setxyq.cbg.163.com

xyq.cbg.163.com  时间:2021-03-20  阅读:()
SimulationAnalysisandOptimalDesignofBackClampDevicePingYU,Si-JieKANGa*,Yan-JiaoLI,En-ChaoJINMechanicalScienceandEngineeringInstituteofJilinUniversity,Changchun,ChinaaKangsijie@163.
com*CorrespondingauthorKeywords:backclampdevice,dynamicanalysis,orthogonaloptimizingdesign.
Abstract.
Backclampdeviceisthekeyequipmentofthetopdrive,whichisrequiredoperationreliableandcompactstructure.
Thispaperintroducestheworkingprocessandworkingprincipleofthebackclamp,Accordingtotheoperationschemeandperformanceparametersofthebackclamp,Dynamicssimulationanalysiswascarriedout.
Obtainthecontactforcebetweenthejawanddrillpipe,aswellasforceandotherperformanceparametersofclampteeth.
Thebasicideaoforthogonaloptimizationmethodistooptimizetheparametersoftoothprofile,toothheightandtoothpitchofthejaw,andtheparameteroptimizationcombinationisgained.
Finally,UsingtheANSYSWorkbenchforthefiniteelementstaticsanalysisofthebackclamp,theresultsshowthatthedesignandfunctionalrequirementsoftheapplicationaremet.
DesignandExistingProblemsofBackClampDeviceDuetotheoverallfloatingofthebackclampingdeviceintheprocessofclampingandloosening,thewholefloatishighlyrequired.
Thereforeneedtoensurethatthefloatingprecisionofthebackclampfloatingmechanism,SchematicdiagramofthebackclampisshownintheFig.
1~Fig.
2,Theconfigurationofthespringhasaveryimportantroleinthebackclampingdevice,Oneistobeabletolimittheposition,andtheotheristoeasetheinertiaofthehydrauliccylindercausedbytherapidmovement.
Theoutershellbodyoftheclampingmechanismadoptsthesplitstructureoftheleftclampbodyandtherightclampbody.
Thesplittypestructuredesignisconvenienttodisassembleandreducetheauxiliarytimetomaintenanceoftheequipment,andimproveworkefficiency.
Fig.
1BackclampdeviceFig.
2BackclampfloatingmechanismThewholestructureoftheexistingbackclampingmechanismiscompactandcomplete,andtheoperationisflexible,Safeandreliable,Buttheactualoperationoftheprocessalsofoundthatthenumberofdiscardedclamptoothanddrillpipeisrelativelylarge,Themainreasonforthefailureisthewearorfractureofthejaw,Thejawisapartofthebackclampdevice,whichisdirectlyunderthepressureandthefrictionforce.
Thequalityofthejawisdirectlyrelatedtotheworkingefficiencyandtheservicelifeofthedrillingtools.
Fig.
3FigureofdrillpipefailureFig.
4WearmapofjawDynamicSimulationAnalysisoftheBackClampingMechanismSetsTheModelSimulationParameters.
Settingthecontactforceparametersbetweenthejawandthedrillpipejoint:1.
Normalcontactforce:(1)Where:Generalizednormalcontactforce,N;stiffness):Collidingstiffnessonthesideofthecomponent;penetrationdepthPenetrationstiffnessinthecontactpoint,mm;(forceexponent):Forceindex,whichisalsothecontributionfactorofthestiffnessterm.
Force-Displacementcurveshapecanbedetermined.
:Maximumallowablepenetrationdepth,mm;damping)Maximumlossfactor,;2.
Tangentialforce-frictionThecontacttangentialforceistheproductofthefrictioncoefficientandthenormalforce,TheKunlunfrictionmodelisusedtodealwiththecontacttangentialforceinADAMS,Thefrictioncoefficientofcontactforceisinaccordancewiththerelativeslidingvelocitybetweenthecontactobjects.
Choiceofdynamicfrictioncoefficientorstaticfrictioncoefficient,Accordingtotheactualworkingconditionofthedrillpipejointandthejaw,Setting=0.
35,=0.
30.
SimulationDataOutputandAnalysis.
Inordertobeabletosimulationthehydrauliccylinderthrustintofoursymmetricaldistributionofthejaw,andeffectiveclampingofthedrillpipe,Setthesimulationtimeto110seconds,Setthenumberofsimulationstepsforthe11000step,SetthemaximumnumberofiterationsintheADAMS/solverto6,Theintegralpolynomialorderissetto2,Thiscaneffectivelyimprovethespeedandaccuracyofthecontactimpactforce.
ForceAnalysisoftheJaws.
ThecontactpressureinformationofthefourteethontheleftjawisshowninFig.
5andFig.
6;Fig.
5ContactpressureofthejawsFig.
6ContactpressureFromFig.
5wecanseethatthereisasequenceofcontactbetweenthefourteethontheleftjawandthesurfaceofdrillpipe,whatisinaccordancewiththeactual,Thecontactforceofeachtoothreachedtheirpeakvalueintheintervalof40secondsto50seconds,FNL11=125.
31KN,FNL12=228.
48KN,FNL13=264.
56KN.
Accordingtothecontactpressurestatediagram,Contactpressureoftheteethatthecenterofthehorizontallineisthelargest,whichclosestfromthehorizontallineistheleast.
Thishelpsincreasetherangeoftheclampingandbasicallymeetthedesignrequirements.
EatIntoTheDepthAnalysisOfTheJaws.
EatintothedepthofthedrillpipejointthatbitebyjawsintheprocessofMake-upisshownintheFig.
7,Combinedwiththesimulationcurvetoanalyzeeatintothedepth,Wecanseethebitedepthofeachteethgraduallyincreasedfromzerotomaximumvalues.
Andthenenterthestageofequilibriumandstability.
Hydraulicthrusttomaximumvaluein40secondsto50seconds,Bitedepthofthejawisgraduallyincreasedtothemaximum,Fig.
8.
Schematicdiagramofthejawsbitedepth,FollowingresultscanbeobtainedwiththecombinationofFig.
7andFig.
8,δL11=-0.
2541mm,δL12=-0.
3792mm,δL13=-0.
4182mm,δL14=-0.
1395mm.
Bitedepthvariationofthejawcanbeusedasfoundationofdrillpipejointsplasticdeformation.
Provideareferenceforjawsectionsizeoptimization.
Fig.
7EatintothedepthFig.
8SchematicdiagramofeatintothedepthKeyParametersOptimizationDesignoftheJawThroughtheanalysisofthejaws,weobtainedtherelationshipbetweenthekeyparametersandtheinfluenceonworkingconditionofthedevicewhenparametersvariation,abackclampdevicewithgoodperformanceshouldensurethatthedrillpipeandthejawmusthaveenoughfrictionco-efficient.
Toensurethattherewillbenoslipphenomenon,then,asfaraspossibletoensurethatthedamagetotheouterwallofthedrillpipeissmall,theorthogonalmethodisusedtooptimizethemainparametersofthejaw.
DesignVariable.
Inthispaper,thetoothheight,pitchandthreadangleofthethreecrosssectionparametersareoptimized.
ConstraintCondition.
Accordingtotheactualworkingbackgroundanddesignexperience,thelimitingconditions:threadangle80°~120°,spaceofthetooth2mm~8mm,toothheight~.
OptimizationIndexes.
Thepurposeofthisoptimizationistoselecttheoptimalvalueofeachparameterbycontrollingthedepthofbiteandtheequivalentfrictioncoefficient,Therearetwoaspectsoftheoptimizationindexes,Thebitedepth:,equivalentfrictioncoefficientThecombinationcanbeclassifiedtomulti-objectiveprogrammingproblem,Twoobjectivefunctionsareasfollows:(2)Withinacertainrange,thesmallervalueofthebitedepthfunction(2)is,thebettertheresultsare.
(3)Withinacertainrange,thebiggervalueoftheequivalentfrictioncoefficientfunction(3)is,thebettertheresultsare.
TheOptimizationDesign.
Optimizationofthemainparametersbyorthogonalmethod,comprehensiveconsiderationoftheoreticalanalysis,manufacturingrequirementsanddesignexperience,thedesignvariablesofthreadanglewereselectedas85,95,105,110,120,thetoothheightwereselectedas1.
5,2,2.
5,3,4,andvalueofthepitchwereselectedas3,4,5,6,8,selectstandardorthogonaltableL25(56),tablelinenumberofthetableis25,25testscanbecarriedout,tablecolumnnumberis6,upto6factorscanbeplaced,Thisstudydoesnotconsiderinteraction,Atotalofthreefactorsandfivelevelareinvolved,fromthestandardorthogonaltableL25(56),wecanseeoccupythreecolumnsandidlethreecolumns,ForintuitiveconveniencecanberecordedasL25(53),thelevelfactortableisshownbelow.
Tab.
1FactorlevelLevelFactorsAthreadangle((°)BToothheighth(mm)CPitchP(mm)1851.
532952431052.
55411036512048Aftercalculatingtheobjectivefunction,thestatisticaldataisneeded,inthispaper,wechoosetherangeanalysismethodtoprocessthedata,theresultanalysistableisshowinTab.
2,amongthem,KsisthesumofthefunctionresultsthatthelevelnumberineachcolumnoftheTab.
2forthes.
Inthispaper,s=1,2,3,4,5;ksisthearithmeticmeanvalueofthefunctionresultsthatthelevelnumberineachcolumnoftheTab.
2forthes.
ks=Ks/n,nisthenumberoflevels,n=5Ristherange,ineachcolumn,R=maxks-minks.
Tab.
2ResultanalysisEatintothedepthAthreadangleBtoothheighthCpitchPK13.
64152.
054.
8408K21.
5892.
66764.
9959K34.
13233.
58912.
9184K44.
72274.
96333.
2971K53.
96624.
78171.
9995k10.
72830.
410.
96816k20.
31780.
533520.
99918k30.
826460.
717820.
58368k40.
944540.
992660.
65942k50.
793240.
956340.
3999R0.
626740.
582660.
59928orderACBAthreadangleBtoothheighthCpitchPK14.
08043.
08725.
5713K24.
96263.
53454.
347K32.
50714.
46063.
7545K44.
87234.
32084.
1134K54.
41265.
59093.
1482k10.
816080.
617441.
11426k20.
992520.
70690.
8694k30.
501420.
892120.
7509k40.
974460.
864160.
82268k50.
882521.
118180.
62964R0.
44910.
500740.
48462orderBCAOptimizationResults.
Howtoco-ordinatevariousfactorswithlevelisthebest,thisoptimizationhastwoobjectivefunctions.
Forthebitedepth,thethreadangleisthemaininfluencingfactors,level110isthemostpreferred,Theoptimalcombinationparameter;andfortheequivalentfrictioncoefficient,themaininfluencingfactorsarethetoothheight,level2isthemostpreferred,Theoptimalcombinationparameter:,Accordingtotherequirementsoftheactualworkandtheoreticalanalysis,thedesignparametersofthefinaljawthat,sthebestoption.
FiniteElementAnalysisoftheJawToagreatextent,Strainandstressmagnitudeofthebackclampdevicethatunderstaticload,whatisaffectsthesafetyandreliabilityoftopdrivesystem,Therefore,itisnecessarytocheckthestrengthofthebackclamp,Themaximumstressandthetotaldeformationwereobserved,checkwhetherthedeviceisreliable.
AddModelMaterialProperties.
Thebacktongsmaterialselectionfor20CrMnTi,MaterialpropertiesareshowninTab.
3:Tab.
3Materialpropertiesof20CrMnTiAllowablestressMPaElasticmodulusEGPaDensityKg/m3Poisson'sratioYieldlimitMPa3102077.
81030.
25835DivideandRefinetheGrid.
Athreedimensionalmodelofthejawwasbuiltbythe3DsoftwareofInventor,exportthismodelintoANSYSworkbench,Addthematerialpropertiesofjawas20CrMnTi,andthemeshdivisionofjawisshowninFig.
9.
Fig.
9meshingofclampteethAddedloadanddidtheFEM.
Combinedwiththespecificsituationofthemodel,reasonableboundaryconditionsareaddedtoit,firstofall,toaddafixedconstrainttothebottomsurfaceoftheclamp,addtheloadtothefourteethofjaw,then,addtheappropriatesizeofcontactpressureandshearstressineachtooth,theloadsizeisprovidedbythesimulationresults.
Staticanalysisofthejaw,thecorrespondingstressdistributionanddeformationresultsareobtained,thetotaldeformationisshowninFig.
10,andtheequivalentstressisshowninFig.
11.
Fig.
10ContouroftotaldeformationFig.
11StresscontourofclampteethFromFig.
10andFig.
11wecanseethefollowingconclusions:Tab.
4FiniteelementanalysisresultscategoryminimumvalueMaximumvaluedisplacement00.
00845mmstress0.
31MPa411MPaThemaximumstressofjawis411Mpa,andtheyieldstressofjawis835Mpa,themaximumdisplacementofjawwas0.
00845mm,andthedeformationisrelativelysmall,sowecanconcludethatthestressanddeformationofjawaremeettherequirementsoftheuse.
ConclusionsThetheoreticalanalysisandoptimizationdesignofthebackclampdevicearecarriedout,weselectedthesectionparametersofthejaw,threadangle,thetoothheight,pitch,thisschemeensuresthattheequipmentworkprocessreliable,reducesthewearofjawsandthedamagetothedrill,prolongtheservicelifeoftheequipmentaswell.
Staticsanalysisofthejaws,themaximumstressanddeformationshowsthatjawsstrengthmeetstheapplicationrequirements;clampingprocessofthedeviceisstableandreliable.
AcknowledgementThisworkispartiallysupportedbygrantSinoProbe-09-05oftheChineseNationalScienceFoundation,andmysinceregratitudegoestoit.
References[1]ZhangFeiyu.
DynamicsimulationanalysisofMPR-70Atypefullhydraulicautomaticdrainagepipe[D].
JilinUniversity,2013.
[2]KvernelandH.
2009.
ElectricalCranesandWinchesforImprovedSafetyandBetterOperationalPerformanceforuseinExtremeWeatherConditions[C].
SocietyofPetroleumEngineers,1(5):137-149.
[3]SunMingxing.
Finiteelementanalysisandevaluationofbearingcapacityofdrillingderrick[D].
LanzhouUniversityofTechnology,2010.
[4]LatorreR.
Shiphulldragreductionusingbottomairinjection[J].
OceanEngineering,1997,24(2):161-175.
[5]KeWang,HuaiChen,WeiWangetal.
1997.
ModalAnalysisofOilfieldDerrickStructure[C].
Proceedingsofthe199715thInternationalModalAnalysisConference,1871-1877.
[6]XiaoWensheng.
2004.
DynamicanalysisoftopdrivedrillingdeviceandResearchonVirtualPrototypingTechnology[D].
HuazhongUniversityofScienceandTechnology.
[7]YuanQinghong.
2004.
TDSResearchandpracticeofvirtualprototypesystemofdrillingrig[D].
HuazhongUniversityofScienceandTechnology.
[8]ShuanluLu,YaorongFeng,FaqianLuo,ChangyiQin,XinhuWang.
FailureanslysisofIEUDrillPipeWashout.
InternationalJournalofFatigue[J].
2005,(27):1360-1365.
[8]DickinsonIIIBWO,DickinsonRW,NordlundR.
Multiplelateralhydraulicdrillingapparatusandmethod:U.
S.
Patent6,206,112[P].
2001-3-27.
[9]KeWang,HuaiChen,WeiWangetal.
1997.
ModalAnalysisofOilfieldDerrickStructure[C].
Proceedingsofthe199715thInternationalModalAnalysisConference,1871-1877.
[10]DickinsonIIIBWO,DickinsonRW,NordlundR.
Multiplelateralhydraulicdrillingapparatusandmethod:U.
S.
Patent6,206,112[P].
2001-3-27.
[11]JanPinka,JozefLumtzer,JamilBadran.
1996.
TDS-TopDriveSystem,newdrillingtechnology.
ActaMontanisticaSlovaca,(4):89-295.
[12]VittorioGusella,OstilioSpadaccini,AndreaVignoli.
1996.
In-ServiceDynamicBehaviorofaDrillingDerrickonaJacketPlatform.
InternationalJournalofOffshoreandPolarEngineering,6(7):184-194.

JustHost:俄罗斯/新西伯利亚vps,512MB内存/5GB空间/不限流量/200Mbps/KVM/自由更换IP,$1.57/月

justhost怎么样?justhost是一家俄罗斯主机商,2006年成立,提供各种主机服务,vps基于kvm,有HDD和SSD硬盘两种,特色是200Mbps不限流量(之前是100Mbps,现在升级为200Mbps)。下面是HDD硬盘的KVM VPS,性价比最高,此外还有SSD硬盘的KVM VPS,价格略高。支持Paypal付款。国内建议选择新西伯利亚或者莫斯科DataLine。支持Paypal付...

弘速云香港VPSVPS线路有CN2+BGP、CN2 GIA,KVM虚拟化架构,裸金属月付564元

弘速云怎么样?弘速云是创建于2021年的品牌,运营该品牌的公司HOSU LIMITED(中文名称弘速科技有限公司)公司成立于2021年国内公司注册于2019年。HOSU LIMITED主要从事出售香港vps、美国VPS、香港独立服务器、香港站群服务器等,目前在售VPS线路有CN2+BGP、CN2 GIA,该公司旗下产品均采用KVM虚拟化架构。可联系商家代安装iso系统。点击进入:弘速云官方网站地址...

SpinServers(月89美元) 2*e5-2630L v2,美国独立服务器

SpinServers服务商也不算是老牌的服务商,商家看介绍是是2018年成立的主机品牌,隶属于Majestic Hosting Solutions LLC旗下。商家主要经营独立服务器租用和Hybrid Dedicated服务器等,目前包含的数据中心在美国达拉斯、圣何塞机房,自有硬件和IP资源等,商家还自定义支持用户IP广播到机房。看到SpinServers推出了美国独服的夏季优惠促销活动,最低月...

xyq.cbg.163.com为你推荐
h连锁酒店世界知名的连锁酒店有哪些?安徽汽车网安徽省各地车牌号简称是按照什么顺序排的老虎数码相机里的传感器CCD和CMO是什么意思?www.20ren.com求此欧美艳星名字http://www.sqsmm.com/index.php?album-read-id-1286.html比肩工场比肩之意是什么意思原代码求数字代码大全?百度关键词工具如何通过百度官方工具提升关键词排名网站检测请问,对网站进行监控检测的工具有哪些?mole.61.com摩尔庄园的米米号和密码我都忘了 只记得注册的邮箱 怎么办-_-www.kanav001.com跪求下载[GJOS-024] 由愛可奈 [Kana Yume] 現役女子高生グラビア种子的网址谁有
域名管理 日本软银 cloudstack 香港新世界电讯 好玩的桌面 服务器cpu性能排行 seednet 服务器干什么用的 smtp虚拟服务器 百度云空间 创速 江苏双线 杭州电信 北京主机托管 网站防护 移动王卡 forwarder easypanel 美国达拉斯 域名商城 更多