distalwww.niuav.com

www.niuav.com  时间:2021-03-19  阅读:()
REVIEWOpenAccessTargetingtheWntpathwaysfortherapiesArtemBlagodatski1,DmitryPoteryaev2andVladimirLKatanaev3*AbstractTheWnt/β-cateninsignalingpathwayiscrucialinanimaldevelopmentfromspongestohumans.
Itsactivityintheadulthoodislessgeneral,withexceptionshavinghugemedicalimportance.
Namely,improperactivationofthispathwayiscarcinogenicinmanytissues,mostnotablyinthecolon,liverandthebreast.
Ontheotherhand,theWnt/β-cateninsignalingmustbere-activatedincasesoftissuedamage,andinsufficientactivationresultsinregenerationfailureanddegeneration.
Thesebothmedicallyimportantimplicationsareunifiedbytheemergingimportanceofthissignalingpathwayinthecontrolofproliferationofvarioustypesofstemcells,crucialfortissueregenerationand,incaseofcancerstemcells–cancerprogressionandrelapse.
ThisarticleaimsatbrieflyreviewingthecurrentstateofknowledgeinthefieldofWntsignaling,followedbyadetaileddiscussionofcurrentmedicaldevelopmentstargetingdistinctbranchesoftheWntpathwayforanti-cancerandpro-regenerationtherapies.
Keywords:Wnt,Frizzled,Cancer,Regeneration,DrugdiscoveryIntroduction:theWntsignalingpathwaysTheWntsignalingplaysinstrumentalrolesinanimalde-velopment[1].
Thistypeofintracellularsignalingappar-entlywas'invented'togetherwith(orinrequirementfor)animalmulti-cellularity,asitsarchitectureandcompo-nentsarealreadypresentinthesimplestmetazoanssuchasspongesandctenophores[2,3].
ThepathwayisinitiatedbysecretedlipoglycoproteinsoftheWntfamily,ofwhich19membersexistinhumans.
Giventhenumerouspost-translationalmodificationsandtheneedforatightlycon-trolledmannerofWntdiffusionthroughthetissue,thesecretionapparatuswithintheWnt-producingcellsisra-thercomplex[4].
Inthesignal-receivingcells,Wntacti-vatesareceptoroftheFrizzled(FZD)family(10membersinhumans)andaLRP5/6co-receptor(2membersinhumans).
WhileLRP5/6aresingle-transmembranepro-teins,FZDspossessseventransmembranedomainsandbelongtotheGprotein-coupledreceptor(GPCR)super-family[5].
AlthoughinitiallyquestionedasfunctionalGPCRs,FZDsinrecentyearshavebeenclearlydemon-strated,bygeneticandbiochemicalmeans,tosignalthroughheterotrimericGproteins[6-11].
Togetherwiththelatter,acytoplasmicproteinDishevelled(Dvl)actsasanimmediatetransducerofthesignalfromthereceptors[12].
BothtypesoftransducersactonAxin[13,14]–akeycomponentoftheβ-catenin-destructioncomplexalsoincludingtheproteinAPCandkinasesGSK3βandcaseinkinase.
Thefunctionofthiscomplexistophosphorylatecytoplasmicβ-catenin,targetingitforubiquitin-dependentproteasomaldegradation[15].
WithdysfunctionalAxin,thedestructioncomplexbe-comesinactive,leadingtoaccumulationofβ-catenin,itstranslocationtothenucleus,andactivationofLEF/TCF-dependenttranscription[16](Figure1).
AmongWnt-targetgenesarepro-proliferativec-MycandcycD1[17].
Inadditiontothepathwaydirectlyinitiatedfromtheplasmamembrane,Wnt-receptorcomplexescanalsobeinternal-ized,inaheterotrimericGprotein-andRab5-dependentmanner,intosignalingendosomes,whichisrequiredfortheamplificationofthesignalingstrength[18,19].
Theβ-catenin-dependentWntsignalingpathwayde-scribedaboveisoftenreferredtoasthe"canonical"Wntsignaling.
Inadditiontoit,agroupof"non-canonical",β-catenin-independentpathwayscanbeinitiatedbyWnt/FZDcomplexes[20].
Theycanincreaseconcentra-tionofintracellularcalciumionsandregulatethecyto-skeletonandultimately–cellpolarityandmotility.
Theycanalsoantagonizetheβ-catenin-dependentsignalingincertaincontexts[21].
ApartfromheterotrimericGpro-teinsandDvl,noothercomponentsoftheβ-catenin-dependentpathwayareinvolvedin"non-canonical"sig-naling.
Ourreviewwillonlyepisodicallytouchupon*Correspondence:vladimir.
katanaev@unil.
chEqualcontributors3DepartmentofPharmacologyandToxicology,UniversityofLausanne,Lausanne,SwitzerlandFulllistofauthorinformationisavailableattheendofthearticle2014Blagodatskietal.
;licenseeBioMedCentralLtd.
ThisisanOpenAccessarticledistributedunderthetermsoftheCreativeCommonsAttributionLicense(http://creativecommons.
org/licenses/by/4.
0),whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalworkisproperlycredited.
TheCreativeCommonsPublicDomainDedicationwaiver(http://creativecommons.
org/publicdomain/zero/1.
0/)appliestothedatamadeavailableinthisarticle,unlessotherwisestated.
Blagodatskietal.
MolecularandCellularTherapies2014,2:28http://www.
molcelltherapies.
com/content/2/1/28thesetypesofWntsignaling,mostlyconcentratingontheWnt/β-cateninpro-proliferativebranch.
TheWnt/β-cateninsignalingisrepeatedlyusedduringanimaldevelopment.
Giventhisimportantdevelopmen-talfunction,theroleofthispathwayinregulationofstemcellproliferationanddifferentiation,whichemergesasaunifyingfunctionofthispathwayintheadult,bothinthephysiologicalandpathologicalcontexts,isnotsurpris-ing.
InitiallyWnt/β-cateninsignalinghasbeenshowntobecrucialforthemaintenanceandself-renewalofhematopoieticcells[22].
Thisdiscoverywascorroboratedbysubsequentfindingsofthenecessityofthispathwayforproliferationofneuronal[23],embryonic[24],mammary[25],intestinal[26]andothertypesofstemcells.
Finally,theroleofWnt/β-cateninsignalingincancerstemcells(CSCs)hasalsoemerged[27].
Thesediscoveriesformthebasisforthetranslationaleffortsoftargeting(suppressingoractivating)theWnt/β-cateninsignalinginanti-cancerandregenerationtherapies,discussedbelow.
ReviewDevelopmentofanti-cancerdrugstargetingtheWnt/β-cateninpathwayTheWnt/β-cateninsignalingpathwayasatargetofanti-cancerdrugshasattractedattentionofbiotechcompaniesrelativelyrecently.
ThisfieldreceivedaspecialattentionwhenitbecameclearthatthissignalingplaysamajorroleinCSCproliferation.
CSCshavebeenimplicatedintumormaintenanceandrelapseaftersurgicalresection.
TheCSCpoolisself-renewingandthisprocessislargelydrivenbyre-activationofembryonicprogramsmediatedbyWnt,HedgehogandNotchsignalingpathwaysandthemTORsignalinghub[27,28].
Alargenumberofpreclinicalexperimentsdemon-stratedthatinhibitionofWnt/β-cateninsignalingcanaffectcancercellgrowthandsurvival(forreviewsee[29]).
WhilemutationsintheWnt/β-cateninpathwayareresponsibleforcertaintypesofcancers,mostnotablyAPCmutationsincolorectalcancer[30],manycancersdrivenbyoverstimulationofthissignalingdonotharbormutationsinitscomponents.
Forexample,thestudyof245invasivebreastcarcinomashasidentifiedasubgroupwithtriple-negativephenotype(ER-,PgR-,HER2-)whereβ-cateninwasaccumulatedinthenucleus,whichisahall-markofWnt/β-cateninpathwayactivity.
However,noβ-cateninmutationhasbeenfoundinalltriple-negativecarcinomasanalyzed[31].
ThereforeconstitutivereceptorstimulationcanaccountforhyperactiveWntsignalingintheabsenceofactivatingmutationsinthecomponentsofthepathway.
Mostcurrentanti-cancerdrugs,smallmoleculeinhibi-torsandmonoclonalantibodies(mAbs),aredesignedtotargetrapidlyproliferatingcellswhichrepresentcom-mittedcancercellsbutnotCSCs.
Sorafenib,asmallmoleculeinhibitorofmultipletyrosinekinasesinvolvedintumorproliferation,isusedinthetreatmentofacutemyeloidleukemia(AML).
ThereitissupposedtoinhibitFMS-likekinaseoverexpressedinalmostallcasesofFigure1SchematicrepresentationoftheWnt/β-cateninsignalingpathwayandtheoncology-indicationdrugcandidatesdiscussedinthepaper.
Themoleculartargets(whereknown)ofthesmallmoleculeandantibody-baseddrugcandidatesareshown.
Blagodatskietal.
MolecularandCellularTherapies2014,2:28Page2of15http://www.
molcelltherapies.
com/content/2/1/28AML.
Ashasbeenrecentlydemonstrated,sorafenibef-fectivelyreducesthenumberofmatureAMLprogeni-torsbutfailstoeradicateAMLstemcellsandprimitiveprogenitors[32].
TrastuzumabisanexampleofamAb.
IttargetstheHER2receptoroverexpressedinonequarterofbreastcancers.
Trastuzumabmonotherapyhasonlya30%responserateandacquiredresistancetotrastuzumaboccursfrequently.
Trastuzumabhasbeenshowntobeef-fectiveonlyinthecontextofPI3KsignalingandinthepresenceofPTEN,butCSCsdisplaytheaberrantformerandtheabsenceoflatter[33].
Sincecurrentcancerther-apiesfailtoeradicateCSCs,selectivetargetingofCSCswouldbeapromisingtherapeuticstrategy.
SmallmoleculestargetingtheWnt/β-cateninpathwaySignificanteffortsaremadeworld-widetodeveloppotentinhibitorsoftheWnt/β-cateninsignaling,butonlyfewofthesehavemadeittoreachclinicaltrials.
Small-moleculeinhibitorsidentifiedinanumberofhigh-throughputscreenscanbeclassifiedintofourgroups:β-catenin/TCF-antagonists,modulatorsoftranscriptionco-activator,Dvlbinders,andothermechanism-basedinhibitors[34](Figure1andTable1).
AmongsmallmoleculestheleadingclassisthePorcu-pineinhibitors,asexemplifiedbyLGK974(Novartis)[35].
Porcupineisamembrane-boundO-acetyltransferasere-quiredforacylationofWntmolecules,andinhibitionofthisenzymeresultsinreducedorabolishedWntsecretion[36].
LGK974isnowinclinicalPhaseIforthefollowingconditions:melanoma,breastcancer(triple-negative),pancreaticadenocarcinoma,colorectalcancer,headandneckcancers.
AdditionallypatientswithothertumortypeswithdocumentedgeneticalterationsupstreamintheWnt/β-cateninsignalingpathwayarebeingrecruited(www.
clinicaltrials.
gov).
Anotherclassofcompoundsinhibitstankyrases(TNK1and2)–enzymesamongotherfunctionsfoundtodestabilizeAxin.
TNKinhibitionresultsinpreventionofβ-cateninaccumulation.
ExamplesareXAV939fromNovartis[37]andG007-LKfromRoche[38].
TheactivedevelopmentofTNKinhibitorsispursuedfortworeasons:first,Axinistherate-limitingcomponentoftheβ-catenindestructioncomplex[39];second,Axinmuta-tionsandincreasedβ-cateninlevelsareassociatedwithvarioustypesofcancer[40].
IncancerswithmutatedAxinorAPC,theupstreamantagonistsactingonWntsortheirreceptorsmaybelesseffective.
However,thefullpotentialoftheantitumoractivityofTNKinhibitorsmaybelimitedbyintestinaltoxicityassociatedwithin-hibitionofWnt/β-cateninsignalingandcellprolifera-tioninintestinalcrypts[38].
Duringactivationofβ-catenin-dependentgenetran-scription,thecomplexofβ-cateninandLEF/TCFrecruitsadditionalfactorsforchromatinremodeling,likeCBPandp300,whichpossessthehistoneacetyltransferaseactivity.
Associationofβ-cateninwithhistoneacetylasescanbeantagonizedbyseveralcompounds.
Oneofthem,PRI-724(PrismPharma)hasreachedclinicaltrialsinAMLandad-vancedsolidtumors.
ItisasmallmoleculethatselectivelyinhibitsthehistonedeacetylaseCBP/β-catenincomplex,blockingexpressionoftheWnt/β-cateninpathway-dependentpro-growthandpro-survivalgenes.
PRI-724exhibitsaselectiveantiproliferativeeffect,inhibitingvari-ouscancercelllinesinvitroandsubstantiallyinhibitingtumorgrowthinanimalstudies(http://clinicaltrials.
gov/show/NCT01302405).
Alreadyapproveddrugswithwell-establishedsafetyprofilefindafareasierwaytoclinicaltrialsforadiffer-entindication.
Niclosamideisananti-helminthicdrugusedinhumansfornearly50years.
In2009,itemergedasacompoundthatinhibitsWnt3a-stimulatedβ-cateninstabilizationandTCF/LEFreporteractivityinosteosar-comacellline.
ThiswasaresultofscreeningofanFDA-approveddruglibraryforcompoundsthatwouldpromoteendocytosisofFZD1[41].
Invitro,niclosamidetreatmentreducedthelevelsofLRP6andβ-catenin,andinvivoithadasuppressiveeffectonbasalbreastcancerxenografts[42,43].
Despitetheseobservations,niclosamideisnotreadyyetforclinicaltrialsforoncologyindications.
Asanapproveddrugitisgivenorallyandisonlypartiallyabsorbedfromthegastrointestinaltract,thereforenovelderivativesareneededtoimprovethebioavailabilityofTable1CurrentstatusofclinicaltrialsofbiologicsspecificallytargetingtheWnt/β-cateninpathway(ligandsorreceptors)Name/companyTargetAgentConditionsClinicalphaseOTSA101(CentreLéonBérard,OncoTherapyScience)FZD10mAbSynovialsarcoma.
Antibody-radionuclideconjugate(90Y)IOMP-54F28(OncomedPharma)WntFzd8-Fc(scavengingreceptor)HCC,livercancer,ovariancancer,pancreaticcancer,othersolidtumorsIVantictumab(OncomedPharma)FZD1,2,5,7,8mAbSolidtumors(completed),NSCLC,metastaticbreastcancer,pancreaticcancer,(active,asacombinationwithchemiotherapy)IFoxy-5(WntResearchAB)FZD5PeptideMetastaticbreastcancer,colorectalcancer,prostatecancerIBlagodatskietal.
MolecularandCellularTherapies2014,2:28Page3of15http://www.
molcelltherapies.
com/content/2/1/28niclosamide.
Thealternativeintravenousrouteofniclosa-mideadministrationrequirescomprehensiveinvestigationregardingthesafetyandthepossibilityofsystemicappli-cation[43].
Otherpotentialanti-WntdrugcandidatesemergefromscreeningofFDA-approvedcompounds;theanti-leprosydrugclofaziminehasrecentlybeendiscoveredasapotentinhibitorofWnt/β-cateninsignalingandproliferationofWnt-dependenttriplenegativebreastcancercells[44].
WntsastargetsAlthoughtherehasbeenanumberofreportswhereWntproteinsweretargeteddirectlybyantibodies(seeforexample[45,46]),noneoftheanti-WntmAbsiscur-rentlyvisibleeveninthepre-clinicalpipelinesofpharmacompanies.
AnotherwaytoneutralizeWntligandsischosenbythecompanyOncoMedPharmaceuticals.
ItscandidatebiologicOMP-54F28isafusionbetweentheWnt-bindingCRDdomainofFZD8andtheFc-fragmentofIgG.
OMP-54F28worksasascavengerforWntpro-teins(apparentlyseveralofthefamily)preventingthemfrombindingtoendogenousmembrane-boundFZDs[47].
Surprisingly,despitepronouncedreductionofxenografttumorgrowthinmice,OMP-54F28treatmentdidnotvis-iblychangethelevelsorcellularlocalizationofβ-catenininxenografttissues.
Thissuggeststhatalthoughchangesinβ-cateninmayhavebeentoosmalltodetectbyimmu-nohistochemistry,theattenuationofWnt/β-cateninsig-nalingwassufficienttoinhibitthetumorgrowth.
Moreimportantly,thisstudyhasshownnoadverseeffectsintheskinandintestine(http://www.
oncomed.
com/Pipeline.
html)(butseesection"SafetyofWntpathwaytargeting"below).
FZDsastargetsTheFZDfamilyofGPCRsprovidesalargeandpractic-allyuntappedsourceofpotentialtargetsfortherapeuticinterventions[48].
AnumberofpharmacompaniesaresearchingfornovelGPCR-interactingmolecules.
Themosthigh-throughputapproachisthescreeningofsmallmoleculechemicallibrariestoidentifycandidatethera-peutics.
Yet,inthepastdecadethenumberofsmallmole-culestargetingGPCRsthatwereapprovedastherapeuticshasbeenverylow.
Thehighattritionrateinpreclinicalandclinicalstudies,creditedtotoxicity,lowefficacyorselectivityputsanenormousburdenondrugdiscoverybudgets.
Incontrasttothat,proteinbiologics,suchasmonoclonalantibodies(mAbs),haveseveraladvantagesastherapeutics.
Theyarehighlyselectiveandhavemuchlon-gerhalf-livesthansmallmolecules[49,50].
PeptidefragmentsofWntligands,bindingtotheCRDdomainofFZDreceptors,havebeenproposedaspoten-tialtherapeuticagents.
Indeed,invitroexperimentsindi-catethatthesepeptidescancompetewithfull-lengthWntsandattenuatecanonicalsignaling.
Howeveronecandoubttheirvalueeveninanimalmodelpreclinicalstudies,sincetherapidclearanceofnon-modifiedpeptideswouldpreventanylastingeffectoncancercells.
Suchan-tagonistmimeticsofWntswouldneedtobemodified,forexamplebyPEGylationorformylation,toeffectivelyin-creasetheirhalf-life,beforeconsideringthemasthera-peuticcandidates.
AhexapeptideBox5,derivedfromWnt5aandstabilizedbytheN-butyloxycarbonylgroup,hasbeendevelopedtoantagonizeWnt5a-stimulatedme-tastasisinmelanoma[51].
Incontrasttoitsactivityinmelanoma,Wnt5ashowstumor-suppressingactivityinthebreast,andrestoringthisproteincansuppressmi-grationofbreastcancercells–activityrecapitulatedbyaformylatedhexapeptideFoxy-5alsoderivedfromWnt5a[52,53];thisdrugcandidateiscurrentlyinphaseIclinicaltrials.
FZD10hasaveryrestrictedexpressionpattern;itisun-detectableinnormalhumantissuesexceptplacenta,butup-regulatedinsynovialsarcomas.
Takingthisoppor-tunity,OncoTherapySciencehasdevelopedachimerichumanizedmAbagainstFZD10,namedOTSA101.
Non-radiolabeledOTSA101antibodyhasonlyweakantagonis-ticactivityonsynovialsarcomacellgrowth.
However,Yttrium90-radiolabeledOTSA101(OTSA101-DTPA-90Y)showedsignificantantitumoractivityfollowingasingleintravenousinjectioninmousexenograftmodel[54]andisnowinPhaseIclinicalstudies.
FZD7istheWntreceptormostcommonlyup-regulatedinavarietyofcancersincludingcolorectalcancer,hepato-cellularcarcinoma(HCC)andtriplenegativebreastcan-cer[55].
IthasbeendemonstratedthatsiRNA(smallinterferingRNA)knockdownofFZD7displayedanti-canceractivityinvitroandinvivoduetotheinhibitionofthecanonicalWntsignalingpathway[56].
WhilesiRNAapproachremainstobeproblematicinclinicforanumberofreasons,anti-FZDmAbnamedvantictumabisoneoftheleadproteinbiologicsintheOncomedPharmaceuti-calspipelineforoncologyindications.
ThisantibodywasinitiallyidentifiedbybindingtoFZD7'CRDdomainandabilitytoinhibitWnt3a-inducedsignalinginacell-basedassay.
InadditiontoFZD7,vantictumabalsobindstofourotherFZDreceptors(outoftenencodedbythehumangenome)–restrictingitsselectivity(seebelow).
Inmousexenograftmodelsofseveraltypesofsolidtumors(amongthempancreatic,coloncancers,andtriple-negativebreastcancer),vantictumabasamonotherapydemonstratedjustadecreaseinthetumorgrowthrate.
Ontheotherhand,combinedtreatmentwithcytotoxicchemotherapypro-ducedinsometumortypesnotonlyadramatictumorshrinkagebutalsotumorcelldifferentiationandreductionofCSCnumbers[57].
Theinterimdataofvantictumabclinicaltrials(PhaseI)havebeenreportedin2013–2014atvariousconferences(acollectionofposterscanbeBlagodatskietal.
MolecularandCellularTherapies2014,2:28Page4of15http://www.
molcelltherapies.
com/content/2/1/28foundatOncomedPharmaceuticals'website).
Vantictu-mabhasclearpharmacodynamicseffectsonexpressionofstemcellanddifferentiationgenesinthetumor,aswellasinhairfolliclesandbones.
Theinitialenthusiasmhoweverhasrecentlydiminishedwhenclinicaltrialswereputonhold(seesection"SafetyofWntpathwaytargeting"below).
SecretedFrizzled-relatedproteins(sFRPs)havealsobeeninfocusastargetsforcancertherapy.
ThereareconflictingreportsintheliteratureastowhethersFRPsareantagonistsoragonistsofWnt/β-cateninsignaling[58-60].
Forexample,sFRP2isover-expressedinhumanangiosarcomaandbreastcancerandstimulatesangiogen-esisviaactivationofthecalcineurin/NFATc3pathway.
Recently,sFRP2hasbeenassessedasaviabletherapeutictarget[61].
sFRP2mAbhasbeenshowntoinduceanti-tumorandanti-angiogeniceffectsinvitroandinhibitacti-vationofβ-cateninandnuclearfactorofactivatedT-cellsc3(NFATc3)inendothelialandtumorcells.
sFRP2mAbtreatmentofangiosarcomaallograftsorMDA-MB-231breastcarcinomaxenograftsinnudemicesignificantlyreducedtumorsvolume.
GiventhatthismAbpreferen-tiallyaccumulatesinsFRP2-positivetumorsandislongcirculatingintheblood,itmaybeagoodcandidateforclinicalstudies.
Evenmoreperspectivewouldbeanapproachcombin-ingtwoormoretargetedtherapies.
InthisrespectarecentstudybyBirchmeierandcolleagues[62]isofaparticularinterest.
Theauthorshavegeneratedacompoundmutantmousemodelofaggressivebasalbreastcancer,combiningtheactivationofβ-cateninandHGF(Wnt-Metsignaling).
TheyidentifiedthechemokinesystemCXCL12/CXCR4asacrucialdriverofthesetumors.
Moleculartherapytar-getingWnt,MetandCXCR4significantlydelayedtumordevelopmentinmice.
Moreover,thegenesignatureidenti-fiedinthesemodeltumorswasfoundtobepredictiveofpoorsurvivalinhumanpatientswithER-negativebreastcancers.
Althoughthesmallmoleculeinhibitorsusedinthisstudyareonlyprototypesofthepossiblefuturedrugs,theoutlookispromising.
Insuchacombinationtherapy,inhibitionoftheWnt/β-cateninpathwaywouldstopself-renewalprogramofCSCs,whilesuppressingCXCR4signalingwouldleadtodifferentiationofcancerpropagatingcells.
RegenerationTheWnt/β-cateninpathwayisknowntobeessentialforstemcellproliferation.
Whilelife-threateninginthecon-textofCSCs,thisfactunderliestheimportanceofthepathwayinregenerativeprocessesinmanytissues,suchastheliver,brain,muscle,skinandbone.
ThismakesWntpathwayagonistsdesirablecandidatesforregeneration-enhancingtherapies,andsomehavealreadyshowntheirregenerativeeffects.
WewillreviewtheroleofdifferentbranchesoftheWntpathway(butmostlyWnt/β-catenin)separatelyfordifferentorgansandtissues,payingspecialattentiontothetherapeuticpotentialandsuccessfulpracticalapplicationsofactivatorsoftheWntsignaling(Figure2andTable2).
LiverTheWnt/β-cateninsignalingisknowntobeinvolvedinliverorganogenesisduringembryonicdevelopment[63]andisactiveatallstagesoftheorganogenesis,activatingcellproliferationthroughc-MycandcycD1andregulatinghepatocytedifferentiationviaaninterplaywithHNF4,C/EBPa,BMP4,andsomeotherpathways[64,65].
InthenormaladultlivertheWnt/β-cateninpathwayisgenerallyinactive,andβ-cateninundergoesphosphoryl-ationandsubsequentdegradation[66].
Nevertheless,re-activationofthepathwayhasbeenshownasoneofthedrivingforcesessentialforliverregeneration,intermsofliverstemcellsproliferationanddifferentiation[67].
Intheliver,theroleofstemcellsisknowntobeplayedbyadulthepaticprogenitorcellsalsoknownasovalcells[68].
Theovalcellshavebeenshowntoparticipateinre-generationandinarangeofhumanliverdiseases,suchasHCC.
Thenatureofliverovalcellsisbi-potentialastheyhavebeenshowntodifferentiatetowardboththehepaticandbileductularepitheliallineagesintheliver[69].
IthasbeendemonstratedthatactiveWnt/β-cateninsignalingintheliveroccurspreferentiallywithintheovalcellpopula-tion,andforcedover-expressionofaconstitutivelyactiveβ-cateninmutantdrivesexpansionoftheovalcellpopula-tionintheregeneratingliver[70].
ThedualroleoftheWnt/β-cateninpathwayinregulatingthefateoftheovalstemcellshasbeenshownbydemonstrationthatWnt1caninducetheirdifferentiationtohepatocytesinaratliverregenerationmodel[71].
Thisexampleindicatesthetissue-specificimportanceofcertainWntligandsascandi-datesfortheuseinregenerativemedicine.
TheimportanceofWnt/β-cateninsignalingfortheliverregenerationhasbeenshowninaseriesofotherobservationsfocusingondifferentlevelsofregulationoftheWntcascade.
Forexample,ithasbeendemonstratedthatWnt-dependentregenerationinthelivercanbecon-trolledbyanendogenouslongnon-codingRNA,whichactivatesWnt/β-cateninsignalingbyinhibitingexpressionofAxin.
Thisactionofthenon-codingRNAleadstoen-hancedhepatocyteproliferationduringliverregeneration[72],showingthepotentialforthetherapeuticuseofWntpathway-relatednon-codingregulatoryRNAsinthetreat-mentofliverdiseases.
SeveralexamplesdemonstratingtheinterplayoftheWnt/β-cateninpathwaywithothersignalingcascadesduringliverregenerationhaverecentlybeendescribed.
TheTGFβfamily-relatedproteinSMAD6isabletosup-presstheWnt/β-cateninsignalingintheliveractingattheβ-catenin-TCF-promoterinteraction;down-regulationofBlagodatskietal.
MolecularandCellularTherapies2014,2:28Page5of15http://www.
molcelltherapies.
com/content/2/1/28SMAD6leadstoincreasedWnt-dependentproliferationandself-renewalofthehepaticprogenitorcells[73].
TheWnt/β-cateninpathwayalsointeractswithHedgehogsignalingintheliver,beingabletostimulateexpressionofthetranscriptionfactorGli1whichisadownstreameffectoroftheHedgehogpathway.
Gli1onitsturnup-regulatescycD1causingenhancedhepatocyteprolif-eration[74].
GiventheimportanceofWnt/β-cateninsignalingforhepatocyteproliferationanddifferentiation,therapeuticinterventionintheWntsignalingpathwayappearsasapromisingtoolforliverregeneration.
Thefirstsuccessfulattemptshavebeenalreadymade.
LivercellsexpressingLgr5,amarkerofactivelydividingstemcellsinWnt-drivenself-renewingtissues,areabletoclonallyexpandinvitrofromsinglecellsandformtransplantable"orga-noids",retainingmanycharacteristicsoftheoriginalepithelialarchitecture,undertheinfluenceofaWntsyn-ergistR-spondin1whichactsasaDkk1competitor[75].
Suchapproachesarepavingthewaytofuturedenovogrowthoftransplantableorgans.
AtherapeuticeffectofasmallmoleculeWnt/β-cateninpathwayagonist,2-amino-4-(3,4-(methylenedioxy)benzylamino)-6-(3-methoxyphenyl)pyrimidine(2-AMBMP),hasbeendemonstratedinthehepaticischemiamodelinrats.
Thedrugbluntedtheischemia-inducedelevationofaspartateaminotransferaseandalanineaminotransfer-aselevels,increasingcellproliferationrateanddecreasingnegativeeffectssuchasinflammationandapoptosis,andreducedthedeathrateingeneral[76].
Assmallmoleculesareoftenacheapandconvenientsubstitutionfornaturaleffectorproteins,suchthetherapeuticapproachrepresentsapromisingstrategyfortheliverregenerationtherapy.
BoneWntsignalingisknowntobeakeyregulatorofbonetissuegrowthinembryosandintheadult[77].
Itises-sentialforosteocyteformationfromstemcells[78]andFigure2SchematicrepresentationoftheWnt/β-cateninsignalingpathwayandtheregenerationtherapydrugcandidatesdiscussedinthepaper.
Themoleculartargets(whereknown)ofthesmallmoleculeandantibody-baseddrugcandidatesareshown.
Table2Currentstatusofregeneration-relatedclinicaltrialsofbiologicsandsmallmoleculestargetingtheWnt/β-cateninpathwayName/companyTargetAgentConditionsClinicalphaseWnt3a(ChinaMedicalUniversityHospital)FZDsNativeWnt3aPrimaryDiseaserecruitingAMG785(Amgen)SclerostinmAbBoneFractureHealing,OsteoporosisIIValproicacid(SeoulNationalUniversityHospital)GSK-3βValproicacidAndrogeneticAlopeciaIIMalePatternBaldnessAMG162(Amgen)Dkk1mAbOsteoporosisIIHSC(Histogen)multipleWnt7a-containingcomplexAndrogeneticAlopeciaIIBlagodatskietal.
MolecularandCellularTherapies2014,2:28Page6of15http://www.
molcelltherapies.
com/content/2/1/28forboneregenerationafterinjuryordisease[77].
En-hancedWnt/β-cateninsignalingincreasesbonevolumeandcauseshyperostosisandpathologicalbonethicken-ing(sclerosingbonedysplasia)[79-82].
Sucheffectsareachievedbystimulatingthebone-formingosteoblastactivity[83,84],byinhibitingthebonedisassemblingosteoclastfunction[85,86],andbydifferentiationofdi-versepluripotentstemcellstowardosteoblasts[87-89].
IthasbeenreportedthatanumberofcomponentsoftheWnt/β-cateninpathway,suchastheligandsWnt4,Wnt5a,Wnt10b,Wnt11,andWnt13,thereceptorsFZD1,2,4and5,theco-receptorsLRP5andLRP6,β-catenin,andtheWnttargetgenes,suchastheosteoblastdifferentiation-associatedtranscriptionfactorRunx2,areup-regulatedinthefracturecalyxduringboneregener-ation[90-94].
Itneedsbehighlightedthatnotonlyβ-catenin-dependentWntsignalingtakespartinthebonetissuegrowth,butotherbranchesofthepathwaycontrolitaswell.
Ithasrecentlybeenshownthatβ-catenin-independentsignalingthroughWnt5a-FZD9issignifi-cantlyup-regulatedduringtheearlystagesofosteoblastdifferentiation[95]andisreactivatedintheregenerat-ingbone,beingessentialforthefracturehealinginafemurosteotomymodelinFzd9/mice[96].
Theβ-catenin-independentWnt5asignalinghasbeenreportedtoefficientlypromotetrans-differentiaonofadipopro-genitorsintoosteoblastsinculturebysuppressingper-oxisomeproliferator-activatedreceptor(PPAR)-γ,akeyadipogenesis-stimulatingtranscriptionfactor,andbyactivatingRunx2[97].
Wnt5a+/micedemonstratede-creasedtrabecularbonemassinthefemurs,andmicehomozygousfortheloss-of-functionmutationinWnt5ashowtruncationoftheproximalskeletonandlackingofdistaldigits[98].
Theβ-catenin-independentWnt5asig-nalinghasbeenalsoshowntoinhibitapoptosisofdiffer-entiatedosteoblastsandtheirprogenitors,comparabletotheanti-apoptoticeffectsofsignalingbyWnt3aandWnt1involvingβ-catenin[99].
Takentogether,thesedatasuggestthatWntsignalingmodulatorscouldbeusedastherapeuticagentstostimu-lateboneformationafterinjuryordisease.
CurrentlytwostrategiesareexploitedtofindaneffectiveWnt-basedboneregenerativetherapy.
ThefirstinvolvesreductionoftheactionofnativeWntsignalinginhibitorsendogenouslypresentintheorganism,whichinturnwouldenhancetheintrinsicWntactivity.
Inthisregard,activationofWntsignalingbyneutralizingantibodiesagainsttheWntin-hibitorsDkk1[100]andsclerostin[101-104]hasbeenshowntoimprovebonehealinginmice.
sFRP1isalsoaWntinhibitorandapromisingtargetforboneregener-ationtherapy[105].
AnotherwaytopromoteWntsignalinginordertoboostthebonetissuegrowthisadirectuseofexogen-ousWntsorotherpathwayagonists.
AlthoughnativeWntproteinsarehardtouseduetotheirlowsolubility,asuccessfulattempthasbeenrecentlymadewithliposome-loadedWnt3a,whichuponapplicationtotheinjurysitehascausedaca.
3.
5-foldincreaseintheboneregenerationrateinmice[106].
Aclinicaltrial,sponsoredbytheChinaMedicalUniversityHospital(Taiwan),isbeinginitiatedtostudytheosteogeniceffectsofhumanmesenchymalstemcellsenhancedbyWnt3achargedonhydroxyapatitenano-particles(http://clinicaltrials.
gov/show/NCT01323894).
StimulationofmurineboneregenerationhasbeenalsoobtainedbyapplicationofLiCl[92],andsimilareffectsonratboneregenerationhavebeenobservedusingLi2CO3[107].
Li+isawell-knowninhibitorofGSK3β–akeyen-zymetargetingβ-cateninforproteosomaldegradation–andthusactivatoroftheWntpathway;however,itislessspecificthanWntproteinsorotherpathwayagonistsandthereforemaycausemoresideeffects.
IngeneralitcanbestatedthatWntsignalinginthebonetissueiswellstud-ied,leadingtoabigvarietyofpossibleartificialmodula-tionsofthepathwaytoimprovebonehealingandtotreatbonediseases.
SkeletalmuscleTheroleofWnt/β-cateninsignalingintheskeletalmuscleremainscontroversial.
Intheadult,theβ-catenin-dependentWntpathwayhasbeensuggestedtocontrolmyogeniclineageprogressionbylimitingNotchsignal-ingandthuspromotingdifferentiation[108,109],inpar-ticularthroughMyf5andMyoDgrowthfactors[110].
OtherdatademonstratethatWnt/β-cateninsignalingintheadulttissue,e.
g.
throughWnt1andWnt3a,pro-motesonlyslowmyofibertypesgenerationandinhibitsmyogenesisingeneral[111].
ButtheroleofWntproteinsinregenerativeprocessesintheskeletalmusclediffersfromthatinmostothertissues,duetoincreasedsignifi-canceoftheβ-catenin-independentWntactivity.
IthasbeenshownthatWnt7a,signalingthroughitsreceptorFZD7,iscapableofactivationofdistinctpathwaysatdif-ferentstagesofmyogenesis.
First,theWnt7a-FZD7inter-actionleadstoactivationoftheWnt-PCP(planarcellpolarity)pathwaywhichisresponsibleforsymmetricexpansionofsatellitecellsinthemuscletissue[112]–asmallsub-populationofmusclecellsthatarecapableofself-renewalandactasmusclestemcellsduringregener-ation[113].
Over-expressionofWnt7aenhancesmuscleregenerationbymeansofincreasingthesatellitecellnum-ber,whereasmuscleswithdown-regulatedWnt7aexhibitasignificantdecreaseinsatellitecellnumbers,impairingtheregenerationcapacity.
Atthislevelofaction,Wnt7adoesnotaffectthegrowthordifferentiationofmyoblasts.
Next,stimulationofFZD7byWnt7aindifferentiatedmyo-fibersdirectlyactivatestheAkt/mTORgrowthpathwaythroughGαsandPI3K,therebyinducingmyofiberhyper-trophy[114].
ThusWnt7aservesasamusclegrowth-Blagodatskietal.
MolecularandCellularTherapies2014,2:28Page7of15http://www.
molcelltherapies.
com/content/2/1/28promotingfactorattwolevels,andatbothitactsinde-pendentlyfromβ-catenin.
RecentlyathirdlevelofWnt7aactivityinregeneratingmuscleshasbeendescribed,wheretheWnt7a/FZD7interactionshavebeenshowntoin-creasethepolarityanddirectionalmigrationofmurineandhumanmyogenicprogenitorsthroughactivationofDvl2andthesmallGTPaseRac1,resultinginimprovedmusclestrength[115].
Takentogether,thesefindingsidentifyWnt7aasanimportantdrugcandidateagainstmusclewastingdis-easeslikesarcopenia,cachexiaormusculardystrophies,andforimprovementofstemcell-basedmuscleregenera-tivetherapy.
TherapeuticpotentialofWnt7ahasindeedbeentestedinseveralsystems,likethemousemodelofDuchennemusculardystrophy,wheretheWnt7atreat-mentstimulatedsatellitecellexpansionandmyofiberhypertrophyandevenledtoasignificantincreaseinmusclestrength.
Furthermore,Wnt7adecreasedthelevelofcontractiledamage,mostlikelybyinducingashiftinthefibertypetowardtheslow-twitch[114].
Inotherex-perimentsashorttreatmentwithWnt7anotablyincreasedmuscletissuedispersalandengraftment,significantlyim-provingthemusclefunction[115].
Interestingly,atruncatedWnt7avariantconsistingofonly137C-terminalaminoacidsanddevoidofthecon-servedpalmitoylationsiteshasrecentlybeenshowntopreservethefullbiologicalactivityofthenativeproteininskeletalmuscles[116].
Itretainedthecapabilityofinter-actionwithitsreceptorFZD7andstimulationofsymmet-ricexpansionofsatellitestemcellsthroughthePCPpathway,aswellasinductionofmyofiberhypertrophybysignalingthroughtheAKT/mTORpathway[116].
ThisfindingisofaspecialimportancefortheWnt7a-basedmuscletherapy,becausenatural,palmitoylatedWntproteinsarehardtouseinmedicalandbiotechno-logicalapplicationsduetotheirlargesize,lowproduct-ivityandpoorsolubility.
EvidencethattruncatedWntsmayinsomecasesretainthetherapeuticpotentialmaybeafirststeptoproductionofactiveWnt-relatedpep-tides,easilyapplicabletomusclediseasetreatment.
SkinandhairfolliclesIntheskin,β-catenin-dependentWntsignalingisoneofthedominantpathwaysregulatingthepatterninganddeterminingthefateofembryonicandadultstemcellsduringtheirdifferentiation,aswellassubsequentlycon-trollingthefunctionofdifferentiatedskincells[117].
Animportantelementoftheskinarehairfollicles,whosemor-phogenesisalsodependsonWnt,alongwithShh,Notch,BMPandothersignalingpathwaysinteractingwitheachother.
TheWnt/β-cateninpathwayisakeyplayerduringhairfollicleinduction,actingthroughtheEDA/EDAR/NF-κBsignaling[118].
ThereisevidencepointingoutaninvolvementofWntsignalingintheskinrepairandhairfollicleregeneration.
Forexample,aWntsynergistR-spondin2promotescellproliferationintheadultepidermis[119]whichisdirectlylinkedtotheskinwoundhealingrate.
Wntsalsoactasnichesignalsforskinstemcellslocatedinthebulgeregionofthehairfollicles[120,121].
AlthoughtheeffectsofWnt/β-cateninsignalingwerepreviouslyregardedtobeoppositeontheepidermalandthehairfolliclestemcells[122],ithasrecentlybeenshownthatβ-catenin-dependentsignal-ingactuallypromotesproliferationofthesebothstemcellpopulations,thusbeingadrivingforceforregenerationofboththeskinandhairs[117,123].
InterfollicularepidermalstemcellshavebeenshowntoexpresstheWnttargetgeneAxin2andtorequireWnt/β-cateninsignalingforprolif-eration,producingautocrineWntsaswellaslong-rangesecretedWntinhibitors,thussuggestinganautocrinemechanismofstemcellself-renewalintheepidermis.
Thesecellsareabletopromoteskinwoundhealing,withnodemandforaquiescentstemcellsubpopulation[117].
Inanotherwork,experimentsonβ-catenindele-tionandLRP5/6inhibitorDkk1over-expressionhaveindicatedanecessityofWnt/β-cateninsignalingforfol-licularstemcellproliferation;thesameworkconfirmsthedataontheWnt-dependentrenewaloftheinter-follicularepidermis[123].
Activationofβ-cateninspecificallywithinmurinehairfolliclestemcellshasbeenfoundsufficienttoinducehairgrowthindependentlyofmesenchymaldermalpapillanichesignalsnormallyrequiredforthehairregen-eration[124].
Artificialup-regulationofWnt/β-cateninsignalinginregeneratinghairfolliclesthroughadenoviralinfectionofmicewithWnt10bhasledtoanincreaseinthesizeofregeneratingfolliclesandtoexcessiveproliferationoffolliclecells.
Theobservedeffectswerereducedwhenthemicewereco-infectedwithDkk1andWnt10b[125].
ThesefindingssuggestthatectopicWnt10bandDkk1canbeusedtomodulatethefolliclesizeandproliferationdur-inghairregeneration.
AnotherexampleofeffectiveuseofexternalWnttreatmenttoimprovetheskinwoundhealingrateistheinjectionofWnt3a-carryingliposomesintotheskinofinjuredmouseears.
TheliposomalWnt3ahasdemon-stratedtheabilitytoenhanceWntsignalinginthedam-agedtissueandtodramaticallyimprovethewoundhealingrate[126].
Hairgrowth(seenashairfollicleprogressionfromtelogentoanagenandbyoverallup-regulationofhairinduction-relatedgenes)couldalsobeenhancedinmiceupontreatmentwithWnt1-conditionedmedia[127].
Interestingly,thereareclinicaldatashowingthatec-topicapplicationofWnt7aasacomponentofagrowthfactorcocktailenhanceshairgrowth,possiblysuggest-ingthatWnt7acouldactinaβ-catenin-dependentwayinthiscase[128].
Blagodatskietal.
MolecularandCellularTherapies2014,2:28Page8of15http://www.
molcelltherapies.
com/content/2/1/28Finally,morerobustwaystoup-regulateWnt/β-cateninsignalinghavebeensuccessfullyappliedtoskinandhairregeneration.
Valproicacid,aninhibitiorofGSK3β,hasshownitsefficacyinboostingthecutaneouswoundrepairinmice[129]aswellaspromotinghairgrowthincellculture[130]andinducinghairregenerationinmurinesystems[131]andinclinicaltrials[132].
Alongwiththebone,theskinandhairregenerationisthefieldwheretheWnt-basedtherapyiswelladvanced,ascomparedtootherorgansandtissues.
NeuroprotectionandAlzheimer'sdiseaseWntsignalingisactivelyinvolvedinneurogenesisandmodulationofthesynapticfunctionintheadult[133].
Further,associationoftheAβ-peptidesandAlzheimer'sdiseaseetiologyingeneralwiththeWntsignaling-inducedprocesseshasbeenreportedmanytimes[134,135].
TheAβ-peptideshavebeenshowntodirectlyinhibittheWnt/β-catenincascadebyinteractingwithFZDsandimpairingthenormalactivationofthepathway[136].
Suchimpair-mentcaninturnleadtosynapticdegeneration.
Ontheotherhand,additionofexogenousWnt3aorLiClactivat-ingtheWnt/β-cateninpathwayhasbeenshowntopre-venttheAβ-peptide-mediatedsynapticdegenerationandcelldeathinaneuronalcellculture[137].
IthasalsobeenshownthatneuroprotectiveeffectsofWnt3aaremediatedbythereceptorFZD1[138].
RecentstudiesconfirmtheimportanceoftheWnt/β-cateninsignalingasananti-Alzheimeractingforce,asactivationofthecascadeusingBromoindirubin-30-Oxime(6-BIO),aninhibitorofGSK3β,protectshippocampalneuronsfromAβ-oligomersandreducestherateofneuronalapoptosis[139].
Moreover,thesamestudysuggeststhattheβ-catenin-independentWnt5a-mediatedCa2+-dependentsignalingcouldmodulatemitochondrialdynamicsandpreventthechangesinducedbytheAβ-peptideoligo-mersinmitochondrialfissionandfusionusuallypresentinneurodegenerativediseases[139].
OthersmallmoleculeWnt/β-cateninsignalingago-nistshavealsodemonstratedanabilitytoincreaseadultneurogenesisorinhibittheneurodegenerativeeffectsoftheAβ-peptides.
SimvastatinhasbeenshowntosynergizewithWnt/β-cateninsignalinginvivoandinvitro,enhan-cingitthroughdepletionofisoprenoidsynthesis(whichisinvolvedintheregulationofmembrane-locatedproteinslikesmallGTPases)andimprovingtherateofadulthippo-campalneurogenesis,makingitapotentialneuroprotectivedrug[140].
InamousemodelofAlzheimer's,treatmentwithLiClreducedamyloid-inducedmemoryimpairmentanddecreasedAβ-peptideaggregation.
Theseeffectswereparalleledbystabilizationofβ-catenin[141].
AnotherinterestingexampleofsmallmoleculeagonistsofWnt/β-cateninsignalingabletoactinthebrainiscur-cumin.
Cucrumin-coatednanoparticlescouldactivatetheWnt/β-cateninpathwayinratbrainsandreverselearningandmemorydysfunctionsintheAβ-inducedratmodeloftheAlzheimer'sdiseasebystimulationofneurogenesis.
InsilicomoleculardockingstudiessuggestthepossiblemechanismsofcurcuminactionthroughinteractionwithWntantagonistsWif-1,Dkk,andtheβ-catenininhibitorGSK3β[142].
TheseobservationsmakethetherapiesbasedupontheWnt-cascadeactivationapromisingwaytotreattheAlzheimer'sdiseaseandotherneurodegen-erativediseases.
However,incaseofthebraintissue,over-activationofWntpathwayscanalsobecounterproductiveinthera-peuticapplications,asWntsareknowntostimulatepro-inflammatoryprocessesinmicroglia,thuscomplicat-ingtheAlzheimer'sdiseasetreatment.
AnincreaseinWnt/β-cateninsignalinghasbeenobservedinmicrogliaofmicewithAlzheimer's-likepathology;inculturedmicroglia,treatmentwithWnt3aactivatedtheβ-catenin-dependentpathwayandledtoincreasedexpressionofpro-inflammatorygenes[143].
Experimentsontheaxoninjurymodelinmicehavedemonstratedthatdown-regulationofβ-catenin-dependentsignalingbyatissue-specificgeneknockoutinoligodendrocyteprecursorcellsfacilitatesaxonalregenerationindamagedtissueandreducestheglialscarring[144].
Interestingly,β-catenin-independentWnt5asignalingisalsoimplicatedinmicroglialpro-inflammatorytransformationviatheERK1/2pathway[145].
SuchcontroversialinvolvementofdistinctWntpathwaybranchesinregenerationandinflammationoftheneuraltissuewillrequireamoredetailedstudyoftheinterplayofdifferentsignalingpathwaysandaveryaccurateapplicationofWntsignalingactivatorsincaseoffuturetherapeuticAlzheimer'sdiseasetreatment.
DiscussiononregenerationGenerally,theregenerationprocessesinmosttissuesareregulatedbyre-activatingtheWnt/β-cateninsignaling,whichleadstostemcellproliferationand/ordifferenti-ation,althoughinsomecasesβ-catenin-independentWntstakeontheleadingrole,asitisthecasewiththeskeletalmuscle.
InspiteofacomplexinterplayofWntsig-nalingwithothersignalingcascades,straightforwardap-proacheslikeectopictreatmentoftheinjuredorgansortissueswithWntagonistshaveshowntheireffectivenessindifferenttissues,improvingtheregenerationrate.
Com-biningthesefindingswithpossibilitiestofurtherenhancetherapeuticpotentialofWntsthroughviralorliposomaldeliveryorbyengineeringofsmallWnt-relatedpeptidesallowsustolookoptimisticallytowardsthedirectuseofWntcascadeagonistsinregenerativemedicine.
InadditiontoapplicationofthetruncatedWnt7ainthemuscle,shortpeptideanalogsofWnt5aortheirmorestableformylatedderivativeshaveshowntomimicthebiologicalactivityofthenativeWnt5aproteinbyBlagodatskietal.
MolecularandCellularTherapies2014,2:28Page9of15http://www.
molcelltherapies.
com/content/2/1/28blockingcellmigrationinbreastepithelium[52,53].
Structure-assisteddesign[44,146]anddirectedproteinevolutionapproaches[147]canhelpingenerationofnovelWnt-derivedpro-regenerativeagents.
Otherap-proachesaretheindirectmethodstoenhanceintrinsicWntactivityintheinjuredordiseasedtissueandhavealsoproventheirapplicability.
Forexample,down-regulationofthenaturalWntinhibitorshasbeenshowntoworkwellinaidingthebonerepair.
SeveralregenerativetherapeuticapproachestargetingtheWnt/β-cateninpathwayintheskinandthebonearealreadyinclinicaltrials(Table2).
Liver,brain,skinandbonesarethewell-studiedorgansforWnt/β-cateninregenerativeapplications,buttheydonotlimitthepotentialofpossibletargetsfortheWnt-basedregenerationtherapy.
ItisknownthatWnt/β-cateninsig-nalingisalsoinvolvedinangiogenesis[148],indicatingthatmodulationofthispathwaymightbeusedasaninstrumenttotreatcardiovasculardiseasesincludingmyocardialinfarc-tion[149]ortargetangiogenesisintumors.
Practicalat-temptsinthisdirectionhavealreadybeenmade:recentstudiesindicatethatUM206,asmallpeptidehomologofWnt3a/Wnt5acapableofblockingFZDsignaling,canim-provehearttissueregenerationafterinfarction[150].
Approachesforthefutureregenerativemedicinedonotstopjustattheincreasingofthenaturalregenerationrate.
Ahighlydesiredgoalistodeveloptechnologiesoftissueengineeringandofgrowthandtransplantationofartificialorgans.
Althoughnocompletefunctionalorgansreadyfortransplantationhavebeengrownsofar,firsteffortshavealreadybeenmadeinthisdirection.
Suchcomplextaskswouldinvolvemultiplestepsanddemandcompoundcocktailsofdifferentgrowthfactors,whereWntsignalingactivatorsareessentialcomponentsinmostcases.
Asuccessfulattempttogrowanopticcup(retinalprimordium)structurefromathree-dimensionalcultureofmouseembryonicstemcellaggregateshasbeenper-formed,whichinvolvedatreatmentwithWnt/β-cateninpathwayagonistsatcertainsteps[151].
Asaconclusion,itcanbeclaimedthatdevelopmentandproductionofhighlyactiveandtissue-specificagonistsoftheWnt/β-cateninsignaling,eitherpeptide-basedorsmall-moleculeanalogs,isagoalofhighimportanceforregenerativemedicineinthenextdecades.
SafetyofWntpathwaytargetingAsexemplifiedabove,theWntpathwaysareinvolvednotonlyinmanydevelopmentalprocessesbutalsointhemaintenanceofadulttissuehomeostasis.
Thusacarefulsafetyassessmentofdrugsdirectlyornon-directlytarget-ingtheWntsignalingisrequired.
ItisclearthatageneralinhibitionoftheWnt/β-cateninpathwayispotentiallyun-safe,mainlybecauseof:(i)broadWnt/FZDexpressionpattern;(ii)theroleofthepathwayinthemaintenanceofthedifferentiatedepitheliumanditsinteractionwithmesenchymalcells;(iii)itsinvolvementinstemcellpluripotentstatemaintenance;(iv)itsroleinbonehomeostasis.
Arecentreview[152]providesaveryde-taileddiscussionofsafetyconcerningtargetingoftheWntpathways,bothinregenerativemedicineandon-cology.
Herewewouldliketoprovideonlyafewillus-trationshighlightingthissafetyissue–aswellastheissueofdifficultyinpredictingwhetheracertainWnt-targetingdrugcandidatewouldorwouldnothavepar-ticularsideeffects.
ThefirstexampleisabouttheFZDco-receptorantago-nists.
BlockadeofWnt/β-cateninsignalingbyadenovirus-mediatedexpressionofDkk1(anaturalLRP5/6antagonist)inmicehasbeenshowntosuppressepitheliumprolifera-tioninsmallintestineandcolon,accompaniedbyprogres-sivearchitecturaldegenerationwiththelossofcrypts,villi,andglandularstructureby7days[153].
Further,ectopicDkk1expressionledtoacompletefailureofhairfolliculeformationinadultmice[154].
IncontrasttothatinvivoadministrationofanLRP6antagonistMesdmarkedlysup-pressedgrowthofMMTV-Wnt1tumorswithoutcausingundesirablesideeffects[155].
AnotherexampleconcernsthepotentialofusingWntproteinsasdrugs.
Indeed,someWntshavetumorsup-pressingactivity.
Wnt5a,forexample,isoftenviewedasa"non-canonical"WntcapableofantagonizingtheWnt/β-cateninsignalingandhasaroleinlimitingB-cellprolifera-tionandfunctionsasatumorsuppressorinhematopoietictissue[156].
MicehemizygousforWnt5adevelopclonalmyeloidleukemiasandBcelllymphomasanddisplaylossofWnt5afunctionintumortissues.
Ontheotherhand,expressionofWnt3a(aprototypicalactivatoroftheWnt/β-cateninsignalingandthusapresumedpro-oncogenicfactor)inmousemelanomamodeldecreasedtheprolifera-tionofthetumorandsuppressedthemetastasis[157].
ThereforewhethertheapplicationofacertainWntwillbeanti-orpro-oncogenicmaybehighlycontext-depending.
Inmanycases,thesideeffectswhosepresenceorser-iousnesshasbeenruledoutduringpre-clinicalstudiesappearduringclinicaltrials,despiteallpre-cautionarymeasures.
Forexample,theenthusiasminitiallyshownforbothofOncomedPharmaceuticals'Wntpathwaybio-logics,vantictumabandOMP-54F28,diminishedwhenclinicaltrialsforbothwereputonhold.
Thequotedrea-sonsforhaltingpatientenrollmentdosingarebone-relatedside-effectsranging"frommildtomoderate"(http://www.
reuters.
com/article/2014/06/13/us-oncomed-study-idUSKBN0EO1B920140613).
Thesewereobservedin8outof63(13%)patientstreatedwithvantictumabandin2outof41(5%)withOMP-54F28.
Sincetheincreaseinboneturnoverhasbeenstatedasoneofthevantictumabpharmacodynamicseffects,itislogicaltoassumethatthementionedpercentageofpatientsdevelopedosteoporosis.
LoweringthedosageandfrequencyofthedrugsmightBlagodatskietal.
MolecularandCellularTherapies2014,2:28Page10of15http://www.
molcelltherapies.
com/content/2/1/28neutralizesuchsideeffects–butthiscouldalsohaveanegativeimpactonthedrugefficacy.
Therootofthecurrentproblemwithvantictumabinparticularmaylieintheinitialdesignofthedrugmolecule.
Itbindsto5outof10FZDfamilymem-bersinvitroandpotentiallyevenmoreinvivo.
How-ever,notalloftheFZDsthatbindtovantictumabareover-expressedorover-activatedinthesolidtumorsincludedintheclinicalstudy.
Conversely,onlysomeFZDmembersmaybecriticalforboneremodeling.
AFZDmAbwithlessbroadspecificitycouldstillhavebeeneffective,inhibitingsignalingoriginatingfrompro-oncogenicFZDs(orjustoneFZD)whilenotaf-fectingtheFZDsindispensableforosteogenesis.
TheseconsiderationshighlightperhapsthemostimportantissueintargetingtheWntpathways–safetyislikelytoresultfromhigherspecificityintargetingaparticularsub-pathwayimplicatedinacertainpathogeniccondition,ratherthanbluntlysuppressingallormostofthesub-pathways[158,159].
ConclusionAsdiscussedabove,Wntsignalingplaysimportantfunc-tionsincancerprogressionandtissueregeneration.
Iron-ically,whatistherapeuticallygoodforone(activationofthepathwayinregeneration)isbadinfortheother(anti-cancertreatment).
Thus,extremecaremustbetakenwhendevelopingWnt-stimulatingpro-regenerativedrugs,toexcludetherisksofcancercomplications.
Thisdemandappearsnotun-achievablethroughdesignofhighlyspe-cificand/orlocalactivatorsoftheWntpathways.
Ontheotherhand,theexpectedsideeffectsintargetingtheWnt/β-cateninpathwayinanti-cancertreatmentsaremyelo-andgastrointestinalsuppression,exactlyduetotheadverseeffectsofanti-Wnttreatmentsonprolifera-tionofhematopoeticandintestinalstemcells,aswellasprogenitorcellsinotherorgans.
Hereagain,ahopeisfordesigningspecificagentstargetingtheWnt/FZDsub-pathwaysactivatedinagivencancer,ratherthanblockingtheWnt/β-cateninsignalingaltogether[159].
Inthisregard,attackinghigher'floors'ofthesignalinghierarchy–i.
e.
theligandsandreceptors–appearsespeciallypromising[48,158].
Itisimportanttoremem-berthattheWntpathwaysmustbefine-tunedforthenormalphysiologycontrol.
Asrecentworksindicate[47],evenmoderateattenuationofWntsignalingcaneliminateitscarcinogenicpotential.
Thereforeitispos-sibletokeepthe"good"physiologicallevelofWntsig-nalingbyfindingtherighttargetandarighttooltoactonthistargetinadesiredmode.
PerhapsthefactthatWntsignalingintumortissuesisexacerbatedrelativetonormaltissueaswellasapotentialofnormaltissuetorecovercouldprovidethesafewindowofWntinhib-itionintherapy.
AbbreviationsAML:Acutemyeloidleukemia;2-AMBMP:2-amino-4-(3,4-(methylenedioxy)benzylamino)-6-(3-methoxyphenyl)pyrimidine;6-BIO:Bromoindirubin-30-Oxime;CSC:Cancerstemcell;Dvl:Dishevelled;FZD:Frizzled;GPCR:G-proteincoupledreceptor;HCC:Hepatocellularcarcinoma;mAb:Monoclonalantibody;PCP:Planarcellpolarity;sFRP:SecretedFrizzled-relatedprotein;siRNA:SmallinterferingRNA;TNK:Tankyrase.
CompetinginterestsD.
P.
isanemployeeofIBCGeneriumLLC.
V.
L.
K.
isaco-founderofTNBCureLtd.
BothcompaniesareinvolvedinWnt-targetingdrugdiscoveryefforts.
Authors'contributionsABandDPwrotethemanuscript;VLKdesignedthestructureandwrotethemanuscript.
Allauthorsreadandapprovedthefinalmanuscript.
AcknowledgementsThisworkwasfundedbytheSwissCancerLeague(grantnumberKFS-2978-08-2012toV.
L.
K.
)andtheDynastyFoundation(grantnumberDP-B-14/13toA.
B.
).
WethankDr.
GonzaloSolisforcriticallyreadingthemanuscript.
Authordetails1InstituteofProteinResearch,RussianAcademyofSciences,Pushchino,RussianFederation.
2IBCGeneriumLLC,Volginsky,RussianFederation.
3DepartmentofPharmacologyandToxicology,UniversityofLausanne,Lausanne,Switzerland.
Received:22June2014Accepted:5September2014Published:11September2014References1.
LoganCY,NusseR:TheWntsignalingpathwayindevelopmentanddisease.
AnnuRevCellDevBiol2004,20:781–810.
2.
AdellT,NefkensI,MullerWE:Polarityfactor'Frizzled'inthedemospongeSuberitesdomuncula:identification,expressionandlocalizationofthereceptorintheepithelium/pinacoderm(1).
FEBSLett2003,554(3):363–368.
3.
MorozLL,KocotKM,CitarellaMR,DosungS,NorekianTP,PovolotskayaIS,GrigorenkoAP,DaileyC,BerezikovE,BuckleyKM,PtitsynA,ReshetovD,MukherjeeK,MorozTP,BobkovaY,YuF,KapitonovVV,JurkaJ,BobkovYV,SworeJJ,GirardoDO,FodorA,GusevF,SanfordR,BrudersR,KittlerE,MillsCE,RastJP,DerelleR,SolovyevVV,etal:Thectenophoregenomeandtheevolutionaryoriginsofneuralsystems.
Nature2014,510(7503):109–114.
4.
SolisGP,LuchtenborgAM,KatanaevVL:Wntsecretionandgradientformation.
IntJMolSci2013,14(3):5130–5145.
5.
VinsonCR,ConoverS,AdlerPN:ADrosophilatissuepolaritylocusencodesaproteincontainingsevenpotentialtransmembranedomains.
Nature1989,338(6212):263–264.
6.
KatanaevVL,PonzielliR,SemerivaM,TomlinsonA:TrimericGprotein-dependentfrizzledsignalinginDrosophila.
Cell2005,120(1):111–122.
7.
KatanaevVL,BuestorfS:FrizzledProteinsarebonafideGProtein-CoupledReceptors.
AvailablefromNaturePrecedings2009.
http://hdlhandlenet/10101/npre200927651.
8.
KovalA,KatanaevVL:Wnt3astimulationelicitsG-protein-coupledreceptorpropertiesofmammalianFrizzledproteins.
BiochemJ2011,433(3):435–440.
9.
KilanderMB,DijksterhuisJP,GanjiRS,BryjaV,SchulteG:WNT-5AstimulatestheGDP/GTPexchangeatpertussistoxin-sensitiveheterotrimericGproteins.
CellSignal2011,23(3):550–554.
10.
Egger-AdamD,KatanaevVL:TrimericGprotein-dependentsignalingbyFrizzledreceptorsinanimaldevelopment.
FrontBiosci2008,13:4740–4755.
11.
DijksterhuisJP,PetersenJ,SchulteG:WNT/Frizzledsignalling:receptor-ligandselectivitywithfocusonFZD-Gproteinsignallinganditsphysiologicalrelevance:IUPHARReview3.
BrJPharmacol2014,171(5):1195–1209.
12.
GaoC,ChenYG:Dishevelled:ThehubofWntsignaling.
CellSignal2010,22(5):717–727.
13.
Egger-AdamD,KatanaevVL:ThetrimericGproteinGoinflictsadoubleimpactonaxinintheWnt/frizzledsignalingpathway.
DevDyn2010,239(1):168–183.
14.
CliffeA,HamadaF,BienzM:AroleofDishevelledinrelocatingAxintotheplasmamembraneduringwinglesssignaling.
CurrBiol2003,13(11):960–966.
Blagodatskietal.
MolecularandCellularTherapies2014,2:28Page11of15http://www.
molcelltherapies.
com/content/2/1/2815.
KimelmanD,XuW:beta-catenindestructioncomplex:insightsandquestionsfromastructuralperspective.
Oncogene2006,25(57):7482–7491.
16.
WillertK,JonesKA:Wntsignaling:isthepartyinthenucleusGenesDev2006,20(11):1394–1404.
17.
KarimR,TseG,PuttiT,ScolyerR,LeeS:ThesignificanceoftheWntpathwayinthepathologyofhumancancers.
Pathology2004,36(2):120–128.
18.
PurvanovV,KovalA,KatanaevVL:AdirectandfunctionalinteractionbetweenGoandRab5duringGprotein-coupledreceptorsignaling.
SciSignal2010,3(136):ra65.
19.
BlitzerJT,NusseR:AcriticalroleforendocytosisinWntsignaling.
BMCCellBiol2006,7:28.
20.
VeemanMT,AxelrodJD,MoonRT:Asecondcanon.
Functionsandmechanismsofbeta-catenin-independentWntsignaling.
DevCell2003,5(3):367–377.
21.
MikelsAJ,NusseR:PurifiedWnt5aproteinactivatesorinhibitsbeta-catenin-TCFsignalingdependingonreceptorcontext.
PLoSBiol2006,4(4):e115.
22.
WillertK,BrownJD,DanenbergE,DuncanAW,WeissmanIL,ReyaT,YatesJR3rd,NusseR:Wntproteinsarelipid-modifiedandcanactasstemcellgrowthfactors.
Nature2003,423(6938):448–452.
23.
KalaniMY,CheshierSH,CordBJ,BababeygySR,VogelH,WeissmanIL,PalmerTD,NusseR:Wnt-mediatedself-renewalofneuralstem/progenitorcells.
ProcNatlAcadSciUSA2008,105(44):16970–16975.
24.
LuJ,HouR,BoothCJ,YangSH,SnyderM:Definedcultureconditionsofhumanembryonicstemcells.
ProcNatlAcadSciUSA2006,103(15):5688–5693.
25.
ZengYA,NusseR:Wntproteinsareself-renewalfactorsformammarystemcellsandpromotetheirlong-termexpansioninculture.
CellStemCell2010,6(6):568–577.
26.
SatoT,StangeDE,FerranteM,VriesRG,VanEsJH,VandenBrinkS,VanHoudtWJ,PronkA,VanGorpJ,SiersemaPD,CleversH:Long-termexpansionofepithelialorganoidsfromhumancolon,adenoma,adenocarcinoma,andBarrett'sepithelium.
Gastroenterology2011,141(5):1762–1772.
27.
CurtinJC,LorenziMV:DrugdiscoveryapproachestotargetWntsignalingincancerstemcells.
Oncotarget2010,1(7):552–566.
28.
ElshamyWM,DuheRJ:Overview:cellularplasticity,cancerstemcellsandmetastasis.
CancerLett2013,341(1):2–8.
29.
PolakisP:Wntsignalingincancer.
ColdSpringHarbPerspectBiol2012,4(5):a008052.
30.
MunemitsuS,AlbertI,SouzaB,RubinfeldB,PolakisP:Regulationofintracellularbeta-cateninlevelsbytheadenomatouspolyposiscoli(APC)tumor-suppressorprotein.
ProcNatlAcadSciUSA1995,92(7):3046–3050.
31.
GeyerFC,Lacroix-TrikiM,SavageK,ArnedosM,LambrosMB,MacKayA,NatrajanR,Reis-FilhoJS:beta-Cateninpathwayactivationinbreastcancerisassociatedwithtriple-negativephenotypebutnotwithCTNNB1mutation.
ModPathol2011,24(2):209–231.
32.
ParmarA,MarzS,RushtonS,HolzwarthC,LindK,KayserS,DohnerK,PeschelC,OostendorpRA,GotzeKS:StromalnichecellsprotectearlyleukemicFLT3-ITD+progenitorcellsagainstfirst-generationFLT3tyrosinekinaseinhibitors.
CancerRes2011,71(13):4696–4706.
33.
NaujokatC:TargetingHumanCancerStemCellswithMonoclonalAntibodies.
JClinCellImmunol2012,S5:007.
34.
Takahashi-YanagaF,KahnM:TargetingWntsignaling:canwesafelyeradicatecancerstemcellsClinCancerRes2010,16(12):3153–3162.
35.
LiuJ,PanS,HsiehMH,NgN,SunF,WangT,KasibhatlaS,SchullerAG,LiAG,ChengD,LiJ,TompkinsC,PferdekamperA,SteffyA,ChengJ,KowalC,PhungV,GuoG,WangY,GrahamMP,FlynnS,BrennerJC,LiC,VillarroelMC,SchultzPG,WuX,McNamaraP,SellersWR,PetruzzelliL,BoralAL,etal:TargetingWnt-drivencancerthroughtheinhibitionofPorcupinebyLGK974.
ProcNatlAcadSciUSA2013,110(50):20224–20229.
36.
TakadaR,SatomiY,KurataT,UenoN,NoriokaS,KondohH,TakaoT,TakadaS:MonounsaturatedFattyAcidModificationofWntProtein:ItsRoleinWntSecretion.
DevCell2006,11(6):791–801.
37.
HuangSM,MishinaYM,LiuS,CheungA,StegmeierF,MichaudGA,CharlatO,WielletteE,ZhangY,WiessnerS,HildM,ShiX,WilsonCJ,MickaninC,MyerV,FazalA,TomlinsonR,SerlucaF,ShaoW,ChengH,ShultzM,RauC,SchirleM,SchleglJ,GhidelliS,FawellS,LuC,CurtisD,KirschnerMW,LengauerC,etal:TankyraseinhibitionstabilizesaxinandantagonizesWntsignalling.
Nature2009,461(7264):614–620.
38.
LauT,ChanE,CallowM,WaalerJ,BoggsJ,BlakeRA,MagnusonS,SambroneA,SchuttenM,FiresteinR,MachonO,KorinekV,ChooE,DiazD,MerchantM,PolakisP,HolsworthDD,KraussS,CostaM:Anoveltankyrasesmall-moleculeinhibitorsuppressesAPCmutation-drivencolorectaltumorgrowth.
CancerRes2013,73(10):3132–3144.
39.
LeeE,SalicA,KrugerR,HeinrichR,KirschnerMW:TherolesofAPCandAxinderivedfromexperimentalandtheoreticalanalysisoftheWntpathway.
PLoSBiol2003,1(1):E10.
40.
PolakisP:ThemanywaysofWntincancer.
CurrOpinGenetDev2007,17(1):45–51.
41.
ChenM,WangJ,LuJ,BondMC,RenXR,LyerlyHK,BarakLS,ChenW:Theanti-helminthicniclosamideinhibitsWnt/Frizzled1signaling.
Biochemistry2009,48(43):10267–10274.
42.
Londono-JoshiAI,ArendRC,AristizabalL,LuW,SamantRS,MetgeBJ,HidalgoB,GrizzleWE,ConnerM,Forero-TorresA,LobuglioAF,LiY,BuchsbaumDJ:Effectofniclosamideonbasal-likebreastcancers.
MolCancerTher2014,13(4):800–811.
43.
LiY,LiPK,RobertsMJ,ArendRC,SamantRS,BuchsbaumDJ:Multi-targetedtherapyofcancerbyniclosamide:Anewapplicationforanolddrug.
CancerLett2014,349(1):8–14.
44.
KovalAV,VlasovP,ShichkovaP,KhunderyakovaS,MarkovY,PanchenkoJ,VolodinaA,KondrashovFA,KatanaevVL:Anti-leprosydrugclofazimineinhibitsgrowthoftriple-negativebreastcancercellsviainhibitionofcanonicalWntsignaling.
BiochemPharmacol2014,87(4):571–578.
45.
HanakiH,YamamotoH,SakaneH,MatsumotoS,OhdanH,SatoA,KikuchiA:Ananti-Wnt5aantibodysuppressesmetastasisofgastriccancercellsinvivobyinhibitingreceptor-mediatedendocytosis.
MolCancerTher2012,11(2):298–307.
46.
HeB,ReguartN,YouL,MazieresJ,XuZ,LeeAY,MikamiI,McCormickF,JablonsDM:BlockadeofWnt-1signalinginducesapoptosisinhumancolorectalcancercellscontainingdownstreammutations.
Oncogene2005,24(18):3054–3058.
47.
DeAlmeidaVI,MiaoL,ErnstJA,KoeppenH,PolakisP,RubinfeldB:ThesolublewntreceptorFrizzled8CRD-hFcinhibitsthegrowthofteratocarcinomasinvivo.
CancerRes2007,67(11):5371–5379.
48.
KovalA,KatanaevVL:Platformsforhigh-throughputscreeningofWnt/Frizzledantagonists.
DrugDiscovToday2012,17(23–24):1316–1322.
49.
KolaI,LandisJ:CanthepharmaceuticalindustryreduceattritionratesNatRevDrugDiscov2004,3(8):711–715.
50.
HutchingsCJ,KoglinM,MarshallFH:TherapeuticantibodiesdirectedatGprotein-coupledreceptors.
MAbs2010,2(6):594–606.
51.
JeneiV,SherwoodV,HowlinJ,LinnskogR,SafholmA,AxelssonL,AnderssonT:At-butyloxycarbonyl-modifiedWnt5a-derivedhexapeptidefunctionsasapotentantagonistofWnt5a-dependentmelanomacellinvasion.
ProcNatlAcadSciUSA2009,106(46):19473–19478.
52.
SafholmA,LeanderssonK,DejmekJ,NielsenCK,VilloutreixBO,AnderssonT:AformylatedhexapeptideligandmimicstheabilityofWnt-5atoimpairmigrationofhumanbreastepithelialcells.
JBiolChem2006,281(5):2740–2749.
53.
SafholmA,TuomelaJ,RosenkvistJ,DejmekJ,HarkonenP,AnderssonT:TheWnt-5a-derivedhexapeptideFoxy-5inhibitsbreastcancermetastasisinvivobytargetingcellmotility.
ClinCancerRes2008,14(20):6556–6563.
54.
FukukawaC,HanaokaH,NagayamaS,TsunodaT,ToguchidaJ,EndoK,NakamuraY,KatagiriT:RadioimmunotherapyofhumansynovialsarcomausingamonoclonalantibodyagainstFZD10.
CancerSci2008,99(2):432–440.
55.
KingTD,ZhangW,SutoMJ,LiY:Frizzled7asanemergingtargetforcancertherapy.
CellSignal2012,24(4):846–851.
56.
YangL,WuX,WangY,ZhangK,WuJ,YuanYC,DengX,ChenL,KimCC,LauS,SomloG,YenY:FZD7hasacriticalroleincellproliferationintriplenegativebreastcancer.
Oncogene2011,30(43):4437–4446.
57.
GurneyA,AxelrodF,BondCJ,CainJ,ChartierC,DoniganL,FischerM,ChaudhariA,JiM,KapounAM,LamA,LazeticS,MaS,MitraS,ParkIK,PickellK,SatoA,SatyalS,StroudM,TranH,YenWC,LewickiJ,HoeyT:WntpathwayinhibitionviathetargetingofFrizzledreceptorsresultsindecreasedgrowthandtumorigenicityofhumantumors.
ProcNatlAcadSciUSA2012,109(29):11717–11722.
58.
WarrierS,BaluSK,KumarAP,MillwardM,DharmarajanA:Wntantagonist,secretedfrizzled-relatedprotein4(sFRP4),increaseschemotherapeuticresponseofgliomastem-likecells.
OncolRes2013,21(2):93–102.
59.
KaurP,ManiS,CrosMP,ScoazecJY,CheminI,HainautP,HercegZ:EpigeneticsilencingofsFRP1activatesthecanonicalWntpathwayandBlagodatskietal.
MolecularandCellularTherapies2014,2:28Page12of15http://www.
molcelltherapies.
com/content/2/1/28contributestoincreasedcellgrowthandproliferationinhepatocellularcarcinoma.
TumourBiol2012,33(2):325–336.
60.
ChungMT,LaiHC,SytwuHK,YanMD,ShihYL,ChangCC,YuMH,LiuHS,ChuDW,LinYW:SFRP1andSFRP2suppressthetransformationandinvasionabilitiesofcervicalcancercellsthroughWntsignalpathway.
GynecolOncol2009,112(3):646–653.
61.
FontenotE,RossiE,MumperR,SnyderS,Siamakpour-ReihaniS,MaP,HilliardE,BoneB,KetelsenD,SantosC,PattersonC,Klauber-DeMoreN:Anovelmonoclonalantibodytosecretedfrizzled-relatedprotein2inhibitstumorgrowth.
MolCancerTher2013,12(5):685–695.
62.
HollandJD,GyorffyB,VogelR,EckertK,ValentiG,FangL,LohneisP,ElezkurtajS,ZieboldU,BirchmeierW:CombinedWnt/beta-catenin,Met,andCXCL12/CXCR4signalscharacterizebasalbreastcancerandpredictdiseaseoutcome.
CellRep2013,5(5):1214–1227.
63.
Nejak-BowenK,MongaSP:Wnt/beta-cateninsignalinginhepaticorganogenesis.
Organogenesis2008,4(2):92–99.
64.
TanX,YuanY,ZengG,ApteU,ThompsonMD,CieplyB,StolzDB,MichalopoulosGK,KaestnerKH,MongaSP:Beta-catenindeletioninhepatoblastsdisruptshepaticmorphogenesisandsurvivalduringmousedevelopment.
Hepatology2008,47(5):1667–1679.
65.
RossiJM,DunnNR,HoganBL,ZaretKS:Distinctmesodermalsignals,includingBMPsfromtheseptumtransversummesenchyme,arerequiredincombinationforhepatogenesisfromtheendoderm.
GenesDev2001,15(15):1998–2009.
66.
GonzalezFJ:Roleofbeta-cateninintheadultliver.
Hepatology2006,43(4):650–653.
67.
MongaSP,PediaditakisP,MuleK,StolzDB,MichalopoulosGK:ChangesinWNT/beta-cateninpathwayduringregulatedgrowthinratliverregeneration.
Hepatology2001,33(5):1098–1109.
68.
PetersenBE,GrossbardB,HatchH,PiL,DengJ,ScottEW:MouseA6-positivehepaticovalcellsalsoexpressseveralhematopoieticstemcellmarkers.
Hepatology2003,37(3):632–640.
69.
LagasseE,ConnorsH,Al-DhalimyM,ReitsmaM,DohseM,OsborneL,WangX,FinegoldM,WeissmanIL,GrompeM:Purifiedhematopoieticstemcellscandifferentiateintohepatocytesinvivo.
NatMed2000,6(11):1229–1234.
70.
YangW,YanHX,ChenL,LiuQ,HeYQ,YuLX,ZhangSH,HuangDD,TangL,KongXN,ChenC,LiuSQ,WuMC,WangHY:Wnt/beta-cateninsignalingcontributestoactivationofnormalandtumorigenicliverprogenitorcells.
CancerRes2008,68(11):4287–4295.
71.
WilliamsJM,OhSH,JorgensenM,SteigerN,DarwicheH,ShupeT,PetersenBE:TheroleoftheWntfamilyofsecretedproteinsinratoval"stem"cell-basedliverregeneration:Wnt1drivesdifferentiation.
AmJPathol2010,176(6):2732–2742.
72.
XuD,YangF,YuanJH,ZhangL,BiHS,ZhouCC,LiuF,WangF,SunSH:LongnoncodingRNAsassociatedwithliverregeneration1accelerateshepatocyteproliferationduringliverregenerationbyactivatingWnt/beta-cateninsignaling.
Hepatology2013,58(2):739–751.
73.
DingZY,LiangHF,JinGN,ChenWX,WangW,DattaPK,ZhangMZ,ZhangB,ChenXP:Smad6suppressesthegrowthandself-renewalofhepaticprogenitorcells.
JCellPhysiol2014,229(5):651–660.
74.
NakamuraI,Fernandez-BarrenaMG,Ortiz-RuizMC,AlmadaLL,HuC,ElsawaSF,MillsLD,RomecinPA,GulaidKH,MoserCD,HanJJ,VrabelA,HanseEA,AkogyeramNA,AlbrechtJH,MongaSP,SandersonSO,PrietoJ,RobertsLR,Fernandez-ZapicoME:ActivationofthetranscriptionfactorGLI1byWNTsignalingunderliestheroleofSULFATASE2asaregulatoroftissueregeneration.
JBiolChem2013,288(29):21389–21398.
75.
HuchM,DorrellC,BojSF,VanEsJH,LiVS,vandeWeteringM,SatoT,HamerK,SasakiN,FinegoldMJ,HaftA,VriesRG,GrompeM,CleversH:InvitroexpansionofsingleLgr5+liverstemcellsinducedbyWnt-drivenregeneration.
Nature2013,494(7436):247–250.
76.
KuncewitchM,YangWL,MolmentiE,NicastroJ,CoppaGF,WangP:Wntagonistattenuatesliverinjuryandimprovessurvivalafterhepaticischemia/reperfusion.
Shock2013,39(1):3–10.
77.
LeuchtP,MinearS,TenBergeD,NusseR,HelmsJA:Translatinginsightsfromdevelopmentintoregenerativemedicine:thefunctionofWntsinbonebiology.
SeminCellDevBiol2008,19(5):434–443.
78.
MooreKA,LemischkaIR:Stemcellsandtheirniches.
Science2006,311(5769):1880–1885.
79.
BoydenLM,MaoJ,BelskyJ,MitznerL,FarhiA,MitnickMA,WuD,InsognaK,LiftonRP:HighbonedensityduetoamutationinLDL-receptor-relatedprotein5.
NEnglJMed2002,346(20):1513–1521.
80.
LittleRD,CarulliJP,DelMastroRG,DupuisJ,OsborneM,FolzC,ManningSP,SwainPM,ZhaoSC,EustaceB,LappeMM,SpitzerL,ZweierS,BraunschweigerK,BenchekrounY,HuX,AdairR,CheeL,FitzGeraldMG,TuligC,CarusoA,TzellasN,BawaA,FranklinB,McGuireS,NoguesX,GongG,AllenKM,AnisowiczA,MoralesAJ,etal:AmutationintheLDLreceptor-relatedprotein5generesultsintheautosomaldominanthigh-bone-masstrait.
AmJHumGenet2002,70(1):11–19.
81.
BabijP,ZhaoW,SmallC,KharodeY,YaworskyPJ,BouxseinML,ReddyPS,BodinePV,RobinsonJA,BhatB,MarzolfJ,MoranRA,BexF:HighbonemassinmiceexpressingamutantLRP5gene.
JBoneMinerRes2003,18(6):960–974.
82.
MorvanF,BoulukosK,Clement-LacroixP,RomanRomanS,Suc-RoyerI,VayssiereB,AmmannP,MartinP,PinhoS,PognonecP,MollatP,NiehrsC,BaronR,RawadiG:DeletionofasinglealleleoftheDkk1geneleadstoanincreaseinboneformationandbonemass.
JBoneMinerRes2006,21(6):934–945.
83.
BodinePV,ZhaoW,KharodeYP,BexFJ,LambertAJ,GoadMB,GaurT,SteinGS,LianJB,KommBS:TheWntantagonistsecretedfrizzled-relatedprotein-1isanegativeregulatoroftrabecularboneformationinadultmice.
MolEndocrinol2004,18(5):1222–1237.
84.
GaurT,LengnerCJ,HovhannisyanH,BhatRA,BodinePV,KommBS,JavedA,VanWijnenAJ,SteinJL,SteinGS,LianJB:CanonicalWNTsignalingpromotesosteogenesisbydirectlystimulatingRunx2geneexpression.
JBiolChem2005,280(39):33132–33140.
85.
GlassDA2nd,BialekP,AhnJD,StarbuckM,PatelMS,CleversH,TaketoMM,LongF,McMahonAP,LangRA,KarsentyG:CanonicalWntsignalingindifferentiatedosteoblastscontrolsosteoclastdifferentiation.
DevCell2005,8(5):751–764.
86.
HolmenSL,ZylstraCR,MukherjeeA,SiglerRE,FaugereMC,BouxseinML,DengL,ClemensTL,WilliamsBO:Essentialroleofbeta-catenininpostnatalboneacquisition.
JBiolChem2005,280(22):21162–21168.
87.
DayTF,GuoX,Garrett-BealL,YangY:Wnt/beta-cateninsignalinginmesenchymalprogenitorscontrolsosteoblastandchondrocytedifferentiationduringvertebrateskeletogenesis.
DevCell2005,8(5):739–750.
88.
HillTP,TaketoMM,BirchmeierW,HartmannC:Multiplerolesofmesenchymalbeta-cateninduringmurinelimbpatterning.
Development2006,133(7):1219–1229.
89.
TenBergeD,BrugmannSA,HelmsJA,NusseR:WntandFGFsignalsinteracttocoordinategrowthwithcellfatespecificationduringlimbdevelopment.
Development2008,135(19):3247–3257.
90.
HadjiargyrouM,LombardoF,ZhaoS,AhrensW,JooJ,AhnH,JurmanM,WhiteDW,RubinCT:Transcriptionalprofilingofboneregeneration.
Insightintothemolecularcomplexityofwoundrepair.
JBiolChem2002,277(33):30177–30182.
91.
ZhongN,GerschRP,HadjiargyrouM:WntsignalingactivationduringboneregenerationandtheroleofDishevelledinchondrocyteproliferationanddifferentiation.
Bone2006,39(1):5–16.
92.
ChenY,WhetstoneHC,LinAC,NadesanP,WeiQ,PoonR,AlmanBA:Beta-cateninsignalingplaysadisparateroleindifferentphasesoffracturerepair:implicationsfortherapytoimprovebonehealing.
PLoSMed2007,4(7):e249.
93.
DeanDB,WatsonJT,JinW,PetersC,EndersJT,ChenA,MoedBR,ZhangZ:Distinctfunctionalitiesofbonemorphogeneticproteinantagonistsduringfracturehealinginmice.
JAnat2010,216(5):625–630.
94.
Caetano-LopesJ,LopesA,RodriguesA,FernandesD,PerpetuoIP,MonjardinoT,LucasR,MonteiroJ,KonttinenYT,CanhaoH,FonsecaJE:Upregulationofinflammatorygenesanddownregulationofsclerostingeneexpressionarekeyelementsintheearlyphaseoffragilityfracturehealing.
PLoSOne2011,6(2):e16947.
95.
AlbersJ,SchulzeJ,BeilFT,GebauerM,BaranowskyA,KellerJ,MarshallRP,WintgesK,FriedrichFW,PriemelM,SchillingAF,RuegerJM,CornilsK,FehseB,StreichertT,SauterG,JakobF,InsognaKL,PoberB,KnobelochKP,FranckeU,AmlingM,SchinkeT:ControlofboneformationbytheserpentinereceptorFrizzled-9.
JCellBiol2011,192(6):1057–1072.
96.
HeilmannA,SchinkeT,BindlR,WehnerT,RappA,Haffner-LuntzerM,NemitzC,LiedertA,AmlingM,IgnatiusA:TheWntserpentinereceptorFrizzled-9regulatesnewboneformationinfracturehealing.
PLoSOne2013,8(12):e84232.
97.
TakadaI,SuzawaM,MatsumotoK,KatoS:SuppressionofPPARtransactivationswitchescellfateofbonemarrowstemcellsfromadipocytesintoosteoblasts.
AnnNYAcadSci2007,1116:182–195.
Blagodatskietal.
MolecularandCellularTherapies2014,2:28Page13of15http://www.
molcelltherapies.
com/content/2/1/2898.
YamaguchiTP,BradleyA,McMahonAP,JonesS:AWnt5apathwayunderliesoutgrowthofmultiplestructuresinthevertebrateembryo.
Development1999,126(6):1211–1223.
99.
AlmeidaM,HanL,BellidoT,ManolagasSC,KousteniS:Wntproteinspreventapoptosisofbothuncommittedosteoblastprogenitorsanddifferentiatedosteoblastsbybeta-catenin-dependentand-independentsignalingcascadesinvolvingSrc/ERKandphosphatidylinositol3-kinase/AKT.
JBiolChem2005,280(50):41342–41351.
100.
LiX,GrisantiM,FanW,AsuncionFJ,TanHL,DwyerD,HanCY,YuL,LeeJ,LeeE,BarreroM,KurimotoP,NiuQT,GengZ,WintersA,HoranT,SteavensonS,JacobsenF,ChenQ,HaldankarR,LavalleeJ,TiptonB,DarisM,ShengJ,LuHS,DarisK,DeshpandeR,ValenteEG,Salimi-MoosaviH,KostenuikPJ,etal:Dickkopf-1regulatesboneformationinyounggrowingrodentsandupontraumaticinjury.
JBoneMinerRes2011,26(11):2610–2621.
101.
AgholmeF,LiX,IsakssonH,KeHZ,AspenbergP:Sclerostinantibodytreatmentenhancesmetaphysealbonehealinginrats.
JBoneMinerRes2010,25(11):2412–2418.
102.
AgholmeF,IsakssonH,LiX,KeHZ,AspenbergP:Anti-sclerostinantibodyandmechanicalloadingappeartoinfluencemetaphysealboneindependentlyinrats.
ActaOrthop2011,82(5):628–632.
103.
OminskyMS,LiC,LiX,TanHL,LeeE,BarreroM,AsuncionFJ,DwyerD,HanCY,VlasserosF,SamadfamR,JoletteJ,SmithSY,StolinaM,LaceyDL,SimonetWS,PasztyC,LiG,KeHZ:Inhibitionofsclerostinbymonoclonalantibodyenhancesbonehealingandimprovesbonedensityandstrengthofnonfracturedbones.
JBoneMinerRes2011,26(5):1012–1021.
104.
JawadMU,FrittonKE,MaT,RenPG,GoodmanSB,KeHZ,BabijP,GenoveseMC:Effectsofsclerostinantibodyonhealingofanon-criticalsizefemoralbonedefect.
JOrthopRes2013,31(1):155–163.
105.
GaurT,WixtedJJ,HussainS,O'ConnellSL,MorganEF,AyersDC,KommBS,BodinePV,SteinGS,LianJB:Secretedfrizzledrelatedprotein1isatargettoimprovefracturehealing.
JCellPhysiol2009,220(1):174–181.
106.
MinearS,LeuchtP,JiangJ,LiuB,ZengA,FuererC,NusseR,HelmsJA:Wntproteinspromoteboneregeneration.
SciTranslMed2010,2(29):29ra30.
107.
AriokaM,Takahashi-YanagaF,SasakiM,YoshiharaT,MorimotoS,HirataM,MoriY,SasaguriT:Accelerationofboneregenerationbylocalapplicationoflithium:Wntsignal-mediatedosteoblastogenesisandWntsignal-independentsuppressionofosteoclastogenesis.
BiochemPharmacol2014,90(4):397–405.
108.
BrackAS,ConboyIM,ConboyMJ,ShenJ,RandoTA:AtemporalswitchfromnotchtoWntsignalinginmusclestemcellsisnecessaryfornormaladultmyogenesis.
CellStemCell2008,2(1):50–59.
109.
TanakaS,TeradaK,NohnoT:CanonicalWntsignalingisinvolvedinswitchingfromcellproliferationtomyogenicdifferentiationofmousemyoblastcells.
JMolSignal2011,6:12.
110.
FujimakiS,HidakaR,AsashimaM,TakemasaT,KuwabaraT:Wntprotein-mediatedsatellitecellconversioninadultandagedmicefollowingvoluntarywheelrunning.
JBiolChem2014,289(11):7399–7412.
111.
KurodaK,KuangS,TaketoMM,RudnickiMA:CanonicalWntsignalinginducesBMP-4tospecifyslowmyofibrogenesisoffetalmyoblasts.
SkeletMuscle2013,3(1):5.
112.
LeGrandF,JonesAE,SealeV,ScimeA,RudnickiMA:Wnt7aactivatestheplanarcellpolaritypathwaytodrivethesymmetricexpansionofsatellitestemcells.
CellStemCell2009,4(6):535–547.
113.
KuangS,KurodaK,LeGrandF,RudnickiMA:Asymmetricself-renewalandcommitmentofsatellitestemcellsinmuscle.
Cell2007,129(5):999–1010.
114.
VonMaltzahnJ,BentzingerCF,RudnickiMA:Wnt7a-Fzd7signallingdirectlyactivatestheAkt/mTORanabolicgrowthpathwayinskeletalmuscle.
NatCellBiol2012,14(2):186–191.
115.
BentzingerCF,VonMaltzahnJ,DumontNA,StarkDA,WangYX,NhanK,FrenetteJ,CornelisonDD,RudnickiMA:Wnt7astimulatesmyogenicstemcellmotilityandengraftmentresultinginimprovedmusclestrength.
JCellBiol2014,205(1):97–111.
116.
VonMaltzahnJ,ZinovievR,ChangNC,BentzingerCF,RudnickiMA:AtruncatedWnt7aretainsfullbiologicalactivityinskeletalmuscle.
NatCommun2013,4:2869.
117.
LimX,TanSH,KohWL,ChauRM,YanKS,KuoCJ,VanAmerongenR,KleinAM,NusseR:Interfollicularepidermalstemcellsself-renewviaautocrineWntsignaling.
Science2013,342(6163):1226–1230.
118.
RishikayshP,DevK,DiazD,QureshiWM,FilipS,MokryJ:Signalinginvolvedinhairfolliclemorphogenesisanddevelopment.
IntJMolSci2014,15(1):1647–1670.
119.
ChuaAW,MaD,GanSU,FuZ,HanHC,SongC,SabapathyK,PhanTT:TheroleofR-spondin2inkeratinocyteproliferationandepidermalthickeninginkeloidscarring.
JInvestDermatol2011,131(3):644–654.
120.
MerrillBJ,GatU,DasGuptaR,FuchsE:Tcf3andLef1regulatelineagedifferentiationofmultipotentstemcellsinskin.
GenesDev2001,15(13):1688–1705.
121.
NguyenH,MerrillBJ,PolakL,NikolovaM,RendlM,ShaverTM,PasolliHA,FuchsE:Tcf3andTcf4areessentialforlong-termhomeostasisofskinepithelia.
NatGenet2009,41(10):1068–1075.
122.
HuelskenJ,VogelR,ErdmannB,CotsarelisG,BirchmeierW:beta-Catenincontrolshairfolliclemorphogenesisandstemcelldifferentiationintheskin.
Cell2001,105(4):533–545.
123.
ChoiYS,ZhangY,XuM,YangY,ItoM,PengT,CuiZ,NagyA,HadjantonakisAK,LangRA,CotsarelisG,AndlT,MorriseyEE,MillarSE:DistinctfunctionsforWnt/beta-catenininhairfolliclestemcellproliferationandsurvivalandinterfollicularepidermalhomeostasis.
CellStemCell2013,13(6):720–733.
124.
DescheneER,MyungP,RompolasP,ZitoG,SunTY,TaketoMM,SaotomeI,GrecoV:beta-Cateninactivationregulatestissuegrowthnon-cellautonomouslyinthehairstemcellniche.
Science2014,343(6177):1353–1356.
125.
LeiM,GuoH,QiuW,LaiX,TianY,WidelitzRB,ChuongCM,XiaohuaL,YangL:ModulatinghairfolliclesizewithWnt10b/DKK1duringhairregeneration.
ExpDermatol2014,23(6):407–413.
126.
WhyteJL,SmithAA,LiuB,ManzanoWR,EvansND,DhamdhereGR,FangMY,ChangHY,OroAE,HelmsJA:AugmentingendogenousWntsignalingimprovesskinwoundhealing.
PLoSOne2013,8(10):e76883.
127.
DongL,HaoH,XiaL,LiuJ,TiD,TongC,HouQ,HanQ,ZhaoY,LiuH,FuX,HanW:TreatmentofMSCswithWnt1a-conditionedmediumactivatesDPcellsandpromoteshairfollicleregrowth.
SciRep2014,4:5432.
128.
ZimberMP,ZieringC,ZeiglerF,HubkaM,MansbridgeJN,BaumgartnerM,HubkaK,KellarR,Perez-MezaD,SadickN,NaughtonGK:HairregrowthfollowingaWnt-andfollistatincontainingtreatment:safetyandefficacyinafirst-in-manphase1clinicaltrial.
JDrugsDermatol2011,10(11):1308–1312.
129.
LeeSH,ZahoorM,HwangJK,MinDoS,ChoiKY:Valproicacidinducescutaneouswoundhealinginvivoandenhanceskeratinocytemotility.
PLoSOne2012,7(11):e48791.
130.
JoSJ,ChoiSJ,YoonSY,LeeJY,ParkWS,ParkPJ,KimKH,EunHC,KwonO:Valproicacidpromoteshumanhairgrowthininvitroculturemodel.
JDermatolSci2013,72(1):16–24.
131.
LeeSH,YoonJ,ShinSH,ZahoorM,KimHJ,ParkPJ,ParkWS,MinDoS,KimHY,ChoiKY:Valproicacidinduceshairregenerationinmurinemodelandactivatesalkalinephosphataseactivityinhumandermalpapillacells.
PLoSOne2012,7(4):e34152.
132.
JoSJ,ShinH,ParkYW,PaikSH,ParkWS,JeongYS,ShinHJ,KwonO:Topicalvalproicacidincreasesthehaircountinmalepatientswithandrogeneticalopecia:arandomized,comparative,clinicalfeasibilitystudyusingphototrichogramanalysis.
JDermatol2014,41(4):285–291.
133.
DickinsEM,SalinasPC:Wntsinaction:fromsynapseformationtosynapticmaintenance.
FrontCellNeurosci2013,7:162.
134.
PurroSA,GalliS,SalinasPC:DysfunctionofWntsignalingandsynapticdisassemblyinneurodegenerativediseases.
JMolCellBiol2014,6(1):75–80.
135.
InestrosaNC,Varela-NallarL:WntsignalinginthenervoussystemandinAlzheimer'sdisease.
JMolCellBiol2014,6(1):64–74.
136.
MagdesianMH,CarvalhoMM,MendesFA,SaraivaLM,JulianoMA,JulianoL,Garcia-AbreuJ,FerreiraST:Amyloid-betabindstotheextracellularcysteine-richdomainofFrizzledandinhibitsWnt/beta-cateninsignaling.
JBiolChem2008,283(14):9359–9368.
137.
DeFerrariGV,ChaconMA,BarriaMI,GarridoJL,GodoyJA,OlivaresG,ReyesAE,AlvarezA,BronfmanM,InestrosaNC:ActivationofWntsignalingrescuesneurodegenerationandbehavioralimpairmentsinducedbybeta-amyloidfibrils.
MolPsychiatry2003,8(2):195–208.
138.
ChaconMA,Varela-NallarL,InestrosaNC:Frizzled-1isinvolvedintheneuroprotectiveeffectofWnt3aagainstAbetaoligomers.
JCellPhysiol2008,217(1):215–227.
139.
Silva-AlvarezC,ArrazolaMS,GodoyJA,OrdenesD,InestrosaNC:CanonicalWntsignalingprotectshippocampalneuronsfromAbetaoligomers:roleofnon-canonicalWnt-5a/Ca(2+)inmitochondrialdynamics.
FrontCellNeurosci2013,7:97.
Blagodatskietal.
MolecularandCellularTherapies2014,2:28Page14of15http://www.
molcelltherapies.
com/content/2/1/28140.
RobinNC,AgostonZ,BiecheleTL,JamesRG,BerndtJD,MoonRT:SimvastatinPromotesAdultHippocampalNeurogenesisbyEnhancingWnt/beta-CateninSignaling.
StemCellRep2014,2(1):9–17.
141.
ToledoEM,InestrosaNC:ActivationofWntsignalingbylithiumandrosiglitazonereducedspatialmemoryimpairmentandneurodegenerationinbrainsofanAPPswe/PSEN1DeltaE9mousemodelofAlzheimer'sdisease.
MolPsychiatry2010,15(3):272–285.
228.
142.
TiwariSK,AgarwalS,SethB,YadavA,NairS,BhatnagarP,KarmakarM,KumariM,ChauhanLK,PatelDK,SrivastavaV,SinghD,GuptaSK,TripathiA,ChaturvediRK,GuptaKC:Curcumin-loadednanoparticlespotentlyinduceadultneurogenesisandreversecognitivedeficitsinAlzheimer'sdiseasemodelviacanonicalWnt/beta-cateninpathway.
ACSNano2014,8(1):76–103.
143.
HalleskogC,MulderJ,DahlstrmJ,MackieK,HortobágyiT,TanilaH,KumarPuliL,FrberK,HarkanyT,SchulteG:WNTsignalinginactivatedmicrogliaisproinflammatory.
Glia2011,59(1):119–131.
144.
RodriguezJP,CoulterM,MiotkeJ,MeyerRL,TakemaruK,LevineJM:Abrogationofβ-CateninSignalinginOligodendrocytePrecursorCellsReducesGlialScarringandPromotesAxonRegenerationafterCNSInjury.
JNeurosci2014,34(31):10285–10297.
145.
HalleskogC,DijksterhuisJP,KilanderMB,Becerril-OrtegaJ,VillaescusaJC,LindgrenE,ArenasE,SchulteG:HeterotrimericGprotein-dependentWNT-5AsignalingtoERK1/2mediatesdistinctaspectsofmicrogliaproinflammatorytransformation.
JNeuroinflammation2012,9:111.
146.
JandaCY,WaghrayD,LevinAM,ThomasC,GarciaKC:StructuralbasisofWntrecognitionbyFrizzled.
Science2012,337(6090):59–64.
147.
BlagodatskiA,KatanaevVL:Technologiesofdirectedproteinevolutioninvivo.
CellMolLifeSci2011,68(7):1207–1214.
148.
ReisM,LiebnerS:Wntsignalinginthevasculature.
ExpCellRes2013,319(9):1317–1323.
149.
DaskalopoulosEP,HermansKC,JanssenBJ,MatthijsBlankesteijnW:TargetingtheWnt/frizzledsignalingpathwayaftermyocardialinfarction:anewtoolinthetherapeutictoolboxTrendsCardiovascMed2013,23(4):121–127.
150.
LaeremansH,HackengTM,VanZandvoortMA,ThijssenVL,JanssenBJ,OttenheijmHC,SmitsJF,BlankesteijnWM:Blockingoffrizzledsignalingwithahomologouspeptidefragmentofwnt3a/wnt5areducesinfarctexpansionandpreventsthedevelopmentofheartfailureaftermyocardialinfarction.
Circulation2011,124(15):1626–1635.
151.
EirakuM,TakataN,IshibashiH,KawadaM,SakakuraE,OkudaS,SekiguchiK,AdachiT,SasaiY:Self-organizingoptic-cupmorphogenesisinthree-dimensionalculture.
Nature2011,472(7341):51–56.
152.
KahnM:CanwesafelytargettheWNTpathwayNatRevDrugDiscov2014,13(7):513–532.
153.
KuhnertF,DavisCR,WangHT,ChuP,LeeM,YuanJ,NusseR,KuoCJ:EssentialrequirementforWntsignalinginproliferationofadultsmallintestineandcolonrevealedbyadenoviralexpressionofDickkopf-1.
ProcNatlAcadSciUSA2004,101(1):266–271.
154.
AndlT,ReddyST,GaddaparaT,MillarSE:WNTsignalsarerequiredfortheinitiationofhairfollicledevelopment.
DevCell2002,2(5):643–653.
155.
LiuCC,PriorJ,Piwnica-WormsD,BuG:LRP6overexpressiondefinesaclassofbreastcancersubtypeandisatargetfortherapy.
ProcNatlAcadSciUSA2010,107(11):5136–5141.
156.
LiangH,ChenQ,ColesAH,AndersonSJ,PihanG,BradleyA,GersteinR,JurecicR,JonesSN:Wnt5ainhibitsBcellproliferationandfunctionsasatumorsuppressorinhematopoietictissue.
CancerCell2003,4(5):349–360.
157.
ChienAJ,MooreEC,LonsdorfAS,KulikauskasRM,RothbergBG,BergerAJ,MajorMB,HwangST,RimmDL,MoonRT:ActivatedWnt/beta-cateninsignalinginmelanomaisassociatedwithdecreasedproliferationinpatienttumorsandamurinemelanomamodel.
ProcNatlAcadSciUSA2009,106(4):1193–1198.
158.
BarkerN,CleversH:MiningtheWntpathwayforcancertherapeutics.
NatRevDrugDiscov2006,5(12):997–1014.
159.
KatanaevVL:ProspectsoftargetingWntsignalingincancer.
JPharmacolToxicolRes2014,1(1):1–3.
doi:10.
1186/2052-8426-2-28Citethisarticleas:Blagodatskietal.
:TargetingtheWntpathwaysfortherapies.
MolecularandCellularTherapies20142:28.
SubmityournextmanuscripttoBioMedCentralandtakefulladvantageof:ConvenientonlinesubmissionThoroughpeerreviewNospaceconstraintsorcolorgurechargesImmediatepublicationonacceptanceInclusioninPubMed,CAS,ScopusandGoogleScholarResearchwhichisfreelyavailableforredistributionSubmityourmanuscriptatwww.
biomedcentral.
com/submitBlagodatskietal.
MolecularandCellularTherapies2014,2:28Page15of15http://www.
molcelltherapies.
com/content/2/1/28

MOACK:韩国服务器/双E5-2450L/8GB内存/1T硬盘/10M不限流量,$59.00/月

Moack怎么样?Moack(蘑菇主机)是一家成立于2016年的商家,据说是国人和韩国合资开办的主机商家,目前主要销售独立服务器,机房位于韩国MOACK机房,网络接入了kt/lg/kinx三条线路,目前到中国大陆的速度非常好,国内Ping值平均在45MS左右,而且商家的套餐比较便宜,针对国人有很多活动。不过目前如果购买机器如需现场处理,由于COVID-19越来越严重,MOACK办公楼里的人也被感染...

Raksmart VPS主机如何设置取消自动续费

今天有看到Raksmart账户中有一台VPS主机即将到期,这台机器之前是用来测试评测使用的。这里有不打算续费,这不面对万一导致被自动续费忘记,所以我还是取消自动续费设置。如果我们也有类似的问题,这里就演示截图设置Raksmart取消自动续费。这里我们可以看到上图,在对应VPS主机的【其余操作】中可以看到默认已经是不自动续费,所以我们也不要担心被自动续费的。当然,如果有被自动续费,我们确实不想续费的...

VoLLcloud6折限量,香港CMI云服务器三网直连-200M带宽

vollcloud LLC首次推出6折促销,本次促销福利主要感恩与回馈广大用户对于我们的信任与支持,我们将继续稳步前行,为广大用户们提供更好的产品和服务,另外,本次促销码共限制使用30个,个人不限购,用完活动结束,同时所有vps产品支持3日内无条件退款和提供免费试用。需要了解更多产品可前往官网查看!vollcloud优惠码:VoLLcloud终生6折促销码:Y5C0V7R0YW商品名称CPU内存S...

www.niuav.com为你推荐
怎么查询商标如何查询商标注册newworldNew World Group是什么组织杨紫别祝我生日快乐周杰伦的祝我生日快乐这首歌有什么寓意或者是在什么背景下写的微信回应封杀钉钉微信永久封号了!求大神们指点下怎么解封啊!同ip网站查询我的两个网站在同一个IP下,没被百度收录,用同IP站点查询工具查询时也找不到我的网站,是何原因?关键字什么叫关键词777k7.comwww 地址 777rv怎么打不开了,还有好看的吗>comm.2828dy.comwww.dy6868.com这个电影网怎么样?www.kanav001.com翻译为日文: 主人,请你收养我一天吧. 带上罗马音标会更好wwwwww.03ggg.comwww.tvb33.com这里好像有中国性戏观看吧??
免费国内空间 asp虚拟主机 3322动态域名注册 vps服务器 fdcservers 美国主机推荐 外国空间 e蜗 日本bb瘦 lol台服官网 100mbps starry 论坛主机 日本代理ip 华为k3 镇江高防 美国迈阿密 石家庄服务器 腾讯云平台 shuangcheng 更多