SimulationAnalysisandOptimalDesignofBackClampDevicePingYU,Si-JieKANGa*,Yan-JiaoLI,En-ChaoJINMechanicalScienceandEngineeringInstituteofJilinUniversity,Changchun,ChinaaKangsijie@163.
com*CorrespondingauthorKeywords:backclampdevice,dynamicanalysis,orthogonaloptimizingdesign.
Abstract.
Backclampdeviceisthekeyequipmentofthetopdrive,whichisrequiredoperationreliableandcompactstructure.
Thispaperintroducestheworkingprocessandworkingprincipleofthebackclamp,Accordingtotheoperationschemeandperformanceparametersofthebackclamp,Dynamicssimulationanalysiswascarriedout.
Obtainthecontactforcebetweenthejawanddrillpipe,aswellasforceandotherperformanceparametersofclampteeth.
Thebasicideaoforthogonaloptimizationmethodistooptimizetheparametersoftoothprofile,toothheightandtoothpitchofthejaw,andtheparameteroptimizationcombinationisgained.
Finally,UsingtheANSYSWorkbenchforthefiniteelementstaticsanalysisofthebackclamp,theresultsshowthatthedesignandfunctionalrequirementsoftheapplicationaremet.
DesignandExistingProblemsofBackClampDeviceDuetotheoverallfloatingofthebackclampingdeviceintheprocessofclampingandloosening,thewholefloatishighlyrequired.
Thereforeneedtoensurethatthefloatingprecisionofthebackclampfloatingmechanism,SchematicdiagramofthebackclampisshownintheFig.
1~Fig.
2,Theconfigurationofthespringhasaveryimportantroleinthebackclampingdevice,Oneistobeabletolimittheposition,andtheotheristoeasetheinertiaofthehydrauliccylindercausedbytherapidmovement.
Theoutershellbodyoftheclampingmechanismadoptsthesplitstructureoftheleftclampbodyandtherightclampbody.
Thesplittypestructuredesignisconvenienttodisassembleandreducetheauxiliarytimetomaintenanceoftheequipment,andimproveworkefficiency.
Fig.
1BackclampdeviceFig.
2BackclampfloatingmechanismThewholestructureoftheexistingbackclampingmechanismiscompactandcomplete,andtheoperationisflexible,Safeandreliable,Buttheactualoperationoftheprocessalsofoundthatthenumberofdiscardedclamptoothanddrillpipeisrelativelylarge,Themainreasonforthefailureisthewearorfractureofthejaw,Thejawisapartofthebackclampdevice,whichisdirectlyunderthepressureandthefrictionforce.
Thequalityofthejawisdirectlyrelatedtotheworkingefficiencyandtheservicelifeofthedrillingtools.
Fig.
3FigureofdrillpipefailureFig.
4WearmapofjawDynamicSimulationAnalysisoftheBackClampingMechanismSetsTheModelSimulationParameters.
Settingthecontactforceparametersbetweenthejawandthedrillpipejoint:1.
Normalcontactforce:(1)Where:Generalizednormalcontactforce,N;stiffness):Collidingstiffnessonthesideofthecomponent;penetrationdepthPenetrationstiffnessinthecontactpoint,mm;(forceexponent):Forceindex,whichisalsothecontributionfactorofthestiffnessterm.
Force-Displacementcurveshapecanbedetermined.
:Maximumallowablepenetrationdepth,mm;damping)Maximumlossfactor,;2.
Tangentialforce-frictionThecontacttangentialforceistheproductofthefrictioncoefficientandthenormalforce,TheKunlunfrictionmodelisusedtodealwiththecontacttangentialforceinADAMS,Thefrictioncoefficientofcontactforceisinaccordancewiththerelativeslidingvelocitybetweenthecontactobjects.
Choiceofdynamicfrictioncoefficientorstaticfrictioncoefficient,Accordingtotheactualworkingconditionofthedrillpipejointandthejaw,Setting=0.
35,=0.
30.
SimulationDataOutputandAnalysis.
Inordertobeabletosimulationthehydrauliccylinderthrustintofoursymmetricaldistributionofthejaw,andeffectiveclampingofthedrillpipe,Setthesimulationtimeto110seconds,Setthenumberofsimulationstepsforthe11000step,SetthemaximumnumberofiterationsintheADAMS/solverto6,Theintegralpolynomialorderissetto2,Thiscaneffectivelyimprovethespeedandaccuracyofthecontactimpactforce.
ForceAnalysisoftheJaws.
ThecontactpressureinformationofthefourteethontheleftjawisshowninFig.
5andFig.
6;Fig.
5ContactpressureofthejawsFig.
6ContactpressureFromFig.
5wecanseethatthereisasequenceofcontactbetweenthefourteethontheleftjawandthesurfaceofdrillpipe,whatisinaccordancewiththeactual,Thecontactforceofeachtoothreachedtheirpeakvalueintheintervalof40secondsto50seconds,FNL11=125.
31KN,FNL12=228.
48KN,FNL13=264.
56KN.
Accordingtothecontactpressurestatediagram,Contactpressureoftheteethatthecenterofthehorizontallineisthelargest,whichclosestfromthehorizontallineistheleast.
Thishelpsincreasetherangeoftheclampingandbasicallymeetthedesignrequirements.
EatIntoTheDepthAnalysisOfTheJaws.
EatintothedepthofthedrillpipejointthatbitebyjawsintheprocessofMake-upisshownintheFig.
7,Combinedwiththesimulationcurvetoanalyzeeatintothedepth,Wecanseethebitedepthofeachteethgraduallyincreasedfromzerotomaximumvalues.
Andthenenterthestageofequilibriumandstability.
Hydraulicthrusttomaximumvaluein40secondsto50seconds,Bitedepthofthejawisgraduallyincreasedtothemaximum,Fig.
8.
Schematicdiagramofthejawsbitedepth,FollowingresultscanbeobtainedwiththecombinationofFig.
7andFig.
8,δL11=-0.
2541mm,δL12=-0.
3792mm,δL13=-0.
4182mm,δL14=-0.
1395mm.
Bitedepthvariationofthejawcanbeusedasfoundationofdrillpipejointsplasticdeformation.
Provideareferenceforjawsectionsizeoptimization.
Fig.
7EatintothedepthFig.
8SchematicdiagramofeatintothedepthKeyParametersOptimizationDesignoftheJawThroughtheanalysisofthejaws,weobtainedtherelationshipbetweenthekeyparametersandtheinfluenceonworkingconditionofthedevicewhenparametersvariation,abackclampdevicewithgoodperformanceshouldensurethatthedrillpipeandthejawmusthaveenoughfrictionco-efficient.
Toensurethattherewillbenoslipphenomenon,then,asfaraspossibletoensurethatthedamagetotheouterwallofthedrillpipeissmall,theorthogonalmethodisusedtooptimizethemainparametersofthejaw.
DesignVariable.
Inthispaper,thetoothheight,pitchandthreadangleofthethreecrosssectionparametersareoptimized.
ConstraintCondition.
Accordingtotheactualworkingbackgroundanddesignexperience,thelimitingconditions:threadangle80°~120°,spaceofthetooth2mm~8mm,toothheight~.
OptimizationIndexes.
Thepurposeofthisoptimizationistoselecttheoptimalvalueofeachparameterbycontrollingthedepthofbiteandtheequivalentfrictioncoefficient,Therearetwoaspectsoftheoptimizationindexes,Thebitedepth:,equivalentfrictioncoefficientThecombinationcanbeclassifiedtomulti-objectiveprogrammingproblem,Twoobjectivefunctionsareasfollows:(2)Withinacertainrange,thesmallervalueofthebitedepthfunction(2)is,thebettertheresultsare.
(3)Withinacertainrange,thebiggervalueoftheequivalentfrictioncoefficientfunction(3)is,thebettertheresultsare.
TheOptimizationDesign.
Optimizationofthemainparametersbyorthogonalmethod,comprehensiveconsiderationoftheoreticalanalysis,manufacturingrequirementsanddesignexperience,thedesignvariablesofthreadanglewereselectedas85,95,105,110,120,thetoothheightwereselectedas1.
5,2,2.
5,3,4,andvalueofthepitchwereselectedas3,4,5,6,8,selectstandardorthogonaltableL25(56),tablelinenumberofthetableis25,25testscanbecarriedout,tablecolumnnumberis6,upto6factorscanbeplaced,Thisstudydoesnotconsiderinteraction,Atotalofthreefactorsandfivelevelareinvolved,fromthestandardorthogonaltableL25(56),wecanseeoccupythreecolumnsandidlethreecolumns,ForintuitiveconveniencecanberecordedasL25(53),thelevelfactortableisshownbelow.
Tab.
1FactorlevelLevelFactorsAthreadangle((°)BToothheighth(mm)CPitchP(mm)1851.
532952431052.
55411036512048Aftercalculatingtheobjectivefunction,thestatisticaldataisneeded,inthispaper,wechoosetherangeanalysismethodtoprocessthedata,theresultanalysistableisshowinTab.
2,amongthem,KsisthesumofthefunctionresultsthatthelevelnumberineachcolumnoftheTab.
2forthes.
Inthispaper,s=1,2,3,4,5;ksisthearithmeticmeanvalueofthefunctionresultsthatthelevelnumberineachcolumnoftheTab.
2forthes.
ks=Ks/n,nisthenumberoflevels,n=5Ristherange,ineachcolumn,R=maxks-minks.
Tab.
2ResultanalysisEatintothedepthAthreadangleBtoothheighthCpitchPK13.
64152.
054.
8408K21.
5892.
66764.
9959K34.
13233.
58912.
9184K44.
72274.
96333.
2971K53.
96624.
78171.
9995k10.
72830.
410.
96816k20.
31780.
533520.
99918k30.
826460.
717820.
58368k40.
944540.
992660.
65942k50.
793240.
956340.
3999R0.
626740.
582660.
59928orderACBAthreadangleBtoothheighthCpitchPK14.
08043.
08725.
5713K24.
96263.
53454.
347K32.
50714.
46063.
7545K44.
87234.
32084.
1134K54.
41265.
59093.
1482k10.
816080.
617441.
11426k20.
992520.
70690.
8694k30.
501420.
892120.
7509k40.
974460.
864160.
82268k50.
882521.
118180.
62964R0.
44910.
500740.
48462orderBCAOptimizationResults.
Howtoco-ordinatevariousfactorswithlevelisthebest,thisoptimizationhastwoobjectivefunctions.
Forthebitedepth,thethreadangleisthemaininfluencingfactors,level110isthemostpreferred,Theoptimalcombinationparameter;andfortheequivalentfrictioncoefficient,themaininfluencingfactorsarethetoothheight,level2isthemostpreferred,Theoptimalcombinationparameter:,Accordingtotherequirementsoftheactualworkandtheoreticalanalysis,thedesignparametersofthefinaljawthat,sthebestoption.
FiniteElementAnalysisoftheJawToagreatextent,Strainandstressmagnitudeofthebackclampdevicethatunderstaticload,whatisaffectsthesafetyandreliabilityoftopdrivesystem,Therefore,itisnecessarytocheckthestrengthofthebackclamp,Themaximumstressandthetotaldeformationwereobserved,checkwhetherthedeviceisreliable.
AddModelMaterialProperties.
Thebacktongsmaterialselectionfor20CrMnTi,MaterialpropertiesareshowninTab.
3:Tab.
3Materialpropertiesof20CrMnTiAllowablestressMPaElasticmodulusEGPaDensityKg/m3Poisson'sratioYieldlimitMPa3102077.
81030.
25835DivideandRefinetheGrid.
Athreedimensionalmodelofthejawwasbuiltbythe3DsoftwareofInventor,exportthismodelintoANSYSworkbench,Addthematerialpropertiesofjawas20CrMnTi,andthemeshdivisionofjawisshowninFig.
9.
Fig.
9meshingofclampteethAddedloadanddidtheFEM.
Combinedwiththespecificsituationofthemodel,reasonableboundaryconditionsareaddedtoit,firstofall,toaddafixedconstrainttothebottomsurfaceoftheclamp,addtheloadtothefourteethofjaw,then,addtheappropriatesizeofcontactpressureandshearstressineachtooth,theloadsizeisprovidedbythesimulationresults.
Staticanalysisofthejaw,thecorrespondingstressdistributionanddeformationresultsareobtained,thetotaldeformationisshowninFig.
10,andtheequivalentstressisshowninFig.
11.
Fig.
10ContouroftotaldeformationFig.
11StresscontourofclampteethFromFig.
10andFig.
11wecanseethefollowingconclusions:Tab.
4FiniteelementanalysisresultscategoryminimumvalueMaximumvaluedisplacement00.
00845mmstress0.
31MPa411MPaThemaximumstressofjawis411Mpa,andtheyieldstressofjawis835Mpa,themaximumdisplacementofjawwas0.
00845mm,andthedeformationisrelativelysmall,sowecanconcludethatthestressanddeformationofjawaremeettherequirementsoftheuse.
ConclusionsThetheoreticalanalysisandoptimizationdesignofthebackclampdevicearecarriedout,weselectedthesectionparametersofthejaw,threadangle,thetoothheight,pitch,thisschemeensuresthattheequipmentworkprocessreliable,reducesthewearofjawsandthedamagetothedrill,prolongtheservicelifeoftheequipmentaswell.
Staticsanalysisofthejaws,themaximumstressanddeformationshowsthatjawsstrengthmeetstheapplicationrequirements;clampingprocessofthedeviceisstableandreliable.
AcknowledgementThisworkispartiallysupportedbygrantSinoProbe-09-05oftheChineseNationalScienceFoundation,andmysinceregratitudegoestoit.
References[1]ZhangFeiyu.
DynamicsimulationanalysisofMPR-70Atypefullhydraulicautomaticdrainagepipe[D].
JilinUniversity,2013.
[2]KvernelandH.
2009.
ElectricalCranesandWinchesforImprovedSafetyandBetterOperationalPerformanceforuseinExtremeWeatherConditions[C].
SocietyofPetroleumEngineers,1(5):137-149.
[3]SunMingxing.
Finiteelementanalysisandevaluationofbearingcapacityofdrillingderrick[D].
LanzhouUniversityofTechnology,2010.
[4]LatorreR.
Shiphulldragreductionusingbottomairinjection[J].
OceanEngineering,1997,24(2):161-175.
[5]KeWang,HuaiChen,WeiWangetal.
1997.
ModalAnalysisofOilfieldDerrickStructure[C].
Proceedingsofthe199715thInternationalModalAnalysisConference,1871-1877.
[6]XiaoWensheng.
2004.
DynamicanalysisoftopdrivedrillingdeviceandResearchonVirtualPrototypingTechnology[D].
HuazhongUniversityofScienceandTechnology.
[7]YuanQinghong.
2004.
TDSResearchandpracticeofvirtualprototypesystemofdrillingrig[D].
HuazhongUniversityofScienceandTechnology.
[8]ShuanluLu,YaorongFeng,FaqianLuo,ChangyiQin,XinhuWang.
FailureanslysisofIEUDrillPipeWashout.
InternationalJournalofFatigue[J].
2005,(27):1360-1365.
[8]DickinsonIIIBWO,DickinsonRW,NordlundR.
Multiplelateralhydraulicdrillingapparatusandmethod:U.
S.
Patent6,206,112[P].
2001-3-27.
[9]KeWang,HuaiChen,WeiWangetal.
1997.
ModalAnalysisofOilfieldDerrickStructure[C].
Proceedingsofthe199715thInternationalModalAnalysisConference,1871-1877.
[10]DickinsonIIIBWO,DickinsonRW,NordlundR.
Multiplelateralhydraulicdrillingapparatusandmethod:U.
S.
Patent6,206,112[P].
2001-3-27.
[11]JanPinka,JozefLumtzer,JamilBadran.
1996.
TDS-TopDriveSystem,newdrillingtechnology.
ActaMontanisticaSlovaca,(4):89-295.
[12]VittorioGusella,OstilioSpadaccini,AndreaVignoli.
1996.
In-ServiceDynamicBehaviorofaDrillingDerrickonaJacketPlatform.
InternationalJournalofOffshoreandPolarEngineering,6(7):184-194.
Chia矿机,Spinservers怎么样?Spinservers好不好,Spinservers大硬盘服务器。Spinservers刚刚在美国圣何塞机房补货120台独立服务器,CPU都是双E5系列,64-512GB DDR4内存,超大SSD或NVMe存储,数量有限,机器都是预部署好的,下单即可上架,无需人工干预,有需要的朋友抓紧下单哦。Spinservers是Majestic Hosting So...
ReadyDedis是一家2018年成立的国外VPS商家,由印度人开设,主要提供VPS和独立服务器租用等,可选数据中心包括美国洛杉矶、西雅图、亚特兰大、纽约、拉斯维加斯、杰克逊维尔、印度和德国等。目前,商家针对全部VPS主机提供新年5折优惠码,优惠后最低套餐1GB内存每月仅需2美元起,所有VPS均为1Gbps端口不限流量方式。下面列出几款主机配置信息。CPU:1core内存:1GB硬盘:25GB ...
LetBox此次促销依然是AMD Ryzen处理器+NVME硬盘+HDD大硬盘,以前是5TB月流量,现在免费升级到10TB月流量。另外还有返余额的活动,如果月付,月付多少返多少;如果季付或者半年付,返25%;如果年付,返10%。依然全部KVM虚拟化,可自定义ISO系统。需要大硬盘vps、大流量vps、便宜AMD VPS的朋友不要错过了。不过LetBox对帐号审核严格,最好注册邮箱和paypal帐号...
xyq.cbg.163.com为你推荐
太空国家目前共有几个国家登上太空?敬汉卿姓名被抢注身份证信息被抢注12306账号怎么办咏春大师被ko练咏春拳的杨师傅对阵散打冠军,注:是高龄级别被冠军级别打败了,那如果是咏春冠军叶问呢?更别说是李小22zizi.com河南福利彩票22选52010175开奖结果www.kaspersky.com.cn卡巴斯基杀毒软件有免费的吗?稳定版的怎么找?www.175qq.com求带名字的情侣网名!朴容熙这个人男的女的,哪国人。叫什么。国风商讯《国风周南》国风商讯说下,郑州国风艺考画室有人了解吗?恋战千年孔子文化祸害千年,怎么接下一句
荷兰vps 免费域名申请 秒解服务器 cdn服务器 cpanel 好看的桌面背景图片 服务器怎么绑定域名 新站长网 500m空间 柚子舍官网 怎么测试下载速度 赞助 phpmyadmin配置 中国电信测速网 河南移动m值兑换 天翼云盘 怎么建立邮箱 测速电信 睿云 hdroad 更多