eliminatewww.niuav.com

www.niuav.com  时间:2021-03-19  阅读:()
FULLPAPER2016WILEY-VCHVerlagGmbH&Co.
KGaA,Weinheim1040wileyonlinelibrary.
comCancerCellInternalizationofGoldNanostarsImpactsTheirPhotothermalEfciencyInVitroandInVivo:TowardaPlasmonicThermalFingerprintinTumoralEnvironmentAnaEspinosa,AmandaK.
A.
Silva,AnaSánchez-Iglesias,MarekGrzelczak,ChristinePéchoux,KarineDesboeufs,LuisM.
Liz-Marzán,andClaireWilhelm*DOI:10.
1002/adhm.
201501035Goldnanoparticlesareprimecandidatesforcancerthermotherapy.
How-ever,whiletheultimatetargetfornanoparticle-mediatedphotothermaltherapyisthecancercell,heatingperformancehasnotpreviouslybeenevaluatedinthetumoralenvironment.
Asystematicinvestigationofgoldnanostarheat-generatingefciencyinsituispresented:notonlyincancercellsinvitrobutalsoafterintratumoralinjectioninvivo.
Itisdemonstratedthat(i)inaqueousdispersion,heatgenerationisgovernedbyparticlesizeandexcitinglaserwavelength;(ii)incancercellsinvitro,heatgenerationisstillveryefcient,butirrespectiveofbothparticlesizeandlaserwavelength;and(iii)heatgenerationbynanostarsinjectedintotumorsinvivoevolveswithtime,asthenanostarsaretrafckedfromtheextracellularmatrixintoendosomes.
Theplasmonicheatingresponsethusservesasasignatureofnanoparticleinternalizationincells,bringingtheultimategoalofnanopar-ticle-mediatedphotothermaltherapyastepcloser.
1.
IntroductionWhenmalignanttumorsaredeeplyembeddedwithinthebodyorentangledaroundvitalorgans,makingtheminop-erable,non-invasivethermaltherapypromisestoyieldbetterpatientoutcomesandfeweradverseeffectsthanconven-tionaltreatments.
[1]Thermaltherapycaninictdirect,irreversiblecancercelldamagebydisruptingtheirmembranes[2]orbydenaturingproteinsandDNA.
[3]Thermaltherapycanalsobeusedtoenhancecancercellsensitivitytoradia-tionandchemotherapy.
[4]Avarietyofheatsourceshavebeeninvestigated,includinglasers,[5]microwaves,[6]andfocusedultrasound,[7]buttheseapproachesalsodamagehealthytissuessituatedbetweenthesourceandthetarget.
[8]Incontrast,energy-absorbingnanoparticlescanbeusedtoinduceheatingrestrictedtothetargettissue.
[9]Nanoparticle-basedthermaltherapyisdividedintotwomaincategories:magnetothermalandphotothermaltherapy.
Magnetothermaltherapy,alsocalledmagnetichyperthermia,isbasedontheuseofahigh-frequencyalternatingmagneticeldtoexcitemagneticnanoparticlesandtherebygeneratelocalheating.
[10]Decadesofresearchhavemovedtheconceptofmagnetothermaltherapyforwardfrominvitromechanisticstudies[11,12]topreclinicalinvestigations.
[13,14]Photothermaltherapyisamorerecentconceptinwhichlightisconvertedtoheatbyplasmonicnanoparticles,[15]semicon-ductornanocrystals,[16]orcarbon-basednanosystems.
[17]Inrecentworks,magnetichyperthermiacouldbecombinedwithphotothermiatoamplifyheatgeneration.
[18,19]Theuseoflasersourcesat650–950nm(rstnearinfrared(NIR)window)and1000–1350nm(secondNIRwindow)ensuresminimallightabsorptionbysurroundingtissues.
[20]Effortstoimprovelight-to-heatconversionefciencyhavefocusedonthesize,shape,orsurfacecoatingofplasmonicnanoparticles,aswellassurfaceplasmonresonancesintheNIR.
[21]Goldnanostarsareprom-isingcandidates,astheirplasmonresonancespectraandlightabsorptionefciencycanbepreciselytunedbyadjustingtheirwidth,length,ornumberofspikes.
[22,23]Despiteadvancesinnanoparticledesign,thefactorsdeter-mininglight-to-heatconversionefciencyinthetumorenvi-ronment,whichistheultimatedestinationofnanoparticlesforDr.
A.
Espinosa,Dr.
A.
K.
A.
Silva,Dr.
C.
WilhelmLaboratoireMatièreetSystèmesComplexes(MSC)UMR7057CNRSandUniversitéParisDiderot75205Pariscedex13,FranceE-mail:claire.
wilhelm@univ-paris-diderot.
frDr.
A.
Sánchez-Iglesias,Dr.
M.
Grzelczak,Prof.
L.
M.
Liz-MarzánBioNanoPlasmonicsLaboratoryCICbiomaGUNEPaseodeMiramón182,20009Donostia,SanSebastián,SpainDr.
M.
Grzelczak,Prof.
L.
M.
Liz-MarzánIkerbasque,BasqueFoundationforScience48013Bilbao,SpainDr.
C.
PéchouxGABI,INRA–MIMA2-METAgroParisTech,UniversitéParis-Saclay78350Jouy-en-Josas,FranceDr.
K.
DesboeufsLISA,CNRSUMR7583UniversitéParis-DiderotetUniversitéParis-EstCréteil,61avduGénéraldeGaulles94010Créteil,FranceProf.
L.
M.
Liz-MarzánBiomedicalResearchNetworkingCenterinBioengineeringBiomaterialsandNanomedicine(CIBER-BBN)50018Aragon,SpainAdv.
HealthcareMater.
2016,5,1040–1048www.
advhealthmat.
dewww.
MaterialsViews.
comFULLPAPER1041wileyonlinelibrary.
com2016WILEY-VCHVerlagGmbH&Co.
KGaA,Weinheimaccomplishingtherapy,remaintobefullyelucidated.
Indeed,mostheatingstudieshaveusedaqueousnanoparticledisper-sion,whichfailtotakeintoaccounttheeffectofthebiologicalenvironment.
Forexample,magneticnanoparticlesareknowntobehavedifferentlyfollowingproteincoronaformationorcon-nementintocellularcompartmentssuchasendosomesandlysosomes.
[11,24,25]Indeed,magneticnanoparticlesundergotheformationofaggregatesinthebiologicalenvironment,whichleadstoadivergenceinheatingefciencywhencomparingnanoparticlecharacterizationinaqueousdispersionandrealperformanceincells.
Decadesofintensestudieshaveshownthattheefciencyoflightenergyconversionintoheatusingplasmonicparticlesincreaseswithdecreasinginterparticledistances,i.
e.
,whentheparticlesareinanaggregatedstate.
Toenhancesuchpropertiesinabiologicalsystem,nanoparticlescanbepre-aggregated,thuscontrollingbeforehandtheopticalpropertiesandaddressingthemintothedesiredsystem.
Asanexample,Niuandco-workers[26]developedplasmonicvesicleswithstrongplasmoniccouplingthatservednotonlyforinvivoimagingbutalsoforremotedrugdelivery.
Nevertheless,suchanapproachof"pre-aggregation"issyntheticallychallengingandrequirescomplexsurfacechemistry.
Weproposeadifferentstrategy,inwhichlivingcells(invivo)takeuptheinitiallystablenanoparticlesandaggregatetheminsitu,inducingplasmoncouplingandthere-forechangingtheirefciencytowardhyperthermiatreatment.
Wethusinvestigatedthelight-to-heatconversionefciencyofgoldnanostarsinenvironmentsofincreasingcomplexity,fromaqueousdispersiontocancercellsinvitroandthentosolidtumorsinvivo.
Thisseriesofheatingmeasurementsrevealedathermalngerprintofplasmonicnanostarinternalizationbycancercells.
2.
HeatingEfciencyofGoldNanostarsinAqueousDispersionisSizeandLaser-DependentWesynthesizedapanelofvedifferentAunanostarswithsizesrangingfrom25to150nm(Figure1A).
Transmissionelectronmicroscopy(TEM)showsthatthenanoparticlescom-priseacentralcorefromwhichmultiplesharptipsprotrude,withnarrowsizedistributions:27.
1±2.
2nm(25-nmsample),52.
6±3.
4nm(55-nmsample),85.
9±4.
5nm(85-nmsample),121.
6±2.
9nm(120-nmsample),and150.
9±2.
4nm(150-nmsample).
SizedistributionsaredisplayedinFigureS1,Sup-portingInformation.
Z-potentialanddynamiclightscattering(DLS)ofthedifferentAunanostarsareshowninTableS1,SupportingInformation.
Asexpected,thevesamplesdisplaydistinctUV–vis–NIRopticalspectra,allofthemfeaturingabroadplasmonband(Figure1B).
The25-nmsampleyieldedtwoabsorbancemaximaataround550nmand700nm,whichwereattributedtoplasmonmodeslocalizedatthecoreandthetips,respectively.
[27,28]Asthenanostardiameterincreased,togetherwiththenumberofspikes,theinuenceofthecoreontheextinctionspectrumgraduallydeclines,[28]eventuallyresultinginasingleband.
Regarding55-nm,85-nm,120-nm,and150-nmnanostars,thesingleabsorbancebandgraduallyshiftstowardtheNIRregion,at790,800,900,and950nm,respectively,conrmingthatnanostarplasmonresonancesarestronglydependentonsizeandmorphology,especiallyspikelengthandnumberofspikes.
[23,29,30]Thephotothermalheatingefciencyofthenanostarsam-ples,dispersedinwateratthesameAuconcentrationof0.
75*103M,wasmonitoredwithaninfrared(IR)thermalcamera(imagesareshowninFigure1CandFigureS2,Sup-portingInformation)duringlaserirradiationat680,808,and1064nm,atthesamepowersettingof1Wcm2.
Thetempera-turewasobservedtoriseasafunctionoftimeatallwavelengthsandwithallvesamples,reachingsaturationafter5–10min(seetypicaltemperaturecurvesinFigure1DandFigureS3,SupportingInformation).
Theaveragevaluesoftemperatureincrementrecordedafter1min,ΔT1min,aswellasthetem-peratureincreasereachedatsaturationΔTplateauareplottedinFigure1E,F,respectively.
Aremarkablecorrelationbetweenthelight-to-heatconversionprolesandtheUV–vis–NIRabsorp-tionspectrawasobserved(seeFigureS4,SupportingInfor-mation,forquantitativecomparison).
Forinstance,the25-nmnanostarsdisplayedthebestheatingefciency(ΔT1min=19°C;ΔTplateau=44°C)whenirradiatedat680nm,closetothemax-imumofthelocalizedsurfaceplasmonresonance(LSPR)band.
Conversely,theweakestheatingeffect(ΔT1min=3°C;ΔTplateau=6°C)wasobservedatthewavelengthatwhichspectralabsorb-ancewaslowest(1064nm).
Similarresultswereobtainedwiththe85-nmnanostarsample,forwhichthemaximumoftheLSPRbandwasnear808nm.
Thissampleshowedaveragetemperatureincrementsof(ΔT1min=13°C;ΔTplateau=33°C),(ΔT1min=18°C;ΔTplateau=42°C),and(ΔT1min=5°C;ΔTplateau=10°C)atlaserwavelengthsof680,808,and1064nm,respec-tively.
Withthe150-nmnanostarsample,becausethelaserwavelengthsettingscorrespondedtoneitherthemaximumnortheminimumabsorption,ΔTvaluesweresimilaratallthreewavelengths((ΔT1min=10°C;ΔTplateau=28°C),(ΔT1min=13°C;ΔTplateau=30°C),(ΔT1min=16°C;ΔTplateau=29°C)for680,808,and1064nm,respectively).
AsshowninFigure1E,F,foragivenlaserwavelength(dottedlinesonthegraphs),theheatingefciencieswerered-shiftedasthenanostarsizeincreased.
At680nm,the25-nmsamplewasmostefcient,whereasthe150-nmsampledominatedat1064nm.
Theintermediatesizes(55,85,and120nm)weresimi-larlyefcientat808nm,andallthreeweremoreefcientthanthe25and150nmsamples.
Thus,precisenanostardesignfeaturesresultindistinctandwell-denedphotothermalconversionpro-les,whichisconsistentwiththeirabsorptionspectralfeatures.
Importantly,excellentabsoluteheatingefciencywasobtainedattheappropriatelasersettings.
Toeliminatetheinuenceoftheexperimentalconditions(sampleconcentra-tion,geometrydeterminingthesaturationtemperature),thisheatingefciencyisexpressedwithaparametercalledthespe-cicabsorptionrate(SAR,expressedinWg1ofAu,seetheSupportingInformation),whichiscalculatedfromtheinitialslopeofthetemperaturecurvesasafunctionoftime(valuesarepresentedinFigure1E).
Underoptimalconditions,allvesamplesreachedaSARofnearly10kWg1atalaserpowerof1Wcm2.
ThisisoneofthehighestSARvaluesreportedatthislaserpower.
Highervalues,suchas430±40and190±20kWg1(at800nm),havebeenreportedwithgoldnanorodsandnanostars,respectively,butatmuchstrongerlaserpowers(13Wcm2).
[2,31]Adv.
HealthcareMater.
2016,5,1040–1048www.
advhealthmat.
dewww.
MaterialsViews.
comFULLPAPER1042wileyonlinelibrary.
com2016WILEY-VCHVerlagGmbH&Co.
KGaA,WeinheimAscancercellsarethemaintargetofnanostar-basedphoto-thermaltherapy,wenextinvestigatedAunanostarheatingef-ciencyinvitro(nanostarsinternalizedbycancercells),andinvivo(afterintratumoralinjection).
3.
InteractionofAuNanostarswithCancerCells:InternalizationandHeatingEfciencyThephotothermalconversionefciencyofthethreemostrep-resentativenanostarsamplescoveringthewholesizerangewereselected(25,85,and150nm)andrstmonitoredinvitro,usingthehumanprostatecancercelllinePC3.
NanostaruptakewasinvestigatedbyTEMusingxedsamplesandAuelementalanalysis(seetheSupportingInformation).
Figure2A(andFigureS5,SupportingInformation)showscellsincubatedwithnanostarsincompleteculturemediumDulbecco'smodiedEagle'smedium(DMEMsupplementedwith10%fetalbovineserum(FBS))overnight(16h)at[Au]=0.
02*103M.
Thenanostars,visualizedaselectron-densespots,werealllocatedwithinendosomes,closetooneanother.
Nonanostarswerefoundintheextracellularmediumorattachedtothecelloutermembrane.
TheseobservationsareinagreementwiththoseofpreviousstudieswhereaccumulationofAunanostarswasobservedbyTEMwithinendosomes.
[32,33]Elementalanalysis(inductivelycoupledplasmaatomicemissionspectroscopy(ICP-AES))conrmedsuchanef-cientcellularuptake,whichincreasedwithnanostarsizefrom1.
4±0.
1pgAu/cellforthe25-nmsampleto2.
6±0.
3and3.
0±0.
3pgAu/cellforthe85and150nmsamples,respectivelyAdv.
HealthcareMater.
2016,5,1040–1048www.
advhealthmat.
dewww.
MaterialsViews.
comFigure1.
Goldnanostarsinaqueousdispersion:inuenceofnanostarsizeandlaserexcitationwavelengthonplasmonicresonancesandheatingefciency.
A)RepresentativeTEMimagesofthevesamplesofAunanostars,atlow(top,scalebar=200nm)andhigh(bottom,scalebar=50nm)magnication.
B)UV–vis–NIRabsorptionspectraofthesamesamples:theLSPRbandshiftsfrom600to1000nmasthenanostarsizeincreases.
C)Infraredthermalimagesofaqueousdispersions(150L)ofAunanostars(25,85,and150nmsamples)at[Au]=0.
75*103M,after1minoflaserirradiationat680,808,and1064nmand1Wcm2.
D)Temperatureincreasecurvesforthe25,85,and150nmsamplesuponirradiationat808nm(1Wcm2).
E,F)Temperatureincrementsachievedwithallvesamples(25,55,85,120,and150nm)asafunctionoflaserwavelength(680,808,and1064nm),afterE)1min(ΔT1min)orF)10min(plateau,ΔTplateau)ofexposureat1Wcm2.
FULLPAPER1043wileyonlinelibrary.
com2016WILEY-VCHVerlagGmbH&Co.
KGaA,Weinheim(graphshowninFigureS6A,SupportingInformation).
Uptakewaswithinthesamerange,whateverthenanostarsize.
Besides,asshownalsoinFigureS6B,SupportingInformation,nanostarinternalizationdidnotaffectcellmetabolicactivity,regardlessoftheparticlesize,inagreementwithpreviousreports.
[30,33,34]Itthenclearlyappearedthatnanostarheatingefciencywasmodiedfollowingcellularinternalization.
Nanostar-loadedcellswereharvestedinapellet.
ThenumberofcellspermLwasthendetermined(throughcellcountinginaMalassezchamber)tonallyobtaintheAumasspermL(Auconcen-trationofthepellet).
Theywereresuspendedinavolumeof150LtomatchtheAuconcentrationof0.
75*103M,thesameasusedfortheaqueousnanostardis-persion.
TheheatingwasrecordedwithIRcameraandthesameset-upastheoneusedfortheaqueousdispersions(Figure2B,CshowstypicalIRimagesandaveragetemper-atureincrease,respectively,after1minlaserexposure).
Atthehighestlaserwavelength(1064nm),the1mintemperatureincre-mentΔT1minrosefrom3upto13°Cwiththe25-nmnanostarsandfrom5upto13°Cwiththe85-nmnanostars,whileitdroppedfrom16downto11°Cwiththe150-nmnanostars.
Withthe25-nmnanostars,ΔT1minwasstillhigherat680nmthanat1064nm(15vs.
13°C),butitshighestvaluewasfoundat808nm(17°C).
Atawavelengthof680nm,thedeclineinheatingefciencywithsizeobservedinaqueousdispersion(nanostarsizeisrepresentedbydottedlinesinFigure2C)wasmuchlessmarkedwhenthenanostarswereconnedwithincells(datainaqueousdispersionareshownasemptybarsinFigure2Cforadirectcomparison).
Similarly,themaximumheatingobservedat808nmwiththeintermediate-sizenanostarsinaqueousdispersionwasnotobserved,andneitherwasthesize-dependentincreaseinheatingefciencyat1064nm.
Wethusconcludethatthewavelengthdependenceofnanostarheatingefciencywasreduceduponconnementinendosomalcompartments.
Indeed,whilethelaserwave-lengthmarkedlyinuencedheatingefciencyinaqueousdispersion(respective95%and80%decreasesinheatingefciencywiththe25-nmand85-nmnanostarsirradiatedwiththe"correct"and"incorrect"wavelengths),thiswasfarlessthecaseinthecellularenvi-ronment(20%and17%,respectively).
Finally,theheatingpower(SAR)(alsoshowninFigure2C)ofthedifferentnanostar-loadedcellsamplesfollowedthesametrend:theSARinsidecancercellswasmuchlessdependentonnanostarsizebutstillreachedhighvalues,intherangeof10kWg1.
Themostlikelyexplanationforthisattenuationofwavelengthdependenceuponcellularuptakeisnanostarconnementwithinendosomes.
Indeed,AunanoparticleaggregationinendosomeswasrecentlymeasuredandledtoLSPRred-shiftandbroadening.
[35]Similarly,usingplasmonicallyenhancedRayleighimagingoflivingcells,thesubcellularaggregationofAunanoparticlesinendosomeswasdemonstratedthroughthered-shiftandbroad-eningoftheplasmonband.
[36]ThemacroscopicUV–vis–NIRspectraofAunanostarsincellsareshowninFigureS7,Sup-portingInformation.
Whileacquisitionwashinderedbycel-lularbackgroundstructures,thesespectrarevealaatteningoftheextinctionbands,adeclineinthepeak-to-valleydistance,andared-shift.
Adv.
HealthcareMater.
2016,5,1040–1048www.
advhealthmat.
dewww.
MaterialsViews.
comFigure2.
InteractionofAunanostarswithcancercells,andintracellularheatingefciency.
A)TEMimagesofPC3cancercellsafterincubationwithAunanostars,atdifferentmagni-cations(scalebars2mand100nm).
B)Typicalinfraredthermalimagesofthecellsam-ples(about15millioncellscontainingAunanostarsdispersedin150LofPBS,adjustedtoaconcentrationof[Au]=0.
75*103M).
Fromtoptobottom,cellsincubatedwith25,85,and150nmnanostarsafter1minoflaserirradiationat680,808,and1064nmand1Wcm2.
C)Averagetemperatureincreaseforallcellsamplesasafunctionoflaserwave-length(680,808,and1064nm)after1minat1Wcm2.
Onthesamegraphthecalcu-latedvaluesfornanostarsinaqueousdispersionareshown(emptybars).
SAR(inkWg1,secondaryrightaxis)wasalsocalculated(seeExperimentalDetailsintheSupportingInfor-mation)forallcellularsamples.
FULLPAPER1044wileyonlinelibrary.
com2016WILEY-VCHVerlagGmbH&Co.
KGaA,Weinheim4.
HeatingEfciencyofAuNanostarsInVivo:EvolutionPost-injectionHeatingefciencyinvivowasevaluatedbyinjectingnanostars(atthesame[Au]=0.
75*103M)intoPC3tumorsinducedinmice.
Theuptakeandheatingefciencyof25,85,and150nmnanostarswereinvestigatedondays0and3post-injection.
IntratumoralnanostarlocalizationwasassessedbyTEM,andlocaltumoraltemperaturechangesweremonitoredinlivingmicewiththeinfraredthermalcameraduringtheentireperiodofirradiation.
Onday0,TEMimages(Figure3A,top)showedindividualnanostarsdispersedclosetovessels,throughouttheextra-cellularmedium,orwithinbundlesofcollagenbres(seealsoFiguresS8–S10,SupportingInformation).
Ofnote,nonanostarswereobservedinthecytoplasm.
Onday3,thenanostarswerelocatedsolelyinendosomes(Figure3A,bottomandFiguresS11–S14,SupportingInformation),insidetumorAdv.
HealthcareMater.
2016,5,1040–1048www.
advhealthmat.
dewww.
MaterialsViews.
comFigure3.
HeatingefciencyofAunanostarsintumorsinvivo:evolutionovertime.
A)TEMimagesofnanostarsonday0andday3afterintratumoralinjection.
B)Invivoinfraredthermalimagesoftumorsinjectedwith25,85,and150nmnanostarsandexposedfor1minto680,808,and1064nmlaserirradiationat1Wcm2,onday0(1hafterinjection,upperpanel)andonday3(lowerpanel).
C)Averagetumoraltemperatureincreaseasafunctionofthelaserwavelength(680,808,and1064nm)andnanostarsize,after1minofexposureat1Wcm2,onday0(left)andday3(right).
Dottedlinesservetovisualizetheevolutionofheatgenerationaccordingtonanostarsize,foragivenlaserwavelength(lightgrayfor680nm,grayfor808nm,anddarkgrayfor1064nm).
FULLPAPER1045wileyonlinelibrary.
com2016WILEY-VCHVerlagGmbH&Co.
KGaA,Weinheimcells,formingsmallrandomclusters,butretainingtheoriginalbranchedmorphology,i.
e.
,noreshapinghastakenplacewithinthetumor.
ThisisanimportantpointconsideringthatnanostarreshapingmayfurtherinuencenanoparticleLSPR.
[37]Thus,aspreviouslyobservedincancercellsinvitro,allAunanostarswereprocessedintosubcellularcompartmentsinvivowheretheyaccumulate.
Figure3Bshowsthermalimagesafter1minoftumorirradiationonday0(1hafterinjection)andonday3,whileFigure3CshowstheaveragetemperatureincrementΔT1min.
Onday0,thephotothermalconversionprolewassimilartothatofdispersednanostars(Figure3C,left).
Notethatthenanostardispersion(50–100L)at[Au]=0.
75*103Mwasinjectedintotumors.
Thevolumeinjecteddependedonthetumorvolume;Foreachtumor,thenanostarsinjectedvolumewasadjustedinordertokeepthedilutionfactorconstant.
Itclearlyappearsfromthethermalimagesthatheatingremainslocalizedclosetothesiteofinjection.
Inkeepingwiththisobservation,thevaluesoftemperatureincreasewerefoundtobeinthesamerangeasthoseobtainedindispersionorincancercells(at[Au]=0.
75*103M).
Forinstance,with25-nmnanostars,thetumortemperaturerose(atday0,rightafterinjection)byrespectively12,8,and5°Cafter1minofirradia-tion(1Wcm2)at680,808,and1064nm.
Inthesamecondi-tions,therespectivetemperatureincrementswereabout10,14,and5°Cwith85-nmnanostarsandabout6,10,and9°Cwith150-nmnanostars.
Untreatedtumorsexposedtolaserirradia-tionshowedanegligibletemperatureriseof3–4°C(FigureS15,SupportingInformation).
Theinvivolight-to-heatconversionproleevolvedwithtime,markedlydifferingbetweenday0andday3withboth25-nmand85-nmnanostars(Figure3C,right).
Remarkably,thephotothermalefciencyonday3showedthesamepatternasthatofnanostarsinternalizedbycancercellsinvitro.
ThisisinperfectagreementwithTEMobservations,whichshowedthatallnanostarswereconnedinendosomes.
Onday3therecordedtemperatureincrementswerethusinde-pendentofnanostarsizeandlaserwavelength.
5.
InVivoThermalSignatureofIntratumorLocalizationofPlasmonicNanoparticlesHere,wedemonstratethattheheatingefciencyatdifferentlaserwavelengthsremarkablymatchesthedegreeofplas-monicgoldnanostarsinternalizationbycancercellsinvivo.
Wethereforeprovideinformationonthenanoscalecellularfateofplasmonicnanoparticleswithinatumor,throughsimplemeasurementofheatgenerationuponirradiationatdifferentwavelengths,bycontrastwiththeinitialwavelength-dependentheatingproleinaqueousdispersion.
Therelationshipbetweenmacroscopicphysicalmeasure-ments(magnetic,optical,thermal,etc.
)andthenanoscalelocalizationofnanomaterialsinlivingenvironmentshasrarelybeenstudied.
Recently,DiCoratoetal.
[11]andSoukupetal.
[24]showedthatmagneticheatgeneration(magnetichyperthermia)canrevealthelocalorganizationofmagneticnanoparticles,providingamagneticheatingsignaturerelateddirectlytothenanoparticles'localanisotropyandinteractions.
Thesemeas-urementswereperformedinsituincellularsamples(invitro),withmagneticnanoparticlesconnedwithinendosomesandinveryclosemutualcontact.
Thestrongconnementofthepar-ticlesandtheirinteractionsprovokedstericfrustrationwhichinturnmodiedthemagneticdynamicsresponsibleforheatgeneration,resultinginadropinheatingefciencyaftercancercelluptake.
Here,wedemonstratethatintracellularconnementofplas-monicnanoparticlesinendosomesalsoimpactstheirphoto-thermalefciency.
Whereasmagnetichyperthermiameasure-mentshadpreviouslyonlybeenmadeinvitro,weshowthatthisthermalsignaturealsoexistsinvivo,aftercellularinter-nalizationwithinatumor.
Tothebestofourknowledge,thisistherstreportonphotothermalmeasurementsasawayforreal-timeprobingtheeffectofthebiologicalmicroenviron-mentontheplasmonicpropertiesofnanoparticlesinsitu.
Byprovidinginsightsintonanoparticles/microenvironmentinter-actions,thisapproachofferstheopportunitytonon-invasivelyassesscellularuptakeofnanoparticles.
Consideringinvivoapplications,depictingtheinterplayofnanoparticleswithbio-logicalmediaateachstepoftheirlifetimecycle(fromaqueousdispersiontocellinternalization)isacriticalpointforultimateimplementationofnanostar-mediatedphotothermaltherapysettings.
Besides,theseresultsareinagreementwiththeobservationthattheplasmoncharacteristicsofindividualgoldnanoparticlesevolvewhentheparticlesformclusters,[35]sometimesevenpro-ducingasynergisticeffect.
Thisiswhatisobservedhere,atagivenlaserwavelength,with25-nmgoldnanostars:whenirra-diatedat808nm,atthesameconcentration,thesenanostarsdeliveronlya6°Ctemperatureincreasewhenindividuallydis-persedinsolution,whilethetemperatureincrementleapstoalmost20°Cuponaggregationinsidecells.
6.
StrategySelectionforPhotothermalTherapyThisparticularcaseof25-nmnanostarsraisesquestionsastothebeststrategyfortranslatingplasmonicphotothermiafromthelaboratorytotheclinic.
Measurementsinaqueousdisper-sionssuggestedthat25-nmnanostarswouldnotbesuitableforinvivoapplications,giventheirlowNIRabsorption.
Indeed,at808nm,largernanostars(>50nm)yieldeda200%increaseinheatgeneration.
Yet,invivo,afterprocessingbycancercells(day3),25-nmnanostarswereasefcientas85-nmandeven150-nmnanostars.
Advancesincolloidchemistryhaveenabledthesynthesisofnanoparticleswithtightlycontrolledsizesandshapes,[38]allowingne-tuningoftheirphysicalproperties.
Herewedem-onstratethatgoldnanostarheatingefciencyindispersioncanbetunedbyadjustingtheirsizeorthelaserexcitationwave-length.
Althoughspectroscopyandthermalmeasurementshavebeenwidelyusedtocharacterizeandoptimizethedesignofplasmonicnanoparticlesinaqueousdispersion,weshowherethattherecordedphotothermalconversionefcienciesarenotpredictiveofthevaluesachievedineitherisolatedcellsorlivingtissues.
Moreover,weshowthat,regardlessoftheirsize,nanostarsconnedwithintumorcellendosomesexhibitsimilarheatingefcienciesuponnear-infraredlaserexcitation.
Thus,becausetheirsmallsizeshouldfacilitatebiodistributionAdv.
HealthcareMater.
2016,5,1040–1048www.
advhealthmat.
dewww.
MaterialsViews.
comFULLPAPER1046wileyonlinelibrary.
com2016WILEY-VCHVerlagGmbH&Co.
KGaA,Weinheiminvivo,weproposethat25-nmnanostarsarethecandidatesofchoiceforphotothermaltumortherapy.
Fromapharmacokineticstandpoint,nanoparticlesizeisakeypropertyasitdeterminesinteractionswithcells,thevascula-tureandinterstitialtransport.
Indeed,thesizeofnanoparticlesdirectlyinuencestheinteractionwiththelocalfenestratedvasculature.
Nanoparticlesizeshouldbeinferiortovasculaturefenestrationcut-offinordertoallowtumoraccumulationbytheenhancedpermeabilityandretentioneffect.
[39]Consideringgoldnanoparticles,ithasbeenreportedthattheyshouldfeaturesub-100nmsizerangetobeabletocrosstumorvasculatureandmovethroughoutthetumorinterstitium.
[40]Inthisregardandtakingintoaccountthephotothermalconversionprolereportedhereinafterprocessingbycancercells,thesmallestgoldnanostarsinthe25–50nmsizerangeshoulddenitelybeconsideredbestsuitedforphotothermalcancertherapy.
Concerningtheinvivomodel,intratumoralinjectioninsubcutaneousmicetumorisaconvenientcancermodelforassessingnanoscalecellularheatingconversionofplasmonicnanoparticles.
Thismodelissuitabletotrackthenanophysicalpropertiesofnanomaterialsmeasuringthethermalefciencyfeatureinasupercial(accessibletolaserirradiation)andlocal-izedtumor,ensuringhighaccumulationofnanomaterials.
Inthecaseofsystemicadministration,theinjectednanoparticleswouldprobablybeuptakenbyseveralorganssuchaslungs,liver,andspleenandonlyafractionofitwouldreachthetumorsite.
Asaresult,wecouldexpecttoobservesimilarheatingconver-siontotheappliedlaserwavelengthsbutatareducedintensitydegree,asafunctionoftheamountofnanomaterialthatwouldreachthetumorsite.
However,itisnoteworthytomentionthatevenifnanoparticleswouldbedistributedthroughouttheorganism,theheatingeffectwouldremainconnedtotumorsiteasitistriggeredbylocallaserexposureatthetumorregion.
7.
ConclusionInsummary,bytestingavarietyofgoldnanostarswithaveragediametersrangingfrom25to150nm,andplasmonicreso-nancepeaksbetween500and1000nm,wefoundthatheatingefciencyinaqueousdispersiondependsonbothparticlesizeandexcitationlaserwavelength.
However,whenthenanostarswereinternalizedbycancercellsandconnedinendosomes,sizeandwavelengthdependencearestronglyattenuatedorevensuppressed.
Attenuationwasalsoobservedinvivowhenthenanostarswereinjectedintosolidtumors,butonlyaftercellularuptake,whichisreectedinthetemperatureprolesobtainedatdifferentlaserwavelengths.
Inviewofthismeasuredinvivobehavior,weinferthatthemostimportantdesignfeatureofgoldnanostarsforthermotherapyisnottheiradjustedplas-monicpeakmeasuredinaqueousdispersion,butrathertheirsizeandcoatingtoensureoptimalbiodistributioninvivo.
8.
ExperimentalSectionGoldNanostarSynthesis—Chemicals:Gold(III)chloridetrihydrate(HAuCl4),sodiumcitratetribasicdihydrate,polyvinylpyrrolidone(PVP,averageMW=10000),N,N-dimethylformamide(DMF)werepurchasedfromSigma–Aldrich.
EthanolwaspurchasedfromSharlau.
Allreactantswereusedwithoutfurtherpurication.
GoldNanostarSynthesis—SynthesisofGoldSeeds(14and40nm):Twobatchesofcitrate-stabilizedgoldseedswereprepared.
Goldseedswithdiameterof14.
3±0.
2nmwerepreparedaccordingtothemethodbyEnustunandTurkevich.
[41]Theseedswithdiameterof40.
2±1.
2nmwerepreparedaccordingtomethodbyPuntesandco-workers.
[42]GoldNanostarSynthesis—FunctionalizationwithPVP:Citrate-stabilizedgoldseeds(14and40nm)werefunctionalizedwithPVPusingGrafmethod.
[43]TheamountofPVPwascalculatedtoprovide≈60moleculespernm2ofparticlessurface.
ThePVPwasdissolvedinwaterinultrasonicbathfor15min.
Subsequently,thesolutioncontainingPVPwasaddeddropwisetothesolutioncontainingcitrate-stabilizedgoldseedsunderstirring.
Toensuretheadsorptionofthepolymeronparticlessurface,thereactionmixturewasstirredovernightatroomtemperature.
Finally,thePVP-stabilizedgoldseedswerecentrifuged(14nm–4000rpm;40nm–1200rpm)andredispersedinethanol.
Thenalconcentrationofgoldwasadjustedto3*103Mforbothseedssolution.
GoldNanostarSynthesis—SynthesisGoldNanostars(25nm,55nm):GoldnanostarswerepreparedbyfollowingtheprotocolbyKumaretal.
[44]Briey,anaqueoussolutionofHAuCl4(0.
041mL,100*103M)wasmixedwithasolutionofPVP(15mL,10*103M)inDMF.
ThemixturewasstirreduntilcompletedisappearanceoftheAu+3CTTSbandat325nm,followedbyrapidadditionofgoldseeds(14nm)inethanolundervigorousstirring.
Toobtainnanostarswith25and55nmofdiameter,thevolumeofseedswasfoundtobe0.
292and0.
023mL,respectively.
Thecolorofthesolutionchangesfromcolorlesstobluewithin40min,indicatingtheformationofgoldnanostars.
Thesampleswerecentrifugedthreetimesandredispersedinwater.
GoldNanostarSynthesis—SynthesisGoldNanostars(85nm,120nm,150nm):AnaqueoussolutionofHAuCl4(0.
041mL,100*103M)wasmixedwithasolutionofPVP(15mL,10*103M)inDMF.
ThemixturewasstirreduntilcompletedisappearanceoftheAu+3CTTSbandat325nm,followedbyrapidadditionofgoldseeds(40nm)inethanolundervigorousstirring.
Toobtainnanostarswith85,125,and150nmofdiameter,thevolumeofseedswasfoundtobe0.
159,0.
053,and0.
026mL,respectively.
Thecolorofthesolutionchangesfromcolorlesstobluewithin40min,indicatingtheformationofgoldnanostars.
Thesampleswerecentrifugedthreetimesandredispersedinwater.
DynamicLightScatteringAnalysis:DLScurvesofthesizedistributionwereobtainedusingNanoSizer(Zeta-Sizer,MalvernInstrument,UK).
CellCulture,LabellingandUptakeAssays:Humanprostatecancercells(PC3,ATCCCRL-1435)wereculturedinDMEMsupplementedwith10%FBSand1%penicillin,andmaintainedat37°Cwith5%CO2untilconuence.
Cellswereincubatedwithnanostarsofdifferentsizes(from25to150nm)at[Au]=0.
02*103Mfor16hinRoswellParkMemorialInstitutemedium(RPMI)at37°Cintwo150-cm2asks(≈30millioncells).
Themediumwasthenremovedandthecellswerewashedwithculturemedium.
Labelledcellsweredetached,centrifugedandresuspendedinPBSforfurtherexperiments.
ElementalAnalysis:TheconcentrationofgoldinnanostaraqueousdispersionandcellswasanalyzedbyICP-AES.
ThesamplesweredigestedinconcentratedHNO3for1hat90–100°C,thenrecoveredanddilutedin1%HCl.
UV–vis–NIRSpectroscopy:OpticalabsorptionmeasurementsofAunanostarsinaqueousdispersionandincancercellsinvitrowerecarriedoutincommercialspectrophotometers(Agilent8453and50scanCary,Varian)inthe300–1100nmspectralrange.
Samplepreparation(preparationofacelllysateexcludingthenuclei)foracquiringthecellularspectraisdescribedinthecaptionofFigureS7,SupportingInformation.
CytotoxicityAssay:CellviabilityafterincubationwiththedifferentAunanostarswasevaluatedintheAlamarBlueassay(LifeTechnologies).
Labelledcellswereincubatedwith10%AlamarBlueinDMEMwithoutredphenolfor2handthentransferredtoa96-wellplateforanalysiswithamicroplatereader(BMGFluoStarGalaxy)atanexcitationwavelengthof550nmwithuorescencedetectionat590nm.
ViabilityAdv.
HealthcareMater.
2016,5,1040–1048www.
advhealthmat.
dewww.
MaterialsViews.
comFULLPAPER1047wileyonlinelibrary.
com2016WILEY-VCHVerlagGmbH&Co.
KGaA,Weinheimwasdeterminedbycomparisonwithcontrolcells(100%).
Allreportedexperimentswereperformedintriplicate.
PhotothermalMeasurementsinAqueousDispersionandinCellsInVitro:PhotothermalmeasurementsweremadewithvisibleandNIRlasers(680,808,and1064nm;LaserComponentsS.
A.
S(France))withexternaladjustablepowersettings(0–5W).
Thesample(aqueousnanoparticledispersionorsuspensionofAunanostar-loadedcells)containedina0.
5-mLtubewasilluminatedat2.
5–3cmdistancewithalaserspotof1cm2.
Thelaserpowerwasxedat1Wcm2.
Thetemperatureelevationwasrecordedwithaninfraredthermalimagingcamera(FLIRSC7000)inrealtime,everysecond,inthetemperaturerangeof25to70°C.
Thetemperatureelevationwasmeasuredasafunctionoftime(dT/dt)attheinitiallinearslope(t≈30s)inordertoevaluatetheheatingeffectintermsofSAR,powerdissipationperunitmassofelement(Wg1).
SARwascalculatedusingthefollowingformula:SAR=CVmdTdtswheremisthetotalmassofgoldinthesample,Cisthespecicheatcapacityofthesample(Cwater=4185JL1K1,Ccell=4125JL1K1),andVsisthesamplevolume.
PhotothermalMeasurementsInVivo:Six-week-oldNavalMedicalResearchInstitute(NMRI)malenudemiceweighing20±1g,providedbyJanvierLaboratoriesFrance,werehostedinthefacilitiesofAnimalerieBuffon,InstituteJacquesMonod,Paris7University.
Theywereacclimatizedfor1weekbeforeuse,inkeepingwithEuropeanstandardsofanimalcareandwell-being.
Solidtumorswereinducedbysubcutaneousinjectionof2*106PC3humanprostatecarcinomacellsin100Lofphysiologicalsaline(PBS)intheleftandrightanks.
Whenthetumorsreachedavolumeofabout125mm3,theywereinjectedwith100LofAunanostars(25,85,or150nm)insalinedispersionat[Au]=0.
75*103M.
Twenty-onetumorsin12animalsweredividedintofourgroups:6tumorswereinjectedwith25-nmAunanostars,6with85-nmAunanostars,and6with150-nmAunanostars;3noninjectedtumorsservedascontrols.
Thetumorswereilluminatedwiththreelasers(680,808,and1064nm)at1Wcmatadistanceof3cmfor5minondays0,1,and3postinjection.
Thetumorsurfacetemperaturewasmonitoredwithaninfraredthermalcamera(FLIRSC7000,FLIRSystems,Inc.
),eachmeasurementbeingmadeintriplicate.
Duringthemeasurementstheanimalswereanesthetizedwithketamine/xylazine.
Theanimalsweresacricedwhencollateraltumorsreached1cm3.
TEM:TEMimagesofaqueousdispersionwereobtainedwithaJEOLJEM-1400PLUStransmissionelectronmicroscopeoperatingatanaccelerationof120kV(CICbiomaGUNE,Spain).
TEMmicrographsofAunanostarsincellswereacquiredusingaHitachiHT7700operatingat80kV(MIMA2platform,INRA,Jouy-en-Josas,France).
TumorcellswereincubatedwithAunanostarsandxedwith5%glutaraldehydein0.
1molL1sodiumcacodylatebuffer,thengraduallydehydratedinethanolandstainedwith1%osmiumtetroxideand1.
5%potassiumcyanoferrate.
ThesampleswereembeddedinEponandsectionedforanalysis.
Mousetumorswerecutinto1mm3pieces,xedwith2%glutaraldehydein0.
1Msodiumcacodylatebufferandkeptin0.
1Msodiumcacodylateand0.
2Msucrosebuffer,thenpostxedwiththesameprotocolasforisolatedtumorcellsbeforebeingcutintothinsections(70nm)forobservation.
SupportingInformationSupportingInformationisavailablefromtheWileyOnlineLibraryorfromtheauthor.
AcknowledgementsThisworkwassupportedbytheMarieCurieIntra-EuropeanProjectFP7-PEOPLE-2013-740IEF-62647.
TheauthorsaregratefultoA.
DjematfromAnimalerieBuffonforanimalcare.
L.
M.
L.
-M.
acknowledgesfundingfromtheEuropeanResearchCouncil(ERCAdvancedGrant#267867,Plasmaquo)andtheSpanishMinisteriodeEconomíayCompetitividad(MAT2013-46101-R).
Received:December21,2015Revised:January22,2016Publishedonline:March15,2016[1]a)P.
Moroz,S.
K.
Jones,B.
N.
Gray,J.
Surg.
Oncol2001,77,259;b)M.
Ahmed,S.
N.
Goldberg,J.
Vasc.
Interv.
Radiol.
2002,13,S231.
[2]J.
C.
Bischof,J.
Padanilam,W.
H.
Holmes,R.
M.
Ezzell,R.
C.
Lee,R.
G.
Tompkins,M.
L.
Yarmush,M.
Toner,Biophys.
J.
1995,68,2608.
[3]a)J.
R.
Lepock,K.
-H.
Cheng,H.
Al-qysi,I.
Sim,C.
J.
Koch,J.
Kruuv,Int.
J.
Hyperthermia1987,3,123;b)J.
R.
Lepock,H.
E.
Frey,A.
M.
Rodahl,J.
Kruuv,J.
Cell.
Physiol.
1988,137,14.
[4]a)P.
Wust,B.
Hildebrandt,G.
Sreenivasa,B.
Rau,J.
Gellermann,H.
Riess,R.
Felix,P.
M.
Schlag,TheLancetOncol.
2002,3,487;b)R.
W.
Habash,R.
Bansal,D.
Krewski,H.
T.
Alhad,Crit.
Rev.
Biomed.
Eng.
2006,34,459.
[5]M.
Castrén-Persons,T.
Schrder,O.
Rm,P.
Puolakkainen,E.
Lehtonen,LasersSurg.
Med.
1991,11,595.
[6]T.
Seki,M.
Wakabayashi,T.
Nakagawa,M.
Imamura,T.
Tamai,A.
Nishimura,N.
Yamashiki,A.
Okamura,K.
Inoue,Cancer1999,85,1694.
[7]F.
A.
Jolesz,K.
Hynynen,CancerJ.
2001,8,S100.
[8]E.
S.
Day,J.
G.
Morton,J.
L.
West,J.
Biomech.
Eng.
2009,131,074001.
[9]D.
Jaque,L.
M.
Maestro,B.
DelRosal,P.
Haro-Gonzalez,A.
Benayas,J.
Plaza,E.
M.
Rodríguez,J.
G.
Solé,Nanoscale2014,6,9494.
[10]a)G.
Vallejo-Fernandez,O.
Whear,A.
Roca,S.
Hussain,J.
Timmis,V.
Patel,K.
O'Grady,J.
Phys.
D:Appl.
Phys.
2013,46,312001;b)R.
E.
Rosensweig,J.
Magn.
Magn.
Mater.
2002,252,370.
[11]R.
DiCorato,A.
Espinosa,L.
Lartigue,M.
Tharaud,S.
Chat,T.
Pellegrino,C.
Ménager,F.
Gazeau,C.
Wilhelm,Biomaterials2014,35,6400.
[12]a)V.
Connord,P.
Clerc,N.
Hallali,D.
ElHajjDiab,D.
Fourmy,V.
Gigoux,J.
Carrey,Small2015,11,2437;b)I.
Andreu,E.
Natividad,L.
Solozábal,O.
Roubeau,ACSNano2015,9,1408.
[13]a)K.
Maier-Hauff,F.
Ulrich,D.
Nestler,H.
Niehoff,P.
Wust,B.
Thiesen,H.
Orawa,V.
Budach,A.
Jordan,J.
Neurooncol.
2011,103,317;b)K.
Maier-Hauff,R.
Rothe,R.
Scholz,U.
Gneveckow,P.
Wust,B.
Thiesen,A.
Feussner,A.
vonDeimling,N.
Waldoefner,R.
Felix,J.
Neurooncol.
2007,81,53.
[14]R.
DiCorato,G.
Béalle,J.
Kolosnjaj-Tabi,A.
Espinosa,O.
Clément,A.
K.
A.
Silva,C.
Ménager,C.
Wilhelm,ACSNano2015,9,2904.
[15]S.
Lal,S.
E.
Clare,N.
J.
Halas,Acc.
Chem.
Res.
2008,41,1842.
[16]T.
N.
Lambert,N.
L.
Andrews,H.
Gerung,T.
J.
Boyle,J.
M.
Oliver,B.
S.
Wilson,S.
M.
Han,Small2007,3,691.
[17]G.
Lamanna,A.
Battigelli,C.
Ménard-Moyon,A.
Bianco,Nano-technol.
Rev.
2012,1,17.
[18]A.
Espinosa,M.
Bugnet,G.
Radtke,S.
Neveu,G.
A.
Botton,C.
WilhelmC,A.
Abou-Hassan,Nanoscale2015,7,18872.
[19]A.
Espinosa,R.
DiCorato,J.
Kolosnjaj-Tabi,P.
Flaud,T.
Pellegrino,C.
Wilhelm,ACSNano2016,10,2436.
[20]a)B.
Chance,Ann.
N.
Y.
Acad.
Sci.
1998,838,29;b)M.
-F.
Tsai,S.
-H.
G.
Chang,F.
-Y.
Cheng,V.
Shanmugam,Y.
-S.
Cheng,C.
-H.
Su,C.
-S.
Yeh,ACSNano2013,7,5330.
[21]E.
C.
Dreaden,A.
M.
Alkilany,X.
Huang,C.
J.
Murphy,M.
A.
El-Sayed,Chem.
Soc.
Rev.
2012,41,2740.
[22]S.
Trigari,A.
Rindi,G.
Margheri,S.
Sottini,G.
Dellepiane,E.
Giorgetti,J.
Mater.
Chem.
2011,21,6531.
Adv.
HealthcareMater.
2016,5,1040–1048www.
advhealthmat.
dewww.
MaterialsViews.
comFULLPAPER1048wileyonlinelibrary.
com2016WILEY-VCHVerlagGmbH&Co.
KGaA,Weinheim[23]S.
Barbosa,A.
Agrawal,L.
Rodríguez-Lorenzo,I.
Pastoriza-Santos,R.
A.
Alvarez-Puebla,A.
Kornowski,H.
Weller,L.
M.
Liz-Marzán,Langmuir2010,26,14943.
[24]D.
Soukup,S.
Moise,E.
Céspedes,J.
Dobson,N.
D.
Telling,ACSNano2015,9,231.
[25]S.
Dutz,R.
Hergt,Int.
J.
Hyperthermia2013,29,790.
[26]a)P.
Huang,J.
Lin,W.
Li,P.
Rong,Z.
Wang,S.
Wang,X.
Wang,X.
Sun,M.
Aronova,G.
Niu,Angew.
Chem.
2013,125,14208;b)J.
Lin,S.
Wang,P.
Huang,Z.
Wang,S.
Chen,G.
Niu,W.
Li,J.
He,D.
Cui,G.
Lu,ACSNano2013,7,5320.
[27]J.
R.
Navarro,D.
Manchon,F.
Lerouge,N.
P.
Blanchard,S.
Marotte,Y.
Leverrier,J.
Marvel,F.
Chaput,G.
Micouin,A.
-M.
Gabudean,Nanotechnology2012,23,465602.
[28]X.
Wang,G.
Li,Y.
Ding,S.
Sun,RSCAdv.
2014,4,30375.
[29]a)H.
dePuig,J.
O.
Tam,C.
-W.
Yen,L.
Gehrke,K.
Hamad-Schifferli,J.
Phys.
Chem.
C2015,119,17408;b)G.
Plascencia-Villa,D.
Torrente,M.
Marucho,M.
José-Yacamán,Langmuir2015,31,3527.
[30]H.
Yuan,C.
G.
Khoury,H.
Hwang,C.
M.
Wilson,G.
A.
Grant,T.
Vo-Dinh,Nanotechnology2012,23,075102.
[31]S.
Freddi,L.
Sironi,R.
D'Antuono,D.
Morone,A.
Donà,E.
Cabrini,L.
D'Alfonso,M.
Collini,P.
Pallavicini,G.
Baldi,D.
Maggioni,G.
Chirico,NanoLett.
2013,13,2004.
[32]a)G.
Plascencia-Villa,D.
Bahena,A.
R.
Rodríguez,A.
Ponce,M.
José-Yacamán,Metallomics2013,5,242;b)W.
Jiang,B.
Y.
Kim,J.
T.
Rutka,W.
C.
Chan,Nat.
Nanotechnol.
2008,3,145.
[33]H.
Jo,H.
Youn,S.
Lee,C.
Ban,J.
Mater.
Chem.
B2014,2,4862.
[34]L.
Rodríguez-Lorenzo,Z.
Krpetic,S.
Barbosa,R.
A.
Alvarez-Puebla,L.
M.
Liz-Marzán,I.
A.
Prior,M.
Brust,Integr.
Biol.
2011,3,922.
[35]a)J.
Conde,J.
delaFuente,P.
Baptista,Nanotechnology2010,21,505101;b)A.
M.
Schwartzberg,C.
D.
Grant,A.
Wolcott,C.
E.
Talley,T.
R.
Huser,R.
Bogomolni,J.
Z.
Zhang,J.
Phys.
Chem.
B2004,108,19191;c)Y.
Yang,Y.
Hu,H.
Du,H.
Wang,Chem.
Commun.
2014,50,7287;d)A.
L.
Chen,Y.
S.
Hu,M.
A.
Jackson,A.
Y.
Lin,J.
K.
Young,R.
J.
Langsner,R.
A.
Drezek,NanoscaleRes.
Lett.
2014,9,1.
[36]M.
Aioub,B.
Kang,M.
A.
Mackey,M.
A.
El-Sayed,J.
Phys.
Chem.
Lett.
2014,5,2555.
[37]L.
Rodríguez-Lorenzo,J.
M.
Romo-Herrera,J.
Pérez-Juste,R.
A.
Alvarez-Puebla,L.
M.
Liz-Marzán,J.
Mater.
Chem.
2011,21,11544.
[38]C.
Burda,X.
Chen,R.
Narayanan,M.
A.
El-Sayed,Chem.
Rev.
2005,105,1025.
[39]J.
D.
Heidel,M.
E.
Davis,Pharm.
Res.
2011,28,187.
[40]S.
D.
Perrault,C.
Walkey,T.
Jennings,H.
C.
Fischer,W.
C.
W.
Chan,NanoLett.
2009,9,1909.
[41]B.
Enustun,J.
Turkevich,J.
Am.
Chem.
Soc.
1963,85,3317.
[42]N.
G.
Bastús,J.
Comenge,V.
Puntes,Langmuir2011,27,11098.
[43]C.
Graf,D.
L.
Vossen,A.
Imhof,A.
vanBlaaderen,Langmuir2003,19,6693.
[44]P.
S.
Kumar,I.
Pastoriza-Santos,B.
Rodriguez-Gonzalez,F.
J.
G.
deAbajo,L.
M.
Liz-Marzan,Nanotechnology2008,19,015606.
Adv.
HealthcareMater.
2016,5,1040–1048www.
advhealthmat.
dewww.
MaterialsViews.
com

无忧云(25元/月),国内BGP高防云服务器 2核2G5M

无忧云官网无忧云怎么样 无忧云服务器好不好 无忧云值不值得购买 无忧云,无忧云是一家成立于2017年的老牌商家旗下的服务器销售品牌,现由深圳市云上无忧网络科技有限公司运营,是正规持证IDC/ISP/IRCS商家,主要销售国内、中国香港、国外服务器产品,线路有腾讯云国外线路、自营香港CN2线路等,都是中国大陆直连线路,非常适合免北岸建站业务需求和各种负载较高的项目,同时国内服务器也有多个BGP以及高...

菠萝云:带宽广州移动大带宽云广州云:广州移动8折优惠,月付39元

菠萝云国人商家,今天分享一下菠萝云的广州移动机房的套餐,广州移动机房分为NAT套餐和VDS套餐,NAT就是只给端口,共享IP,VDS有自己的独立IP,可做站,商家给的带宽起步为200M,最高给到800M,目前有一个8折的优惠,另外VDS有一个下单立减100元的活动,有需要的朋友可以看看。菠萝云优惠套餐:广州移动NAT套餐,开放100个TCP+UDP固定端口,共享IP,8折优惠码:gzydnat-8...

ParkInHost - 俄罗斯VPS主机 抗投诉 55折,月付2.75欧元起

ParkInHost主机商是首次介绍到的主机商,这个商家是2013年的印度主机商,隶属于印度DiggDigital公司,主营业务有俄罗斯、荷兰、德国等机房的抗投诉虚拟主机、VPS主机和独立服务器。也看到商家的数据中心还有中国香港和美国、法国等,不过香港机房肯定不是直连的。根据曾经对于抗投诉外贸主机的了解,虽然ParkInHost以无视DMCA的抗投诉VPS和抗投诉服务器,但是,我们还是要做好数据备...

www.niuav.com为你推荐
国家网络安全部网络安全法中网络运行安全规定,国家实行什么制度?网罗设计怎么能学习好网络设计摩根币摩根币到底是什么是不是骗局蓝色骨头手机都是人类的骨头灰歌名是什么老虎数码相机里的传感器CCD和CMO是什么意思?原代码什么叫源代码,源代码有什么作用www.jjwxc.net有那个网站可以看书?www.119mm.comwww.kb119.com 这个网站你们能打开不?avtt4.comwww.51kao4.com为什么进不去啊?www.henhenlu.com有一个两位数,十位数字是个位数字的二分之一,将十位数字与个位数字对调,新的两位数比原来大36,这个两位数
山东虚拟主机 linuxapache虚拟主机 justhost arvixe 博客主机 isatap ixwebhosting 创宇云 创梦 最好的免费空间 稳定免费空间 七夕快乐英语 四川电信商城 登陆空间 秒杀品 cdn网站加速 域名和主机 免费赚q币 建站技术 web服务器 更多