reducing63aaa.com
63aaa.com 时间:2021-04-08 阅读:(
)
SCIENCECHINAInformationSciencesMarch2020,Vol.
63139111:1–139111:3https://doi.
org/10.
1007/s11432-018-9495-xcScienceChinaPressandSpringer-VerlagGmbHGermany,partofSpringerNature2020info.
scichina.
comlink.
springer.
com.
LETTER.
ImproveddistinguishersearchtechniquesbasedonparitysetsXiaofengXIE&TianTIAN*NationalDigitalSwitchingSystemEngineering&TechnologicalResearchCenter,P.
O.
Box407,Zhengzhou450001,ChinaReceived12February2018/Accepted15June2018/Publishedonline10February2020CitationXieXF,TianT.
Improveddistinguishersearchtechniquesbasedonparitysets.
SciChinaInfSci,2020,63(3):139111,https://doi.
org/10.
1007/s11432-018-9495-xDeareditor,DivisionpropertywasatechniqueproposedbyTodoatEUROCRYPT2015tosearchintegraldis-tinguishersagainstblockciphers[1].
Todo[2]ap-pliedthistechniquetoperformstructuralevalu-ationagainstboththeFeistelandtheSPNcon-structionsandattackedthefullMISTY1.
Sub-sequently,manyimprovedtechniquesbasedonthedivisionpropertywereproposed[3,4].
AtFSE2016,TodoandMorii[3]introducedthebit-baseddivisionpropertyandproveditseective-nesstonddistinguishersagainstnon-S-box-basedciphers.
Althoughmoreaccurateintegraldistinguisherswerefoundbyusingthebit-baseddivisionprop-erty,itcouldnotbeappliedtocipherswhoseblocklengthismorethan32becauseofitshightimeandmemorycomplexities.
BasedonTodo'swork,Xiangetal.
[5]convertedthedistinguishersearchalgorithmbasedonthebit-baseddivisionpropertyintoanMILPproblematASIACRYPT2016.
Withthismethod,theyobtainedaseriesofimprovedresultsincludinga9-roundPRESENTdistinguisherwithonebalancedbit.
Thisdistin-guisherisoneofthebest-knowndistinguishersre-latedtoroundnumbers.
AtCRYPTO2016,BouraandCauteaut[6]introducedtheparitysettostudythedivi-sionproperty.
TheyutilizedtheparitysettoexploitfurtherpropertiesofthePRESENTS-boxandthePRESENTlinearlayer,leadingtoseveralimproveddistinguishersagainstreduced-roundPRESENT.
BecausemorepropertiesoftheS-boxandthelinearlayerareutilized,paritysetscanndmoreaccurateintegralcharacteris-tics.
However,althoughtheauthorsdidnotpointout,aparitysetrequireshighertimeandmemorycomplexitiesthanthedivisionpropertydoes.
Ourworkaimsatreducingtimeandmemorycomplex-itieswhenusingparitysetstosearchintegraldis-tinguishers.
Asaresult,weintroducetheideaofmeet-in-the-middleintothedistinguishersearch.
Toillustrateourtechniques,weperformedexten-siveexperimentsonPRESENTandfounda9-rounddistinguisherwith22balancedbits.
Notation1(Bitproductfunction).
Letu,x∈Fn2.
Denotexu=ni=1x[i]u[i],andforu,x∈Fn12*Fn22Fnm2,wherex=(x1,x2,xm),u=(u1,u2,um),denebitproductfunctionasxu=mi=1xuii.
Notation2(Comparisonbetweenvectors).
Fora,b∈Zm,denoteabifaibiforall0bifabbuta=b.
Foru∈Fn2,letusdenotePrec(u)={v∈Fn2:vu},Succ(u)={v∈Fn2:uv}.
*Correspondingauthor(email:tiantiand@126.
com)XieXF,etal.
SciChinaInfSciMarch2020Vol.
63139111:2Theorem1.
Ifu,v∈Fnt2satisfyuv,thenW(u)W(v).
Notation3(Comparisonbetweensets).
LetAandBbetwosetswhoseelementsareinFn2.
De-noteABifthereexista∈Aandb∈Bwithab,andABifnoneofsuchcoupleexists.
Proposition1.
LetAandBbetwosetswhoseelementsareinFn2withAB.
Iftherearea1,a2∈A,b1,b2∈Bsuchthata2a1andb1b2,thenA\{a1}B\{b1}.
Notation4(Roundfunction).
LetFbeaper-mutationofFn2denedbyF:x=(x1,x2,xn)→y=(y1,y2,yn).
TheneveryyicanbeseenasaBooleanfunctiononx1,x2,xn,denotedbyyi=Fi(x).
Forapositiveintegerr,wedenoteFrasacompositionofrpermutationF.
Denition1(Divisionproperty[1]).
LetXbeamultisetwhoseelementsbelongtoFn2.
Then,XhasthedivisionpropertyDnkwhenitfulllsthefollowingconditions:Foru∈Fn2,theparityofxuoverallelementsinXisalwaysevenwhenwt(u)Forfurtherstudyofthedivisionprop-erty,pleasereferto[1,4]indetail.
Denition2(Parityset[6]).
LetXbeasetwhoseelementstakevaluesofFn2.
TheparitysetofXisdenotedbyU(X)anddenedasfollows:U(X)=u∈Fn2:x∈Xxu=1.
Remark1.
IftheparitysetU(X)ofXisknown,thenthedivisionpropertyofXisgivenbyDnk,wherek=minu∈U(X)wt(u).
ForthepropagationrulesoftheparitysetonSPN,pleasereferto[1].
ForaninputsetXandaroundfunctionE,de-notetheparitysetafterr1-roundencryptionasU(Er1(X)),andthealgebraicnormalform(ANF)ofthei-thoutputbitafterr2-roundencryptionasEr2i(x).
IfallthetermsappearinginEr2i(x)arenotdivisiblebyanytermin{xu:u∈U(Er(X))},thenthei-thoutputbitof(r1+r2)-roundencryp-tionisbalanced.
Basedonthisobservation,weimprovedthein-tegraldistinguishersearchbyutilizingthemeet-in-the-middletechniquewhichdividesthen-roundpropagationofparitysetsinton1-roundpropaga-tionofparitysetsand(nn1)-roundpropagationoftheANF.
Next,weproposeanewconcept,whichwecalltermset,todescribetheANFandshowtheprop-agationrulesofthetermsetonSPN.
Denition3(Termset).
Letf(x)beann-variableBooleanfunction.
Thetermsetoff(x)denotedbyT(f)isthesubsetofFn2denedbyT(f)={u∈Fn2:xuappearsintheANFoff(x)}.
Proposition2.
LetSbeanS-boxoverFm2.
De-noteTs(u)={v∈Fm2:xvappearsintheANFofSu(x)}.
Thenforanm-variableBooleanfunctionfwiththetermsetT(f),wehaveT(f(S(x)))u∈T(f)Ts(u).
Proposition3.
LetSbeapermutationofFmt2whichconsistsoftparallelindepen-dentS-boxesoverFm2,namely,S(x1,xt)=(S(x1)S(xt)).
Foranmt-variableBooleanfunctionfwiththetermsetT(f),wehaveT(f(S))(u1,···,ut)∈T(f)Ts1(u1)Tst(ut).
Proposition4.
Letfbeann-variableBooleanfunctionwiththetermsetT(f).
Foranyk∈Fn2,thetermsetoff(kx)=(x1k1,xnkn)satisesT(f(kx))u∈T(f)Prec(u).
Then,thetermsetafteroneroundencryptioncanbededucedbyPropositions2and4,i.
e.
,T(f(S(xk)))u∈T(f)v∈Ts(u)Prec(v),fork∈Fn2.
Theproofsofthesepropositionscouldbefoundthroughhttps://eprint.
iacr.
org/2018/447.
Wecanalsosearchdistinguishersbytermsetsonly.
Ifthereexistsau∈Fn2satisfyingSucc(u)T(Eri)=,thenar-rounddistinguisherwhoseinputsetisPrec(u)isfound.
However,thetimeandmemorycomplexitieswillbeveryhigh.
Thus,wetookadvantageofthemeet-in-the-middletechniquesothatthetermsetandtheparitysetcouldbecombinedtoreducetimeandmemorycomplexities.
Inordertondadistinguisher,weneedtocom-pareT(Er2i)withU(Er1(X))andverifywhetherT(Er2i)U(Er1(X)).
Ourdistinguishersearchalgorithmconsistsofvesteps,whichcanbede-scribedasfollows.
XieXF,etal.
SciChinaInfSciMarch2020Vol.
63139111:3Step1.
Choosethepropagationroundnum-bersr1andr2fortheparitysetandthetermsetrespectively,wherer1+r2=r.
Step2.
ChooseaninputsetX.
Step3.
CalculatetheparitysetU(Er1(X)).
Step4.
CalculatethetermsetsT(Er2i)for1in.
Step5.
CompareU(Er1(X))withT(Er2i)for1in.
IfU(Er1(X))T(Er2i),thenthei-thoutputbitinr-roundencryptionisbalanced.
Ifnoneofsuchintersectionsisempty,thenchooseanotherXandgotoStep2.
Wealsoproposesomenoveltechniquestomakeouralgorithmmoreecient.
Sizereduceoperation.
ForthetermsetT(Eri(x)),thesizereduceoperationRtremovesalltheelementsv∈T(Eri(x))suchthatthereisanelementv′∈T(Eri(x))withv′v.
Asforaparityset,theoperationRuremovesalltheelementsu∈U(Er1(X))suchthatthereisanelementu′∈U(Er1(X))withuu′.
ItcanbededucedfromProposition1thatthecom-parisonresultofT(Eri(x))andU(Er1(X))isthesameasthecomparisonresultofRt(T(Eri(x)))andRu(U(Er1(X))).
Observation1.
ThePRESENTsuperS-boxescanworkindependentlyinthe2-roundencryption.
Reducinglook-uptable.
BasedonObserva-tion1,wecaneasilyconstructa2-roundpropaga-tiontableforthesuperS-boxbycalculatingRuU(S(P(S(X))))forallpossibleinputs,whereSisapermutationofF4n2consistingoffourPRESENTS-boxesS(x1,x2,x3,x4)=(S(x1),S(x2),S(x3),S(x4)).
Multiplecomparison.
Thistechniqueat-temptstoremovethetermsthathavenomultipleinU;ifnotermisdivisiblebyavectorinU,thenitisclearthattheoutputbitisbalanced.
Wetriedtojudgesuchdivisibilityintermsofdegreeorderandalphabetorder.
Forthedetailsofthistech-nique,refertohttps://eprint.
iacr.
org/2018/447.
Toillustrateourtechniques,weapplyouralgo-rithmtothePRESENTdistinguishersearch.
Observation2.
ThecubictermsintheANFsofthesecondandfourthcoordinatesofthePRESENTS-box(sayS2andS4)arethesame[7].
Asaresult,thexorofthesetwocoordinatesS2S4=1x1x2x3x2x4x3x4hasonlydegree2.
Moreover,everyterminS2S4hasamultipleinS2andS4respectively.
Hence,S2S4maybebalancedevenifS2andS4areunbalanced.
Wetriedtond10-roundPRESENTdistin-guishersrst,buttheresultoftherightmostout-putbitisunbalancedforalltheinputsetswithdimension63.
ItseemsthattheANFofthisout-putbitisthesimplestamong64outputbits,andtherefore,ourresultsshowthatthePRESENTprobablyhasno10-roundintegraldistinguishersbyonlyusingthedivisionproperty.
Then,wefo-cusonthe9-roundPRESENT,andndadistin-guisherwith22balancedoutputbits.
Input:(aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaac),Output:b3b3bb2b2bb1b1bbbbbbbbbbbbbbbbb),where"c"meansaconstantbit,"a"meansanac-tivebit,""meansanunknownbit,and"b"meansabalancedbit.
Inaddition,thepresenceofbitswiththesamenotationbimeanstheiradditionisbalanced.
Conclusion.
Inthisstudy,weproposedacon-ceptcalledthetermsettopropagateinformationoftheANF.
Withtermsets,weimprovedthedis-tinguishersearchmethodbasedontheparitysetintermsofbothmemoryandtimecomplexities.
Fromtherelationbetweentheparitysetandthebit-baseddivisionproperty,itwasfoundthatthetermsetcouldalsobeappliedtoimprovethedis-tinguishersearchmethodbasedonthebit-baseddivisionproperty.
AcknowledgementsThisworkwassupportedbyNa-tionalNaturalScienceFoundationofChina(GrantNo.
61672533).
References1TodoY.
Structuralevaluationbygeneralizedintegralproperty.
LectNotesComputSci,2015,9056:287–3142TodoY.
IntegralcryptanalysisonfullMISTY1.
JCryptol,2017,30:920–9593TodoY,MoriiM.
Bit-baseddivisionpropertyandap-plicationtosimonfamily.
LectNotesComputSci,2016,9783:357–3774SunL,WangW,WangMQ.
Automaticsearchofbit-baseddivisionpropertyforARXciphersandword-baseddivisionproperty.
LectNotesComputSci,2017,10624:128–1575XiangZJ,ZhangWT,BaoZZ,etal.
ApplyingMILPmethodtosearchingintegraldistinguishersbasedondivisionpropertyfor6lightweightblockciphers.
LectNotesComputSci,2016,10031:648–6786BouraC,CanteautA.
Anotherviewofthedivisionproperty.
LectNotesComputSci,2016,9814:654–6827BogdanovA,KnudsenLR,LeanderG,etal.
PRESENT:anultra-lightweightblockcipher.
LectNotesComputSci,2007,4727:450–466
青果网络怎么样?青果网络隶属于泉州市青果网络科技有限公司,青果网络商家成立于2015年4月1日,拥有工信部颁发的全网IDC/ISP/IP-VPN资质,是国内为数不多具有IDC/ISP双资质的综合型云计算服务商。青果网络是APNIC和CNNIC地址分配联盟成员,泉州市互联网协会会员单位,信誉非常有保障。目前,青果网络商家正式开启了618云特惠活动,针对国内外机房都有相应的优惠。点击进入:青果网络官方...
今天看到一个网友从原来虚拟主机准备转移至服务器管理自己的业务。这里问到虚拟主机和服务器到底有什么不同,需要用到哪些工具软件。那准备在下班之间稍微摸鱼一下整理我们服务器安装环境和运维管理中常见需要用到的软件工具推荐。第一、系统镜像软件一般来说,我们云服务器或者独立服务器都是有自带镜像的。我们只需要选择镜像安装就可以,比如有 Windows和Linux。但是有些时候我们可能需要自定义镜像的高级玩法,这...
这个月11号ShockHosting发了个新上日本东京机房的邮件,并且表示其他机房可以申请转移到日本,刚好赵容手里有个美国的也没数据就发工单申请新开了一个,这里做个简单的测试,方便大家参考。ShockHosting成立于2013年,目前提供的VPS主机可以选择11个数据中心,包括美国洛杉矶、芝加哥、达拉斯、杰克逊维尔、新泽西、澳大利亚、新加坡、日本、荷兰和英国等。官方网站:https://shoc...
63aaa.com为你推荐
insomniac英文歌中有一句歌词是这样的:“here tonight”,谁知道这首歌曲叫什么名?2020双十一成绩单2020年河南全县初二期末成绩排名?西部妈妈网我爸妈在云南做非法集资了,钱肯定交了很多,我不恨她们。他们叫我明天去看,让我用心的看,,说是什么...www.kkk.com谁有免费的电影网站,越多越好?www.119mm.comwww.kb119.com 这个网站你们能打开不?杨丽晓博客杨丽晓是怎么 出道的www.henhenlu.com有一个两位数,十位数字是个位数字的二分之一,将十位数字与个位数字对调,新的两位数比原来大36,这个两位数www.zhiboba.com上什么网看哪个电视台直播NBAbaqizi.cc和空姐一起的日子电视剧在线观看 和空姐一起的日子全集在线观看hao.rising.cn瑞星强制篡改主页 HTTP://HAO.RISING.CN 各位有什么办法可以解决吗?
yaokan永久域名经常更换 踢楼 42u机柜尺寸 ixwebhosting 新天域互联 网站卫士 网游服务器 百度云加速 东莞主机托管 镇江高防 广州主机托管 hdchina 第八届中美互联网论坛 apachetomcat 中国域名根服务器 德国代理ip 以下 9929 vim命令 赵荣 更多