheoryVII.
PolytechnicPress,NewYork(1956)2.
Lewis,JB,Tou,JT:Optimumsampled-datasystemswithquantizedcontrolsignals.
IEEETrans.
Appl.
Ind.
82(67),229-233(1963)3.
Elia,N,Mitter,S:Stabilizationoflinearsystemswithlimitedinformation.
IEEETrans.
Autom.
Control46(9),1384-1400(2001)4.
Tsumura,K,Ishii,H,Hoshina,H:Tradeosbetweenquantizationandpacketlossinnetworkedcontroloflinearsystems.
Automatica45,2963-2970(2009)5.
Wei,L,Fu,M,Zhang,H:Quantizedstabilizationforstochasticdiscrete-timesystemswithmultiplicativenoises.
Int.
J.
RobustNonlinearControl(2012).
doi:10.
1002/rnc.
27786.
Fu,M,Xie,L:Thesectorboundapproachtoquantizedfeedbackcontrol.
IEEETrans.
Autom.
Control50(11),1698-1711(2005)7.
Hayakawa,T,Ishii,H,Tsumura,K:Adaptivequantizedcontrolforlinearuncertaindiscrete-timesystems.
Automatica45,692-700(2009)8.
Hayakawa,T,Ishii,H,Tsumura,K:Adaptivequantizedcontrolfornonlinearuncertainsystems.
Syst.
ControlLett.
58,625-632(2009)9.
Gao,H,Chen,T:Anewapproachtoquantizedfeedbackcontrolsystems.
Automatica44,534-542(2008)10.
Zhou,B,Duan,G,Lam,J:Ontheabsolutestabilityapproachtoquantizedfeedbackcontrol.
Automatica46,337-346(2010)11.
You,K,Su,W,Fu,M,Xie,L:Attainabilityoftheminimumdatarateforstabilizationoflinearsystemsvialogarithmicquantization.
Automatica47(1),170-176(2011)12.
Niu,Y,Jia,T,Wang,X,Yang,F:Output-feedbackcontroldesignforNCSssubjecttoquantizationanddropout.
Inf.
Sci.
179(21),3804-3813(2009)13.
Feng,G:Controllerdesignandanalysisofuncertainpiecewise-linearsystems.
IEEETrans.
CircuitsSyst.
I49(2),224-232(2002)14.
Kocvara,M,Stingl,M:Pennon:acodeforconvexnonlinearandsemideniteprogramming.
Optim.
MethodsSoftw.
18(3),317-333(2003)15.
Zhu,Y,Li,DQ,Feng,G:H∞controllersynthesisofuncertainpiecewisecontinuous-timelinearsystems.
IEEProc.
,ControlTheoryAppl.
152(5),513-519(2005)16.
Zhang,H,Feng,G,Dang,C:StabilityanalysisandH∞controlforuncertainstochasticpiecewise-linearsystems.
IETControlTheoryAppl.
3(8),1059-1069(2009)doi:10.
1186/1687-1847-2013-20Citethisarticleas:WeiandYang:Anewapproachtoquantizedstabilizationofastochasticsystemwithmultiplicativenoise.
AdvancesinDierenceEquations20132013:20.

DMIT(季度$28.88)调整洛杉矶CN2 GIA优化端口

对于DMIT商家已经关注有一些时候,看到不少的隔壁朋友们都有分享到,但是这篇还是我第一次分享这个服务商。根据看介绍,DMIT是一家成立于2017年的美国商家,据说是由几位留美学生创立的,数据中心位于香港、伯力G-Core和洛杉矶,主打香港CN2直连云服务器、美国CN2直连云服务器产品。最近看到DMIT商家有对洛杉矶CN2 GIA VPS端口进行了升级,不过价格没有变化,依然是季付28.88美元起。...

美国高防云服务器 1核 1G 10M 38元/月 百纵科技

百纵科技:美国云服务器活动重磅来袭,洛杉矶C3机房 带金盾高防,会员后台可自助管理防火墙,添加黑白名单 CC策略开启低中高.CPU全系列E52680v3 DDR4内存 三星固态盘列阵。另有高防清洗!百纵科技官网:https://www.baizon.cn/联系QQ:3005827206美国洛杉矶 CN2 云服务器CPU内存带宽数据盘防御价格活动活动地址1核1G10M10G10G38/月续费同价点击...

美国cera机房 2核4G 19.9元/月 宿主机 E5 2696v2x2 512G

美国特价云服务器 2核4G 19.9元杭州王小玉网络科技有限公司成立于2020是拥有IDC ISP资质的正规公司,这次推荐的美国云服务器也是商家主打产品,有点在于稳定 速度 数据安全。企业级数据安全保障,支持异地灾备,数据安全系数达到了100%安全级别,是国内唯一一家美国云服务器拥有这个安全级别的商家。E5 2696v2x2 2核 4G内存 20G系统盘 10G数据盘 20M带宽 100G流量 1...

www.niuav.com为你推荐
原代码求数字代码大全?www.jjwxc.net在哪个网站看小说?psbc.com邮政银行卡6215995915000241921是哪个地区的月神谭求古典武侠类的变身小说~!百花百游“百花竟放贺阳春 万物从今尽转新 末数莫言穷运至 不知否极泰来临”是什么意思啊?haokandianyingwang谁有好看电影网站啊、要无毒播放速度快的、在线等www.55125.cn如何登录www.jbjy.cnwww.javmoo.comjavimdb怎么看抓站工具仿站必备软件有哪些工具?最好好用的仿站工具是那个几个?www.bbb551.com广州欢乐在线551要收费吗?
河南虚拟主机 主机屋 uk2 cpanel 国外免费空间 cdn加速是什么 hkt paypal注册教程 德隆中文网 贵阳电信 免费蓝钻 卡巴斯基试用版下载 深圳主机托管 香港博客 腾讯服务器 asp介绍 weblogic部署 国内免备案cdn 竞彩论坛空间 最好的空间留言 更多