IAMjavmoo.info

javmoo.info  时间:2021-04-08  阅读:()
Peietal.
BiotechnolBiofuels(2017)10:76DOI10.
1186/s13068-017-0759-3RESEARCHTowardfacilitatingmicroalgaecopewitheffluentfromanaerobicdigestionofkitchenwaste:theartofagriculturalphytohormonesHaiyanPei1,2*,LiqunJiang1,QingjieHou1andZeYu1AbstractBackground:Althoughnumerousstudieshaveusedwastewaterassubstitutestocultivatemicroalgae,mostofthemobtainedweakeralgalviabilitythanstandardmedia.
Somestudiesdemonstratedapromotionofphytohor-monesonalgalgrowthinstandardmedia.
Forexploitingastrategytoimprovealgalbiomassaccumulationineffluentfromanaerobicdigestionofkitchenwaste(ADE-KW),theagriculturalphytohormonesgibberellin,indole-3-aceticacid,andbrassinolide(GIB)wereappliedtoChlorellaSDEC-11andScenedesmusSDEC-13atdifferentstagesofalgalgrowth.
Previousstudieshavedemonstratedapromotionofphytohormonesonalgalgrowthinstandardmedia,butattemptshavebeenscarce,focusingonwastewatercultivationsystem.
Inaddition,theeffectsofwastewateronalgalmorphologyandultrastructurehavenotbeenrevealedsofar,muchlessonthemechanismoftheroleofphytohor-monesonalgae.
Results:ADE-KWdisruptedthemembranesofnuclearandchloroplastinultrastructuralcellofSDEC-11,andreducedtheroombetweenchloroplastandcellmembraneandincreasedthestarchsizeofSDEC-13.
Thisreducedalgalgrowthandbiocompoundaccumulation,butSDEC-13hadgreateradaptationtoADE-KWthanSDEC-11.
Moreover,inoculationwithanalgalseedpretreatedwithGIBaidedtheadaptabilityandviabilityofalgaeinADE-KW,whichforSDEC-13wasevenpromotedtothelevelinBG11.
GIBmitigatedtheinhibitionofADE-KWonalgalcelldivisionandphotosyntheticpigmentsandapparatus,andincreasedlipiddroplets,whichmightresultfromthechangeinthesynthesisandthefateofnicotinamideadeninedinucleotidephosphate.
GIBadditionsignificantlypromotedlipidproductivityofthetwoalgalspecies,following13mgL1d1ofSDEC-11inB+ADE-KWandespecially13mgL1d1ofSDEC-13achievedduringtheprimingofalgalseedwiththehormones,whichis139%higherthan5mgL1d1achievedinADE-KWcontrol.
Conclusions:AgriculturalphytohormonescouldbeappliedasastrategyforpromotingbiomassandbiocompoundaccumulationofalgaeinADE-KW,inwhichpretreatmentofthealgalinoculumwithhormonesisauniquewaytohelpalgaesurviveunderstress.
Consideringourresultsandtreatmenttechnologyforkitchenwaste,amorefeasibleandeconomicplantcanbebuiltincorporatinganaerobicdigestion,algaecultivationwithADE-KWassistedwithphytohormones,andbiodieselproduction.
Keywords:Agriculturalphytohormones,Anaerobicdigestion,Kitchenwaste,AlgaebiomassTheAuthor(s)2017.
ThisarticleisdistributedunderthetermsoftheCreativeCommonsAttribution4.
0InternationalLicense(http://creativecommons.
org/licenses/by/4.
0/),whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedyougiveappropriatecredittotheoriginalauthor(s)andthesource,providealinktotheCreativeCommonslicense,andindicateifchangesweremade.
TheCreativeCommonsPublicDomainDedicationwaiver(http://creativecommons.
org/publicdomain/zero/1.
0/)appliestothedatamadeavailableinthisarticle,unlessotherwisestated.
OpenAccessBiotechnologyforBiofuels*Correspondence:haiyanhup@126.
com1SchoolofEnvironmentalScienceandEngineering,ShandongUniversity,No.
27ShandaNanRoad,Jinan250100,ChinaFulllistofauthorinformationisavailableattheendofthearticlePage2of18Peietal.
BiotechnolBiofuels(2017)10:76BackgroundTomakemicroalgae-basedbiofuelpracticallyviable,combiningwastewaterandalgaebiomasscultivationhasbeenregardedasaneconomicandenvironmentallysustainableapproachbymanyresearchers.
Thecombi-nationcouldeasethebottleneckofhighcostinnutrientdemandandvastwaterinputrequiredforsimultaneousalgaegrowthandwastewatertreatment[1–4].
Forsev-eralkindsofwastewaterthathavebeenreportedtobefeasiblealternativesforalgaecultivation,thebiomassesorlipidproductivitiesdecreasedcomparedtothelev-elsachievedinstandardmedium.
Therefore,somestepsmustbetakentofacilitatealgaetoperforminwastewa-teraswellas,orifpossiblebetterthan,theydointheirfavorableartificialmedia,priortolarge-scaleproduction[5].
Astrategymustbeadopted,whichsupportsmicro-algaetomaximizetheirpotentialtosurviveinnonidealenvironment.
Asregardsthewastewaterinthisstudy,wechosetheeffluentfromanaerobicdigestionofkitchenwasteforthefollowingreasons.
Kitchenwasteisgenerateddailyallovertheworldandaccountsforalargepartofmunici-palwaste[6]:forexample,approximately60billionkil-ogramsoffoodsupplyarewastedintheUnitedStates[7];itcontributesupto60%ofthetotalmunicipalsolidwasteinEgypt[8];morethan60billionkgofkitchenwasteareproducedinChinaeveryyear.
Anaerobicdiges-tionisaneffectiveandcommonwaytodealwithkitchenwaste,asitcanreducebiodegradablewasteandproduceH2orbiogas,andhence,therenewableenergytoo[9].
However,intheprocessofanaerobicdigestion,thevastamountofresidualeffluentproducedbecomesanotherproblemduetothepresenceofluxuriouslyrichnutri-entsinit.
Duetothegraduallymaturingandadvancedtechnologyofanaerobicdigestionforkitchenwaste,thelargeamountofeffluentsgeneratedinthisprocesscouldbechosenforcultivatingmicroalgaetoproducebiomassalongwithnutrientremovalfromwastewater.
Moreover,infrastructureforbiodieselproductionusuallyexistsasacomponentofkitchenwastetreatment,takingadvan-tageofoilseparatedfromthewaste,whichmightbeemployedtoproducealgae-basedbiofuel.
Meanwhile,theexistingprocessesforanaerobicdigestionarealsoimportantformicroalgae-basedbiodieselsustainability,whichcansolvetheissuesofalgalresidueafteroilextrac-tionandenergybalance[10].
Therehavebeenafewapplicationsofusingeffluentfromanaerobicdigestionprocesses,withthedigesterfeedstocksincludinglivestockwaste[11],municipalwastewater[2],andfoodwastewater[12].
However,sofar,limitedresearchhasbeenreportedonusingeffluentfromanaerobicdigestionofkitchenwaste(ADE-KW)tocultivatealgae.
Therearedifferencesbetweentheeffluentsfromthedigestionofkitchenwasteandthosefromlivestockwaste,municipal,andfoodwastewaters,especiallyintermsofdarkcolor,highorganicmatterlevels,andlimitedphosphorusconcentration,asshowninAdditionalfile1:TableS1[2,11–15].
Theimbalanceinnutrientratiosandthedarkcolorposechallengestoalgalgrowth.
ItisnecessarytoconfirmwhetheritisfeasibletouseADE-KWtocultivatealgaeoremployalgaetodevelopaprocessfornutrientremovalfromthewastewater.
Intermsofincreasingbiomassandlipidproductiv-ity,phytohormonesaretakenintoconsiderationduetotheirroleinplantgrowthregulation[16,17].
Theirusehasbeenextendedtothefieldofalgaeproduction[18–22].
Planthormonesaregrowthregulators,andatanappropriateconcentration,theyappeartoplayaregula-toryroleinmicroalgaecelldevelopmentincludingcelldivisionorelongation,andinchlorophyllandproteinmetabolisms[21–23].
Besidespromotinggrowth,phyto-hormonesalsohavebeenreportedtoenhancetolerancetostress,suchasheavymetals[20,24],oxidativecondi-tions[25],andosmoticandsaltstresses[26].
Neverthe-less,thehormonesappliedheretoforeinalgalcultivationwerepurechemicals,whichaccountedforthehighcostofproductionandadditionrequiredafterstartingbatchcultivation.
Thehormonescommonlyappliedinagriculture,i.
e.
,agriculturalphytohormones,arecharacterizedbymixedmaterialcontainingmorethanonekindofphytohor-mone,andamatureproductionlinewithlowinvestmentforlarge-scaleproduction.
However,theapplicationofagriculturalphytohormonestomicroalgaehadnotbeenstudied.
Furthermore,thepreviousstudiesdidnotmen-tiontheimpactofphytohormonesonalgalactivityinresponsetoacomplexstressenvironmentsuchasrealwastewater,exceptinapplyinghormonestohelpalgaedealwithasimpleunfavorablefactor[20,24].
Therefore,themainaimofthisstudywastodemonstratewhethertheagriculturalphytohormonescouldenhancethealgae'sabilitytotoleratetheadverseeffectofwastewaterandachieveaconsiderableamountofbiomassandaccu-mulationofbiocompounds.
Inspiredbytheapproachofapplyingphytohormonetohigherplants,wetriedapplyingitinseedprimingandduringinoculumpreparation,astheformerenhancestheactivityofhigherplantsunderstress[27],whilethelat-terpretreatsthealgalseedbeforebatchcultivation.
Thisstudyenablesustounderstandtheinfluenceofeffluentfromanaerobicdigestionofkitchenwaste(ADE-KW)onalgaegrowthandbiocompoundsaccumulation,andfur-therverifythepotentialofusingphytohormonestohelpalgaeovercometheadverseeffectsfromthewastewaterPage3of18Peietal.
BiotechnolBiofuels(2017)10:76feedstockandprovideaneconomicalwaytoaccumulatealgaebiomassbasedonADE-KWasmedia.
MethodsMaterialsTheeffluentfromanaerobicdigestionofkitchenwaste(ADE-KW)wascollectedfromShandongShifangEnvi-ronmentalProtection&Bio-EnergyCompany(Jinan,PRChina).
Thedigestionprocessoperatescontinuouslyinthecompanyandultimatelyproducesconsistentefflu-ent,witharelativedeviationinwatercharacteristicsoflessthan10%betweendifferentbatches.
FollowingourprevioussurveyontheeffectofADE-KWloadingonalgalgrowth(datanotyetpublished),ADE-KWdilutedbyafactorof15withtapwaterwasputintouseasthegrowthmediumforthetestedalgae,withoutemploy-inganyotherpretreatmentssuchasfiltering,auto-claving,orpHadjustment.
Thechemicalcompositionofthe15-folddilutedADE-KWwasasfollows:TN138.
22±0.
72mgL1,NH3-N105.
41±0.
73mgL1,TP1.
75±0.
07mgL1,CODCr390.
16±2.
32mgL1,protein33.
52±2.
23mgL1,carbohydrates11.
09±2.
78mgL1,pH8.
54±0.
05.
ThetestedmicroalgaeChlorellaellipsoidea(SDEC-11)andScenedesmusquadricauda(SDEC-13)weresimilartothoseusedbyJiangetal.
[22],whichwereisolatedandevaluatedasthegoodcandidatesforbiofuelproductionbyourlaboratory.
ChlorellaandScenedesmushavebeendemonstratedasidealcandidatesforbiofuelindustri-alizationduetotheirstrongadaptationtowastewater,inhibitionofbacterialgrowth,andrelativelyhighlipidproduction[28,29].
AlgaeinoculumswerepreparedfromexponentiallygrownseedculturesinBG11mediumwhichcontains1.
5gL1NaNO3,40mgL1K2HPO4,75mgL1MgSO47H2O,36mgL1CaCl2·2H2O,6mgL1citricacid,6mgL1ferricammoniumcitrate,1mgL1EDTA-Na2,20mgL1Na2CO3,and1mLL1A5.
A5isatracemetalsolutioncontaining2.
86gL1H3BO3,1.
86gL1MnCl2·4H2O,0.
22gL1ZnSO4·7H2O,0.
39gL1Na2MoO4·2H2O,0.
08gL1CuSO4·5H2O,and0.
05gL1Co(NO3)2·6H2O.
Ifthereisnospecialstate-ment,thechemicalsareproducedbySinopharm.
Thephytohormones(VitaCat,Germany)werecom-monlyappliedinagriculture,andconsistedof0.
135%(w/w)gibberellin(GA3),0.
00052%(w/w)indole-3-aceticacid(IAA),0.
00031%(w/w)brassinolide(BL),andanauxiliaryingredientthathelpstheformerthreephyto-hormonestobecomepowderthatcaneasilydissolveinwater,calledGIBforshort.
ExperimentalsetupGIBphytohormoneswereincorporatedintothemediumat3daysbeforeinoculationduringthepreparationphaseofthealgaeinoculumseed(S+)andatthebeginningofthebatchcultivationphaseofthealgae(B+).
TheprimingseedforS+groupwaspreparedwiththeseprocedures:(1)cultivatingtestedalgaetoreachingthemiddleexpo-nentialphase;(2)addingthephytohormonestoculturementionedatlaststep;(3)3dayslater,recoveringthealgaebycentrifugationandwashedthreetimeswithdeionizedwater;(4)inoculatingthepelletfromthethirdstepintothewastewaterforS+ADE-KWrun.
TheseedforB+ADE-KWgroupwaspreparedaccordingtoabove-mentionedprocessinabsenceofthesecondprocedure.
CultivationinBG11andADE-KWwithnoGIBadditionwasconductedsimultaneouslyascontrolsforallexperi-ments.
Theoverallexperimentalset-upispresentedinTable1andrunnamessuggestthephaseatwhichhor-moneswereaddedandtheculturemedium(e.
g.
,B+ADE-KWindicatesthatphytohormoneswereaddedtoalgaeculturedwithADE-KWatthebatchcultivationphase).
GA3isthemainhormoneinthephytohormones,sotheGIBdosewascalculatedaccordingtothepreviousresearchbyTatkowskaandBuczek[30]andTateetal.
Table1Experimentalset-up,maximumbiomassconcentration,andaveragebiomassproductivitiesofChlorellaSDEC-11andScenedesmusSDEC-13eRunnamesindicatethephaseatwhichhormoneswereaddedandtheculturemedium,e.
g.
,B+ADE-KWindicatesthatphytohormoneswereaddedtoalgaeculturedwithADE-KWatthebatchcultivationphase.
–Phytohormonenotadded.
Dataarethemeansofthreeindependentexperiments±SD*DatainthesamecolumnfollowedbydifferentlettersaresignificantlydifferentbyDuncan'stestatp2daughtercells2daughtercells612182430Morphologicalcomposition(%)03691215four-andeight-celltwo-cellcTheratioofAandBsemi-axes(m)MeanAMeanBMeanA/BBG11ADE-KWS+ADE-KWB+ADE-KWaCellweightCelldryweight(pg.
cell-1)BG11ADE-KWS+ADE-KWB+ADE-KW6080100120CulturesystemScenedesmusSDEC-13ChlorellaSDEC-11bdCulturesystemFig.
2Theeffectofphytohormonesoncelldivision(a,b)andmorphology(c,d)ofChlorellaSDEC-11andScenedesmusSDEC-13.
Incandd,A:semi-majoraxis;B:semi-minoraxis;A/B:theratioofAandBaxes.
Therunnamesontheabscissaindicatethephaseatwhichhormoneswereaddedandtheculturemedium;e.
g.
,B+ADE-KWindicatesthatphytohormoneswereaddedtoalgaeculturedwithADE-KWatthebatchcultivationphasePage7of18Peietal.
BiotechnolBiofuels(2017)10:76qualityreachingthealgalcells.
Increasedratiosinchl-a/chl-bhavebeenconsideredtodecreaselightcollectioninrelationtotherateofphotosystemII(PSII)photochem-istry,whileincrementsincarotenoids/chl-a+b(caro/chl-a+b)indicatedthedifficultyinlightharvestingcom-plexandPSIIactivity[37].
Forthetwoalgae,theratioofchl-a/chl-bandcaro/chl-a+bincreaseddramaticallyinADE-KWmediacomparedwithBG11culture(p<0.
05),whichindicatedabnormalchloroplastphotosyntheticphosphorylationactivityandacclimationofchlorophyllwhensubjectedtotheharshcondition.
TheADE-KWwastewaterdeceleratedthealgalgrowthincludingbiomassaccumulationandcelldensity,whichmightoccurthroughslowingdownoftherateofcelldivisionandchlorophyllactivity.
Intermsofthedegreeofdeclineintheabovemetrics,ScenedesmusSDEC-13hasastrongeradaptabilitytoADE-KWthanChlorellaSDEC-11.
RoleofphytohormonesinstimulatingalgaevitalityinADEKWTheeffectoftheGIBphytohormonesonthegrowthofalgaecultivatedinADE-KW,expressedasbiomasscon-centrationandcellnumber,ispresentedinFig.
1.
Hor-moneadditionduringtheseedpreparationphaseorthebatchcultivationphaseincreasedbiomassaccumulationslightlyforChlorellaSDEC-11,butwithastatisticaldif-ferenceforScenedesmusSDEC-13(p<0.
05),comparedwithnontreatedADE-KWcontrol(Table1).
Oziokoetal.
alsofoundnosignificanteffectsofGA3oncellgrowthofChlorellasp.
IAM-C212,asexpressedbydrycellconcen-tration[38].
However,thispretreatmentoftheseedwithphytohormonescausedthetwoalgaestrainstohavenolagphasewhentheyencounteredADE-KW,andespe-ciallygaveSDEC-13strongerbioactivitytosurviveinADE-KW,attaining0.
40gL1biomass,nearlydoublethatof0.
22gL1obtainedintheADE-KWcontrol.
Conformancebetweentheempiricalresultsandsimu-lationfromtheVerhulstmodelwasobserved(Table1).
Nosignificantdifferenceappearedforbiomassproduc-tionofthetwoalgaestrainsundertheconditionofGIBhormones.
Norwasthereanydifferenceinthecellmor-phologiesofthetwoalgaestrains(Fig.
3b–d,f–h).
How-ever,incomparisonwiththenon-GIB-treatedcontrol,theobviousnuclearandchloroplastforSDEC-11andclearmitochondrionofSDEC-13occurredwiththeaddi-tionofphytohormone,whichallexpressedstrongercellviability.
IncorporationofGIBwithADE-KWtocultureSDEC-11isbetterdoneinthebatchcultivationphase,whichyieldedahighspecificgrowthrate(0.
18d1).
ForScenedesmusSDEC-13,thetwomethodsofphytohor-moneadditionhadpositiveeffectsontheculturesinFig.
3DetailsofultrastructureofChlorellaSDEC-11andScenedesmusSDEC-13treatedwithADE-KWandphytohormones.
aSDEC-11inBG11;bSDEC-11inADE-KW;cSDEC-11inS+ADE-KW;dSDEC-11inB+ADE-KW;eSDEC-13inBG11;fSDEC-13inADE-KW;gSDEC-13inS+ADE-KW;hSDEC-13inB+ADE-KW.
Cchlorophyll,Sstarch,Llipid,Wcellwall,Ncellnucleus,Mmitochondrion,Vvacuole.
Theaboverunnamesindicatethephaseatwhichhormoneswereadded,andtheculturemedium;e.
g.
,B+ADE-KW,indicatesthatphytohormoneswereaddedtoalgaeculturedwithADE-KWatthebatchcultivationphase.
Scalebar1μmPage8of18Peietal.
BiotechnolBiofuels(2017)10:76termsofbiomassaccumulationandgrowthrate,inwhichadditionintheseedpreparationphaseperformedbetterwithaspecificgrowthrateof0.
27d1,comparedto0.
18d1.
Fromthevariationsofthecellnumber(Fig.
1),seedpreparedwiththehormonessignificantlyincreasedthecellgrowthsofthetwoalgaestrains,especiallythemaxi-mumcelldensityachievedonthe10thday(p<0.
05).
Moreover,itisnotablethattheGIBphytohormonesexcitedthegrowthactivityofScenedesmusSDEC-13inADE-KWtothecorrespondinglevelinBG11.
ThechangeincellnumbersconfirmedthesamestimulationbyGIBofalgaegrowthasdemonstratedforbiomassconcentration.
Thereductioninalgaebiomassisnormalduetothelowadaptationofalgaeinwastewaterwithcomplex-ity[39].
However,comparedwithGIB-freeADE-KW,ahigheractivityofthetwoalgaespecieswasobservedinADE-KWinoculatedwiththealgalseedpretreatedwithphytohormones,wherenolagphasesoccurred.
Thatistosay,primingthealgalseedwiththephytohormonescouldmitigatetheinfluenceofadifferentenvironment,theADE-KWmedium,onalgalgrowth.
Moreover,theimprovementismoreapparentintreatedgroupsofScenedesmusSDEC-13thanChlorellaSDEC-11.
ResponseofpigmentcontentstothephytohormonesPhotosynthesisinplantandalgaecellsoftenundergoeschangesinresponsetoenvironmentandphytohor-mones,andsothechangesintheproductionofpigmentsinvolvedinphotosynthesisweretested(Table2).
Chlo-rellaSDEC-11cultivatedinS+BG11groupsattainedincreasesinpigmentcontentsof19%inchl-aand25%inchl-b.
TheS+ADE-KWgroupbroughtenhancementof33%inchl-aand26%inchl-bincomparisonwiththeADE-KWrun.
TheincreaseinchlorophyllagreedwiththeappearanceofchloroplastinGIB-treatedgroupscomparedwiththylakoid-likenetsinADE-KWcontrol(Fig.
3c,d).
IntermsofScenedesmusSDEC-13grownwithADE-KW,theadditionofphytohormonesintheseed-preparationphasecontributedtosignificantincreasesofabout51%inchl-aand22%inchl-baccumu-lationinrelationtothecontrol.
LargerspaceoccupiedbychloroplastandmoreclearthylakoidinitconfirmedtheincreaseofGIBonchlorophyllofSDEC-13.
TheresultsobtainedsuggestedthatstimulationbytheGIBphyto-hormonesofphotosynthesisandphotosyntheticpigmentcontentinalgaecellsbypretreatingthealgaeseedwithGIBallowedtheadverseeffectsoftheADE-KWenviron-menttobeendured,whilepreventingchlorophylldegra-dationandabsorbinglimitativelightintervenedbydarkcolorinwastewater.
TatkowskaandBuczekstudiedtheeffectsofIAAandGA3uponchlorophylllevelsofS.
quadricaudaandfoundthat,whenaddedseparately,allofthesephytohormonesstimulatedchlorophyllcontentinalgaecellssignificantlycomparedwiththecontrol[30].
OfthefivehormonestestedbyParketal.
,IAAandGA3exhibitedthehigh-estincrementsinconcentrationofchl-a+b,namely81and68%,respectively[40].
BajguzandPiotrowska-Nic-zyporukreportedthepositiveeffectofBLchlorophyllinChlorellavulgaris[12].
Piotrowska-Niczyporuketal.
foundthatexogenouslyappliedGA3couldmodifythephytotoxicityofheavymetalsonC.
vulgarisandincreasephotosyntheticpigmentaccumulation[15].
ObviouslyGA3,IAA,andBL,eitherindividuallyorthroughthecombinationofthesesubstances,hadabeneficialeffectonphotosyntheticapparatusinmicroalgaecultivatedingeneralmediumorsomemediawithstress.
Moreo-ver,carotenoidscouldhaveanantioxidativeroleinthescreeningandtrappingofexcessivelight,whichisoth-erwiseabsorbedbythechloroplast[41].
Thecarote-noidcontentsofthetwoalgaestrainstreatedwithGIBwereincreasedinrelationtothecorrespondingcontrol.
Table2Photosyntheticpigmentcompositions(mgL1)ofChlorellaSDEC-11andScenedesmusSDEC-13inADE-KWwithphytohormonesaRunnamesindicatethephaseatwhichhormoneswereaddedandtheculturemedium;e.
g.
,B+ADE-KW,indicatesthatphytohormoneswereaddedtoalgaeculturedwithADE-KWatthebatchcultivationphase1Chlorophyll-a2Chlorophyll-b3CarotenoidsRunaChl-a1Chl-b2Caro3Chl-a+bChl-a/Chl-bCaro/Chl-a+bSDEC-11SDEC-13SDEC-11SDEC-13SDEC-11SDEC-13SDEC-11SDEC-13SDEC-11SDEC-13SDEC-11SDEC-13BG114.
5±0.
23.
6±0.
12.
4±0.
12.
7±0.
80.
9±0.
00.
7±0.
07.
0±0.
36.
3±0.
51.
9±0.
01.
4±0.
10.
1±0.
00.
1±0.
0ADE-KW1.
2±0.
02.
1±0.
20.
7±0.
1.
4±0.
10.
6±0.
00.
8±0.
11.
8±0.
03.
4±0.
12.
2±0.
11.
5±0.
00.
3±0.
00.
2±0.
0S+ADE-KW1.
6±0.
03.
1±0.
10.
8±0.
01.
7±0.
40.
6±0.
20.
8±0.
22.
5±0.
14.
8±0.
32.
0±0.
11.
9±0.
20.
3±0.
10.
2±0.
0B+ADE-KW1.
4±0.
12.
7±0.
20.
9±0.
01.
5±0.
10.
6±0.
40.
9±0.
02.
3±0.
14.
3±0.
21.
5±0.
01.
8±0.
20.
3±0.
10.
2±0.
0Page9of18Peietal.
BiotechnolBiofuels(2017)10:76Hence,theapplicationofthephytohormonesinlarge-scalecultivationofmicroalgaeshouldplayapositiveroleinhelpingalgaetomitigatethephotoinhibitioncausedbysunlight.
CellmorphologyinresponsetothephytohormonesAttheearlystationarystageofgrowth,thecombinationofGA3,IAA,andBLsignificantlyaffectedthecelldivi-sionexpressedasthepercentageofcellsundergoingcelldivisionandthenumberofdaughtercellsretainedinasinglecell(Fig.
2).
ForChlorellaSDEC-11,thereleaseoftwodaughtercellswasthemainmodeofdivision.
TheB+ADE-KWgroupofSDEC-11showedsuperiorityintheamountofcellsindivisionandinthecellsthataredividedintotwodaughtercells.
AlthoughinS+ADE-KWtherewasnosig-nificantincrementinthepercentageofcellsindivision,theproportionofcellscontainingmorethantwodaugh-tercellsincreased,whichwasalsoareasonforthehighercelldensity.
Theseresultsareconsistentwiththevaria-tionsofcelldensityasshowninFig.
1.
DivisionintomorethantwodaughtercellswasusualinScenedesmusSDEC-13culture.
TheGIBhormonessignificantlypromotedcelldivisionviaincreasingthepercentageofcellsindivision(18.
46%inS+ADE-KW;22.
38%inB+ADE-KW)comparedwiththeADE-KWcontrol(8.
05%)(p<0.
05).
Thestimulationofmicroal-gaebyphytohormoneswasalsoreportedbyParketal.
,whereintroducingbothGA3andIAAatasingleaddi-tiontimeincreasedthepercentageofcellsindivisionandthecellscontainingfourdaughtercells[40].
Thus,thepresentstudyisthefirsttoreportthatphytohormonesaffectedthedivisionofmicroalgaeinamannerrelatedtothestageofthehormonedose.
Incontrasttocelldivision,thephytohormonesdidnotgeneratesignificanteffectsonthecellsizeofChlorellaSDEC-11.
Thedryweightofacellwascalculatedaccord-ingtothecorrespondingbiomassconcentration,andcelldensitywasinfluencedtoagreatdegreebythehor-mones.
ForSDEC-11,allthegroupsunderGIBtreatmenthadlightercellsthantheothergroups,whichmaybecausedbythefasterspeedofcelldivision.
EspeciallyfortheS+BG11group,theintervalfordaughtercellgrowthbeforebecomingamothercellmightbeshortenedbytheactionofGIBhormones,leadingtolessmaterialconcen-trationinthecellandlowerdryweightcomparedwiththecontrol.
OnthebasisoftheratiooftheAandBaxesfromSDEC-13,phytohormonetreatmentresultedinamarkedchangeinmorphology.
ComparedwiththeADE-KWcontrol,GIBtreatmentreducedthevalueofA/B(p<0.
05),whichshowedsphericalizationofcellsunderthemicroscope.
Thisphenomenonalsooccurredinourpreviousresearchintotheeffectofdiethylaminoethylhexanoate(DA-6)onSDEC-13[13].
Sphericalizationcouldgeneratecellswithlargerspecificsurfaceareastoabsorbnutrientsforgrowth,whichisespeciallyneces-saryforwastewatertreatment.
Thefinalconcentrationsinthewater(Table3)demonstratedtheimportanceofthecell'scharacter,withlowerfinalnutrientconcentra-tionintheS+ADE-KWgroupofSDEC-13.
Moreover,cellsculturedinADE-KWfromtheseedpretreatedwithGIBweighed122.
55pgcell1,whichismuchheavierthanthecellsgrowninADE-KWwithoutanytreatment(103.
06pgcell1)(p<0.
05)andevenslightlyheavierthanthecellscultivatedinBG11.
Thechangeofcellmasscouldbesensitivetogrowthmediumorphytohormone.
Intermsofgrowthmedium,Polishchuketal.
usedaneffluentfromanaerobicdigestion(DE)ofexcess-acti-vatedsludgeandartificialseawatermedium(ASW)togrowNannochloropsisoculata,findingthatcellsgrownintheDEwerealmosttwiceasheavyasthecellsgrownintheASWmedium[42].
Scenedesmusisapleomorphicstrainwhichchangesitsmorphologytoproduceunicellsandcoenobiaundervariousenvironmentalconditions(lengthofphotoper-iod,pH,nutrients)andinresponsetopredators[43].
ComparedwithBG11,algaeinADE-KWhadasmallerproportionoffour-andeight-cellcoenobiaandmoretwo-cellcoenobiaandunicells.
Panchaetal.
observedtheecomorphicchangesofScenedesmussp.
CCNM1077,whichformedmoretwo-andfour-cellcoenobiawithlimitednitrateandsequentialnitrateremoval[33].
Nev-ertheless,SiverandTrainorreportedaunicelldominanceinanammonia-richenvironment[44].
ThismeantthatunicellswereproducedbyScenedesmussp.
withsuffi-cientnitrate.
GIBaddedintheseedpreparationorbatchcultivationphasestriggeredmorphologicalchangestofour-andeight-cellcoenobiaanddecreasedthenumberTable3ThefinalwatercharacteristicsofADE-KWcultivat-ingChlorellaSDEC-11andScenedesmusSDEC-13aRunnamesindicatethephaseatwhichhormoneswereadded,andtheculturemedium;e.
g.
,B+ADE-KW,indicatesthatphytohormoneswereaddedtoalgaeculturedwithADE-KWatthebatchcultivationphaseRunaTN(mgL1)NH3-N(mgL1)TP(mgL1)CODCr(mgL1)ChlorellaSDEC-11ADE-KW120.
7±0.
166.
9±1.
30.
34±0.
01216.
8±19.
1S+ADE-KW113.
3±1.
754.
8±0.
70.
32±0.
01219.
7±25.
5B+ADE-KW111.
2±1.
357.
0±0.
60.
24±0.
01208.
2±12.
8ScenedesmusSDEC-13ADE-KW94.
3±1.
761.
7±4.
20.
34±0.
03211.
2±13.
1S+ADE-KW66.
4±3.
054.
3±1.
10.
42±0.
01203.
3±17.
3B+ADE-KW89.
4±1.
757.
0±0.
60.
29±0.
03201.
6±12.
3Page10of18Peietal.
BiotechnolBiofuels(2017)10:76oftwo-cellcoenobiainScenedesmusSDEC-13(Fig.
2b).
ThiswasconsistentwiththefindingofPrasadthatGA3andIAApromotedtheformationoffour-celledcoenobiainS.
obliquusratherthantwo-celledcolonies[45].
TheseresultssuggestedthatapplicationofGIBcouldincreasetheformationoffour-andeight-cellcoenobia,andtheammoniaandorganiccarboninADE-KWcouldweakentheecomorphicexpressionofthecoenobiainScenedes-musSDEC-13.
TheGIBphytohormonesmitigatedtheinhibitionofADE-KWonalgalcelldivision,whichexplainedtheincrementofbiomassconcentrationandcelldensityintheGIB-treatedgroups.
Themorphologyincludingcellsizeandthenumberofcellincoenobiaalsofluctuatedunderthehormonetreatment.
GA3,togetherwithIAAfromGIB,isusuallyinvolvedinde-repressionofplant-counteringstress[17],andorganismcouldrecallsomeeventsdependingonthetypeofprimarystimulusandconstructadiversesetofdefensemechanismsafterbeingprimed[27].
ThealgalactivityinB+ADE-KWgroupindicatesthepositivefunctionofGIBonalgaeembracingthewastewater,possiblybymeansofadjustinginternalphytohormonesysteminalgalcellandmakingchloroplastandnucleusresistanttoanunusualenvironmentincludingimbalanceinnutrients,bacterialinfection,anddarkcolor.
Thepromotionsonchlorophyll,division,andcellmorphologyofalgaeinS+ADE-KWsuggestedthattheseedpreparedwiththephytohor-monesrecallsthestimulationofGIB,followedbyreadilycopingwithADE-KW.
NolagphaseinS+ADE-KWalsoexhibitedthesysteminalgalcellbeinginreadystateforconfrontingsomestressordifferentcondition,aftertheprimingprocess.
BiomasscompositionsinresponsetothephytohormonesLipidinalgaeisthemostpromisingcomponentforbio-fuelproduction;however,tomaximizeeconomicandenvironmentalbenefitswhileminimizingwasteandpol-lution,exploitationofdiversityandsyntheticbiologyfortheproductionofalgalbiofuelsisneeded[46].
Usuallyproteinandcarbohydratespecies,thenonlipidfractions,havethepotentialtoproduceanimalfeed,biogasthroughanaerobicdigestion,andsoon[47].
Thus,thecharac-teristicsofcarbohydrate,protein,andlipidinChlorellaSDEC-11andScenedesmusSDEC-13areevaluatedandshowninFigs.
4and5fordifferentculturemediaandphytohormones.
ProteinandcarbohydrateIngeneral,proteincontentsarewellcorrelatedwiththemetabolicactivityinthecells[48].
Inotherwords,theaccumulationofproteinsoccurswhenthemicroalgaecellsdisplayhighmetabolicandmitoticactivities.
ThedecreasedproteincontentcomparedtothatinBG11(p<0.
05)indicatedthattheADE-KWmediumwasanonidealenvironment,aswasalreadyindicatedbybio-massandchlorophyllobservations.
Thisenvironmentledtomoreenergysourceaccumulationforalgaeself-protection,asSinghetal.
concludedthatproteincontentinplantswasanimportantindicatorofreversibleandirreversiblechangesinmetabolism,aknownresponsetoawidevarietyofstressors[49].
Anotherobviousfea-tureoftheseresultswasthemassratioofcarbohydratetoprotein,whichinADE-KWwashigherthanthatinBG11forthetwoalgae.
TheapparentdifferenceinmassratiosofSDEC-11betweenADE-KWandBG11alsosug-gestedaweakeradaptationofChorellaSDEC-11thanthatofScenedesmusSDEC-13,withaslightlyincreasedmassratioinADE-KW.
Nevertheless,GIBplayedaprevi-ouslyunconsideredroleinimprovingtheproteinactivityinthetwoalgaespeciestested.
Theproteincontentsofallgroupstreatedwiththephytohormonesattainedlevels010203040cbbca*abbCarbohydrateProteinaab0.
00.
30.
60.
9Massratio010203040Massratio)%(tnetnocnietorproetardyhobraCBG11S+ADE-KWADE-KWB+ADE-KWbaab0.
00.
30.
60.
9CulturesystembcabbcFig.
4Carbohydrateandproteinaccumulationsof(a)ChlorellaSDEC-11and(b)ScenedesmusSDEC-13cultivatedunderphytohor-mones.
Massratioistheratioofcarbohydrateandprotein.
Therunnamesontheabscissasindicatethephaseatwhichhormoneswereaddedandtheculturemedium;e.
g.
,B+ADE-KW,indicatesthatphy-tohormoneswereaddedtoalgaeculturedwithADE-KWatthebatchcultivationphase.
*DatainthesameparametermarkedwithdifferentlettersaresignificantlydifferentbyDuncan'stestatp<0.
05Page11of18Peietal.
BiotechnolBiofuels(2017)10:76thatwerealittlehigherthanthoseofthecorrespond-ingcontrolwithouttreatment.
ThissamephenomenonoccurredinthecaseofthetwoalgalstrainswhentheyweretreatedbyDA-6.
NoappreciabledifferencebetweenproteincontentsinSDEC-11andSDEC-13wasobservedasresponsetophytohormones,whichisdifferentfrom6121824303642Lipidcontent(%)Lipidcontentaa*bacLipidproductivityaLipidproductivity(mg.
L-1d-1)babc3691215020406080100CulturesystemCulturesystemcFattyacidcomposition(%)C18:3C18:2C18:1C18:0C16:1C16:0C15:0BG11ADES+ADEB+ADEBG11ADES+ADEB+ADEScenedesmusSDEC-13dChlorellaSDEC-11Fig.
5Lipidaccumulation(a,b)andfattyacidprofile(c,d)ofChlorellaSDEC-11andScenedesmusSDEC-13cultivatedinADE-KWunderphytohor-mones.
Therunnamesontheabscissaindicatethephaseatwhichhormoneswereaddedandtheculturemedium;e.
g.
,B+ADE-KWindicatesthatphytohormoneswereaddedtoalgaeculturedwithADE-KWatthebatchcultivationphase.
*DatainthesameparametermarkedwithdifferentlettersaresignificantlydifferentbyDuncan'stestatp<0.
05Table4BiomasscompositionsofmicroalgaeunderdifferentphytohormonetreatmentsaThedatainthisformationpresentthattheformercamefromS+ADE-KWgroupandthelatterfromB+ADE-KWgroupbThedatacomefromtheADE-KWcontrolAlgalspeciesPhytohormoneProteincontentCarbohydratecontentReferenceTreatedControlTreatedControlC.
vulgarisGA312.
4*108mgcell19.
5*108mgcell14.
8*108mgcell13.
2*108mgcell1[11]C.
vulgarisBLandkinetin390fgcell1100fgcell1350fgcell160fgcell1[12]C.
vulgarisCytokinins38*108gcell118*108gcell13.
8*108gcell11.
1*108gcell1[15]SDEC-11DA-639%39%17%14%[13]SDEC-13DA-637%39%15%13%[13]C.
reinhardtii1-triacontanol44%abovethecontrolNodifference[39]C.
vulgarisIndomethacin43*108gcell130*108gcell15.
2*108gcell12.
7*108gcell1[49]SDEC-11GIB22/25%a24%b17/22%a23%bThisstudySDEC-13GIB30/34%a32%b16/20%a21%bThisstudyPage12of18Peietal.
BiotechnolBiofuels(2017)10:76thenoticeablepromotiononotheralgaetypesreportedintheliterature[11–13,15,39,49](Table4).
Unlikeprotein,theaccumulationofcarbohydrateinalgaewasdisturbedslightlybyADE-KWandthecar-bohydratecontentdecreasedtosomedegreeingroupstreatedwiththephytohormones.
Thereductionwasoppositetothephenomenonofhighercarbohydratecon-tentunderthetreatmentofphytohormonesobservedbyFalkowskaetal.
[11],BajguzandPiotrowska-Niczy-poruk[12],Piotrowskaetal.
[50],andPiotrowska-Niczy-poruketal.
[15](Table4),whichmightresultfromtheimprovedphotosynthesisactivity.
However,Yuetal.
alsofoundthatgibberellintreatmentreducedthecontentofglucoseandpromotedtheutilizationofglucose(carbonsource)forconversionintoothermaterials[51].
Com-paredwithcellsinADE-KW,moremitochondriathatappearedincellsofSDEC-13treatedbyGIBalsosug-gestedapossiblehigherconsumptionofprimaryenergymaterials,suchasglucoseandstarch.
Theremightbeanotherreasonthatthephytohormonecouldchangethemetabolicpathwaysofcarbon.
Accordingtothebiosyn-theticroutineofbiochemicalcomponentsinmicroal-gaeproposedbyLvetal.
,diminishmentincarbohydratemightbeattributedtothetransformationofmostglycer-aldehyde-3-phosphates(G3P),theintermediateproductfromphotosynthesis,intolipid[52].
Nolinearcorrelationappearedbetweencarbohydratecontentandcellsizeundertheimpactofhormones,asshowninthepreviousresearchontheeffectsofDA-6onSDEC-11[13].
ThismightbecausedbytheeffectofGIBontheintracellularcarbohydratesynthesispathwayofthestrains.
LipidandfattyacidprofilesTheeffectsoftheGIBphytohormonesonlipidaccumu-lationinSDEC-11andSDEC-13cultivatedinADE-KWareevaluatedandillustratedinFig.
5.
Consideringtheeffectsofgrowthmediumonlipidaccumulation,areduc-tionwasobservedforSDEC-11inADE-KW,andtherewasnodifferencebetweenthetwomediaforSDEC-13.
However,significantdifferences(p<0.
05)werefoundforlipidaccumulationinthetwoalgalstrainsbetweengroupswithGIBtreatmentandthecorrespondingcon-trolgroups.
ForlipidcontentofSDEC-13,allthetreat-mentswiththephytohormonesexhibitedabout130%increaseoverthecontrol.
ItisworthnotingthatthelipidcontentofSDEC-11inB+ADE-KWreachedupto38%,enhancedby1.
52timesthevalueof25%fortheGIB-freecontrol,whichwasvisuallyexhibitedbybiglipiddropletsinultrastructuralcellsofB+ADE-KWgroup(Fig.
3a,d).
Theincreaseinlipidcontentbalancedthedecreaseincarbohydratecontent,duetothecompetitionforG3P.
Inpreviousstudies,theauxinsappearednottostimulatesignificantchangesinlipidcontent[53,54],butgibber-ellinspromotedastatisticaldifferenceinlipidaccumu-lation[50].
ItmaybeGA3intheGIBhormonesthatworkedonlipidcontentinthetwotestedalgaestrains.
Lipidproductivity,whichcombineslipidcontentandbiomassproductivity,wasdecreasedbythewastewaterthroughloweringofbiomassorlipidaccumulation,butallthegroupstreatedwiththephytohormonesshowedsuperiorlipidproductivity(p<0.
05).
Becauseofthehighlipidcontent,algaeSDEC-11inB+ADE-KWgroupyielded12.
73mgL1d1inlipidproductivitywithrela-tivelylowbiomassconcentration(0.
33gL1),whichwas70%higherthan7.
48mgL1d1achievedinADE-KWcontrolandalmostequalto13.
67mgL1d1inBG11.
ThesuperiorityofGIBtreatmentwithSDEC-13wasmoreobviousduetothestimulationofbothalgalgrowthandlipidbiosynthesis.
EspeciallyforSDEC-13intheS+ADE-KWgroupwith12.
67mgL1d1inlipidproductivity,thetreatmentincreasedthelipidproductivityby139%comparedto5.
30mgL1d1inADE-KWandwasevenhigherthanthatinBG11(9.
10mgL1d1).
Thefattyacid(FA)profilesofmicroalgaecultivatedinBG11andADE-KWmediaareshowninFig.
5.
Thesatu-ratedfattyacidswerecomposedofpentadecanoicacid(C15:0),palmiticacid(C16:0),andstearicacid(C18:0).
Palmitoleicacid(C16:1)isoneofthemembersofmon-ounsaturatedFAs(MUFA),withC18:1dominatingMUFA.
Linoleicacid(C18:2)andlinolenicacid(C18:3)arepolyunsaturatedFAs(PUFA).
TheobviousdifferencebetweenFAcompositionsinBG11andADE-KWwasfoundinC15:0andC18:2.
C15:0waspresentbuttherewasnoC18:2inthetwoalgaestrainsgrowninADE-KWmedia,quitetheoppositeoftheresultinBG11media.
TreatmentsofSDEC-11inS+ADE-KWandSDEC-13inB+ADE-KWrecorded21and22%increasesinsaturatedfattyacid(SFA)content,respectively,relativetothecor-respondingvaluesinADE-KWcontrol;introducingGIBtoSDEC-11duringthebatchcultivationandtoSDEC-13duringtheseedpreparationdecreasedtheSFApropor-tion.
Theinfluenceofthephytohormonesonfattyacidcompositionexhibitedacomplexdifferencedependingonthedosingphaseandalgalspecies.
AsregardsthecomplicatedimpactsofplanthormonesonFA,Jusohetal.
alsofoundthattheoperatingtimeofIAAonC.
vul-garis(UMT-M1)significantlyaffectedtheoilaccumula-tion,fattyacidcompositions,andgeneexpression[55].
DifferenceswereexhibitedintheinfluenceofGIBonFAcompositionbetweenthegroupswithdifferentdos-ingphasesandalgalspecies,whichcouldbefurtherstud-iedinsubsequentresearch.
ItisencouragingthattheGIBphytohormonescouldmakeabeneficialchangeinthelipidbiosynthesispathway.
Page13of18Peietal.
BiotechnolBiofuels(2017)10:76Thepossiblemechanismofphytohormone'sinfluenceonalgalactivityGA3,IAA,andBLintheGIBphytohormonesareimpor-tantplantgrowthregulatorsinmultipledevelopmentalprocesses,includingorchestrationofcellularhomeosta-sistocopewithvariableenvironmentalfactors,suchasethylenebiosynthesis;celldivisionandelongation;DNA,RNA,andproteinsynthesis;photosynthesis;andsoon[7].
Thepositiveeffectsofthethreephytohormonesonthegrowthorenvironmentalstressresponseofmicroal-gaehavealsobeenexploredbymanyresearchers,andareattendantwithpromotionofcelldivisionandexpansion,DNAandRNAlevels,shorteningthecelldevelopmen-talcycle,orstimulationofantioxidantenzymeactivities,restoringalgaegrowth,andprimarymetabolitelevels[9,12,15,30,40].
TheGIBhormonesusedinourstudystimulatedthealgaetodealwiththeunfavorablecondi-tionsinADE-KW,includinghighammonia(105mgL1),limitedphosphorus(1.
75mgL1),extremeimbalanceintheratioofnitrogenandphosphorus(78.
95),andevendarkcolorandsuspendedsolidsasanobstacletolighttransmission.
TheseconditionsinADE-KWdecreasedchlorophyllbiosynthesisandlightqualityreachingthealgae,whichthenresultedinthereducedpercentageofcellsundergoingdivisionandevenreducedlipidcontent.
ThisstimulationofalgaebyGIBinADE-KWmightbesupportedbytheregulationofphotosyntheticappa-ratusbythephytohormones.
Theprimaryenergysourceinamicroalgaecellisformedinchloroplastscontainingchlorophyll,asshowninFig.
6.
Nicotinamideadeninedinucleotidephosphate(NADPH)derivedfromchlo-rophyllmainlyservesproliferationandcellgrowth,butlipidbiosynthesisisaffectedwhenanexcessofNADPHappears.
SignificantimprovementofchlorophylllevelsbyGIBoccurredincellsofthetwoalgaestrains(increaseof25–40%intotalchlorophyllcontentasshowninTable2andimprovementofthylakoidorchloroplastasvisuallyrevealedinFig.
3),whichcouldabsorbmoresolarradia-tionandthenmoreNADPH.
Thismeantmoreenergywasconvertedintocellproliferation,whichultimatelypromotedcelldivision,leadingtoanincreasedpropor-tionofSDEC-11cellscontainingmorethantwodaughterFig.
6AsimplifiedschemeshowingcelldivisionandlipidbiosynthesisinmicroalgaecultivatedinaBG11,bADE-KW,andcADE-KWwithphy-tohormonesaddition.
Thewidthofthearrowsrepresentstheenergyflowinginto,ortheeffecton,thematerialpointedto.
NADPHnicotinamideadeninedinucleotidephosphate;ADE-KWeffluentfromanaerobicdigestionofkitchenwaste;GIBagriculturalphytohormonescontaininggibberel-lin,indole-3-aceticacid,andbrassinolide;S+ADE-KWculturingalgaeinADE-KWwithinoculumpretreatedwithGIB;B+ADE-KWintroducingGIBintoalgaeinADE-KWatbatchcultivationstagePage14of18Peietal.
BiotechnolBiofuels(2017)10:76cellsandincreasedthepercentageofSDEC-13cellsundergoingdivision(Fig.
2).
EvenlipidaccumulationwasenhancedwhenmicroalgaewereconfrontedwithanexcessofNADPHfollowingtheincrementinphotosyn-theticpigments.
Thereisapositivecorrelationbetweenthetotalchloro-phyllcontentandlipidcontentforSDEC-11(R2=0.
45)and,SDEC-13(R2=0.
92).
Howeversucharelationshipwasnotobservedwhenconsideringdataofthetwoalgaespecies,whichmightindicateadifferentenergyparti-tioningbetweenChorellaSDEC-11andScenedesmusSDEC-13.
Indeed,theproductionofNADPHisalsorelatedtotheconditionofthylakoid,inwhichafunc-tionalmembranestackessentiallyensuresthatthepho-tosystemoperatesefficiently[35,56].
ApparentlyforSDEC-11,clearthylakoidsinchloroplastwereobservedafterphytohormonestreatment,whichcouldbeanotherreasonforthehigherlipidcontentinGIB-treatedgroups.
Moreover,TanandLee[57]summarizedthatthegenera-tionofNADPHcouldmainlyderivefromthemetabolismofstarch.
ComparedwithultrastructuralcellsinADE-KWcontrol(Fig.
3b),thecellsofSDEC-11(Fig.
3d)inB+ADE-KWexhibitedfewerstarchgranulesandhigherlipidcontent(Fig.
5).
AsimilarphenomenonbetweencellsofSDEC-13incontrol(Fig.
3f)andS+ADE-KW(Fig.
3g)wasobserved.
Carotenoidsconstitutethemainprotectionagainstexcesslightenergyandpossiblytransfertheabsorbedradiation[56].
CarotenoidsynthesisinalgaealsoincreasedunderthehormonetreatmentasshowninTable2,whichsuggestedsuperfluouslighttransferfornormalalgalgrowthandthepossibleexcessofNADPH.
Over-reductionwilloccurinthephotosyntheticelec-trontransportchainduetorichnessofNADPH,whichcouldleadtosomereactionswithhighlyreducedprod-ucts,suchaslipidsynthesis[58].
Inadditiontocarbonsupply,denovoFAsynthesisalsorequiresacontinu-ousprovisionofreducingpowerintheformofNADPH[57].
ItmaybetheefficientstimulationbyGIBofchloro-phyllinalgaethatultimatelyleadstoanincreaseinlipidaccumulation.
Themainingredientsinmembranelipid(ML)involveC16:0,C18:0,cis-9-C18:1,cis-9,12-C18:2,andcis-6,9,12-C18:3,andFAinothertypesaremainlyfoundinstoragelipid(SL)[35].
BasedonthestructuralformulaeobtainedaccordingtotheGC-MSretentiontime,thereisnofattyacidincis-structurepresentinChorellaSDEC-11,andonlycis-9-C18:1andcis-9,12-C18:2arepresentinScenedesmusSDEC-13culturedwithBG11.
FattyacidslikeC16:0andC18:0alsoconstitutethemainfattyacidsintriacylglycerol(TAG),thestoragelipid[59],andso,whilethevalueofMLinAdditionalfile1:TableS2mightnotexpressthemembraneactivity,theproportionofSLcouldsuggestthepercentageofstoragelipid.
InrelationtoBG11;thehigherSLlevelsinalgaegrowninADE-KWindicatedanimprovementinstoragelipidpathway,whichwasinagreementwithstimulationunderaharshenvironmentofTAGsynthesisthroughproductionofanexcessofNADPH,asvisualizedinFig.
6.
TheGIBphy-tohormonesdecreasedthecontentofSL,whichmightindicatethatthecelldivisionoccurringinGIB-treatedgroups,manifestingasincreasedcelldensity,consumedNADPH,thefeedstockofTAG.
Hence,comparedwiththeADE-KWcontrol,thehigherlipidcontentinGIB-treatedgroupsconsistedofmorestructurallipidorstor-agelipidformedwithsaturatedfattyacids.
ThebenefitaccruedbytheGIBphytohormonestothealgaewasaffectedbythebiosynthesisandflowdirectionofNADPH,i.
e.
,thecompetitionofcellproliferationandlipidconversion.
NADPHisproducedbychloroplastsandsourcedfromlightabsorbedbychlorophyll,sotheimpactofthephytohormonesonphotosynthesiswillbethekeytopromotesimultaneousbiomassandlipidaccu-mulationinmicroalgae.
CouplingalgaebasedbiofuelproductionwithanaerobicdigestionofkitchenwasteTheaboveresultsindicatedanimprovementbytheGIBphytohormonesintheadaptabilityandlipidaccumula-tionofmicroalgaeculturedineffluentfromanaerobicdigestionofkitchenwaste.
Table5liststhecostofalgaebiomassproductionfromthreeculturepatterns,BG11,B+ADE-KW,andS+ADE-KW,withoutconsideringthefreshwaterneededbybothdilutionofADE-KWandpreparationofBG11.
TheADE-KWwasusedasazerocostcontroltoestimatetheadditionalinvestmentfornutrientsorphytohormones,andthecalculationofGIBamountneededbyS+ADE-KWgroupwasbasedonthefactthat1Lseedculturewassufficientfor5Lbatchcul-tivationaccordingtothebiomassconcentrationsattheTable5AcomparisonofcostsofalgaebiomassproductionfromBG11,B+ADE-KW,andS+ADE-KW,respectivelyaThecostofBG11rootsinchemicalsneededbythemediumAlgaespeciesBG11a(CNYkg1biomass)S+ADE-KW(CNYkg1biomass)B+ADE-KW(CNYkg1biomass)ChlorellaSDEC-11140.
3±1.
917.
7±0.
776.
3±2.
8ScenedesmusSDEC-13182.
0±15.
413.
5±0.
575.
1±2.
6Page15of18Peietal.
BiotechnolBiofuels(2017)10:76beginningandendofgrowthperiod.
Apparently,addi-tionoftheGIBphytohormonesinADE-KWforalgalcultivationismoreeconomicthandosingnutrientsinBG11medium,especiallyinS+ADE-KWculturalpatternwheretheinvestmentonlyaccountedforahundredthofthatinBG11.
Thecomparisonlaidafoundationtoacon-ceptplantcouplingalgae-basedbiofuelproductionwithADE-KW,asshowninFig.
7.
IntheplantwheretheADE-KWwascollected,therearemature,advancedtechnologicaloperationsinclud-ingbiodieselproductionfromtheoilseparatedfromkitchenwasteandanaerobicdigestionofkitchenwaste(Fig.
7).
Thisinfrastructurecouldbenefittheconversionofthe'microalgaebiomasstobiodieselorbiogas,'Basedontheresultsinthelaboratory,thestageforintroduc-tionofGIBtoalgaewassetbetweenalgaeprimingandthebeginningofalgaecultivation,asshowninFig.
7.
Microalgaearethengrownineffluentfromanaerobicdigestionuntilharvest.
Theharvestedbiomassmaybesentintwodirections,assessedbasedonlipidcontent,withacriticalpointof40%,accordingtothereportofSialveetal.
[21].
Biomasscontainingmorethan40%lipidentersthetransesterificationprocessafteroilextraction,andtheresidueswouldbeanaerobicallydigested.
Chistidiscussedthetreatmentofthemicroalgaeresiduesafterbiodieselproduction,highlightingitspotentialtorecoverbiogasandthenoffsetapartoftheenergydemandsoftheseprocesses[60].
Basedonenergybalanceandener-geticrecoveryofcellbiomass,itisbettertotransferthebiomasswithlessthan40%lipidcontentdirectlyintotheanaerobicdigestionprocesswiththekitchenwaste,whichcouldalsoimprovethemethaneyieldbyareduc-tionofthecarbon-to-nitrogenratiointhedigester.
Theenhancementinthemethaneyieldisnormalinco-diges-tionofalgaewithotherdigesterfeedstocks,becausethehighnitrogencontentinalgaecouldimprovethedigest-ibilityofcarbon-richsubstrate[61],likekitchenwastewithhighratioofcarbontonitrogen[62].
TheconceptplantwehaveproposedandshowninFig.
7combinesalgae-basedbiofuelproductionwithADE-KWtreatmentandformsacyclewherealmostnonitrogenorphosphorusislost.
Ajeejetal.
proposedthatcouplingwastewatertreatmentwiththemicroal-gaeculturewasapromisingavenuetowardtheproduc-tionofrenewablebiodieselorbiogas[61].
Moreover,theconceptplantbasedonakitchenwastetreatmentplanttakesfulladvantageoftheexistingtransesterificationandanaerobicdigestioninfrastructure,whichcouldmitigatesomeenvironmentalandeconomicburdens.
Thiswillbeanenvironment-friendlyproject.
Fig.
7Aconceptplantforcouplingalgae-basedbiofuelproductionandanaerobicdigestionofkitchenwaste.
ADE-KW:effluentfromanaerobicdigestionofkitchenwaste;GIBagriculturalphytohormonescontaininggibberellin,indole-3-acetic,acidandbrassinolide;S+ADE-KWculturingalgaeinADE-KWwithinoculumpretreatedwithGIB;B+ADE-KWintroducingGIBintoalgaeinADE-KWatbatchcultivationstagePage16of18Peietal.
BiotechnolBiofuels(2017)10:76ConclusionsThestudytriedtostimulateaccumulationofbiomassandbiocompoundsinalgaegrowninADE-KWwithagriculturalphytohormones(GIB)addedatdifferentalgalgrowthstages.
RegardingcellularultrastructureunderADE-KWculture,thedamagewasmostobvi-ouslyobservedincellsofSDEC-11includingdisinte-gratedmembranesystemandformationofvacuoles,whiletheinterferenceincellsofSDEC-13justexhib-itedadecreaseinthespacebetweenchloroplastandtheincreaseinthesizeofstarchgranule.
Improve-mentsintermsofbiomassconcentration,celldensity,andphotosyntheticpigmentsoftwoalgaestrainscouldbefoundinallgroupstreatedbyGIB.
Thesecharacter-isticswerealsoexhibitedwithultrastructureinclud-ingstrongerchloroplastandcellnucleus.
Theresultswereaccompaniedbyvariationsofcellmorphologyandcellweight,whichwereallrelatedtothestagesofGIBaddition,thegrowthmedium,andthealgaespe-cies.
Theaccumulationsofcarbohydrateandlipiddif-feredwithregardtodifferentGIBdosingstagesandculturemedia,andtherewasapositiveresponsetoGIBadditionintwoalgaestrainsculturedwithADE-KW.
Theseeffectsmighthaveresultedfromthesyn-thesisandconsumptionofG3PandNADPHbeinginfluencedbythehormones.
ItisnotablethatlipidproductivityofSDEC-13inS+ADE-KWincreasedto12.
67±0.
54mgL1d1from5.
30±0.
11L1d1undertheADE-KWcontrol.
Primingofalgalseedwithhormonesprovidesanoptionforimprovingalgalactivityinanonidealenvironment.
Additionofagri-culturalphytohormonescouldbeabeneficialstrategyforpromotingtheaccumulationsofbiomassandbio-compoundsinalgaeculturedwithwastewater.
Basedonthesefindings,aconceptplantforcouplingalgae-basedbiofuelproductionandanaerobicdigestionofkitchenwastecanbeestablished.
AbbreviationsADE-KW:effluentfromanaerobicdigestionofkitchenwaste;GA3:gibberellin;IAA:indole-3-aceticacid;BL:brassinolide;DA-6:diethylaminoethylhexanoate;GIB:agriculturalphytohormonescontaininggibberellin,indole-3-aceticacid,andbrassinolide;S+ADE-KW:culturingalgaeinADE-KWwithinoculumpre-treatedwithGIB;B+ADE-KW:introducingGIBintoalgaeinADE-KWatbatchcultivationstage;FA:fattyacid;MUFA:monounsaturatedfattyacid;PUFA:polyunsaturatedfattyacid;ML:mainfattyacidsinmembranelipid;SL:otherfattyacidsmainlyinstoragelipid;SFA:saturatedfattyacid;G3P:glyceralde-hyde-3-phosphate;NADPH:nicotinamideadeninedinucleotidephosphate;TAG:triacylglycerol.
AdditionalfileAdditionalfile1:TableS1.
Comparisonofeffluentfromanaerobicdigestionofdifferentdigesterfeedstocks.
TableS2.
Fattyacidlevels(%oftotalFAME)inChlorellaSDEC-11andScenedesmusSDEC-13.
Authors'contributionsHPdesignedtheexperimentsandeditedthemanuscript.
LJcarriedoutthewholeexperimentsanddraftedthemanuscript.
QHandZYparticipatedinbuildingashakertablewithillumination.
Allauthorsreadandapprovedthefinalmanuscript.
Authordetails1SchoolofEnvironmentalScienceandEngineering,ShandongUniversity,No.
27ShandaNanRoad,Jinan250100,China.
2ShandongProvincialEngineeringCentreonEnvironmentalScienceandTechnology,No.
17923JingshiRoad,Jinan250061,China.
AcknowledgementsNotapplicable.
CompetinginterestsTheauthorsdeclarethattheyhavenocompetinginterests.
AvailabilityofdataandmaterialsDatasharingisnotapplicabletothisarticleasnodatasetsweregeneratedoranalyzedduringthecurrentstudy,andalldatageneratedoranalyzedduringthisstudyareincludedinthispublishedarticle.
FundingThisresearchwasfundedby:NationalScienceFundforExcellentYoungSchol-ars(51322811);ScienceandTechnologyDevelopmentPlanningofShandongProvince(2012GGE27027);theProgramforNewCenturyExcellentTalentsintheUniversityofMinistryofEducationofChina(GrantNo.
NCET-12-0341).
Received:13December2016Accepted:14March2017References1.
ZhouY,SchidemanL,YuG,ZhangY.
Asynergisticcombinationofalgalwastewatertreatmentandhydrothermalbiofuelproductionmaximizedbynutrientandcarbonrecycling.
EnergyEnvironSci.
2013;6:3765.
2.
CaiT,ParkSY,RacharaksP,LiY.
CultivationofNannochloropsissalinausinganaerobicdigestioneffluentasanutrientsourceforbiofuelproduction.
ApplEnergy.
2013;108:486–92.
3.
JiangL,PeiH,HuW,JiY,HanL,MaG.
ThefeasibilityofusingcomplexwastewaterfromamonosodiumglutamatefactorytocultivateSpirulinasubsalsaandaccumulatebiochemicalcomposition.
BioresourTechnol.
2015;180:304–10.
4.
MuradovN,TahaM,MirandaAF,WredeD,KadaliK,GujarA,StevensonT,BallAS,MouradovA.
Fungal-assistedalgalflocculation:applicationinwastewatertreatmentandbiofuelproduction.
BiotechnolBiofuels.
2015;8:24.
5.
ChenG,ZhaoL,QiY.
Enhancingtheproductivityofmicroalgaecultivatedinwastewatertowardbiofuelproduction:acriticalreview.
ApplEnergy.
2015;137:282–91.
6.
JuM,BaeSJ,KimJY,LeeDH.
SolidrecoveryrateoffoodwasterecyclinginSouthKorea.
JMaterCyclesWasteManag.
2016;18:419–26.
7.
USEPA.
America'sfoodwasteproblem.
2016.
https://www.
epa.
gov/sciencematters/americas-food-waste-problem.
8.
TawfikA,El-QelishM.
Continuoushydrogenproductionfromco-digestionofmunicipalfoodwasteandkitchenwastewaterinmesophilicanaerobicbaffledreactor.
BioresourTechnol.
2012;114:270–4.
9.
El-MashadHM,ZhangR.
Biogasproductionfromco-digestionofdairymanureandfoodwaste.
BioresourTechnol.
2010;101:4021–8.
10.
SialveB,BernetN,BernardO.
Anaerobicdigestionofmicroalgaeasanecessarysteptomakemicroalgalbiodieselsustainable.
BiotechnolAdv.
2009;27:409–16.
11.
ParkJ,JinH,LimB,ParkK,LeeK.
AmmoniaremovalfromanaerobicdigestioneffluentoflivestockwasteusinggreenalgaScenedesmussp.
BioresourTechnol.
2010;101:8649–57.
12.
ShinDY,ChoHU,UtomoJC,ChoiY,XuX,ParkJM.
BiodieselproductionfromScenedesmusbijugagrowninanaerobicallydigestedfoodwastewa-tereffluent.
BioresourTechnol.
2015;184:215–21.
Page17of18Peietal.
BiotechnolBiofuels(2017)10:7613.
RacharaksR,GeX,LiY.
Cultivationofmarinemicroalgaeusingshalegasflowbackwaterandanaerobicdigestioneffluentasthecultivationmedium.
BioresourTechnol.
2015;191:146–56.
14.
BorgesJA,RosaGM,MezaLHR,HenrardAA,SouzaMRAZ,CostaJAV.
Spirulinasp.
LEB-18cultureusingeffluentfromtheanaerobicdigestion.
BrazJChemEng.
2013;30:277–88.
15.
LiuZ,LiuY.
Synergisticintegrationofelectrocoagulationandalgalcultiva-tiontotreatliquidanaerobicdigestioneffluentandaccumulatealgalbiomass.
ProcessBiochem.
2016;51:89–94.
16.
TrewavasA.
HowdoplantgrowthsubstancesworkPlantCellEnviron.
1981;4:203–28.
17.
XuZ,XueH.
Planthormones:functionandmolecularmechanism.
Shang-hai:ShanghaiScienceandTechnologyPress;2012.
18.
VanceBD.
PhytohormoneeffectsoncelldivisioninChlorellapyrenoidosaChick(TX-7-11-05)(Chlorellaceae).
JPlantGrowthRegul.
1987;5:413–8.
19.
MazurH,KnopA,SynakR.
Idole-3-aceticacidintheculturemediumoftwoaxenicgreenmicroalgae.
JApplPhycol.
2001;13:35–42.
20.
FalkowskaM,PietryczukA,PiotrowskaA,BajguzA,GrygorukA,CzerpakR.
Theeffectofgibberellicacid(GA3)ongrowth,metalbiosorptionandmetabolismofthegreenalgaeChlorellavulgaris(Chlorophyceae)Beijerinckexposedtocadmiumandleadstress.
PolJEnvironStud.
2011;20:53–9.
21.
BajguzA,Piotrowska-NiczyporukA.
Interactiveeffectofbrassinosteroidsandcytokininsongrowth,chlorophyll,monosaccharideandproteincon-tentinthegreenalgaChlorellavulgaris(Trebouxiophyceae).
PlantPhysiolBiochem.
2014;80:176–83.
22.
JiangL,PeiH,HuW,HanF,ZhangL,HouQ.
Effectofdiethylaminoethylhexanoateontheaccumulationofhigh-valuebiocompoundsproducedbytwonovelisolatedmicroalgae.
BioresourTechnol.
2015;197:178–84.
23.
LeBailA,BernardB,KowalczykN,KowalczykM,GicquelM,LePanseS,StewartS,ScornetD,CockJM,LjungK,CharrierB.
AuxinmetabolismandfunctioninthemulticellularbrownalgaEctocarpussiliculosus.
PlantPhysiol.
2010;153:128–44.
24.
Piotrowska-NiczyporukA,BajguzA,ZambrzyckaE,Godlewska-ZylkiewiczB.
PhytohormonesasregulatorsofheavymetalbiosorptionandtoxicityingreenalgaChlorellavulgaris(Chlorophyceae).
PlantPhysiolBiochem.
2012;52:52–65.
25.
YoshidaK,IgarashiE,MukaiM,HirataK,MiyamotoK.
Inductionoftoler-ancetooxidativestressinthegreenalga,Chlamydomonasreinhardtii,byabscisicacid.
PlantCellEnviron.
2003;26:451–7.
26.
YoshidaK,IgarashiE,WakatsukiE,MiyamotoK,HirataK.
Mitigationofosmoticandsaltstressesbyabscisicacidthroughreductionofstress-derivedoxidativedamageinChlamydomonasreinhardtii.
PlantSci.
2004;167:1335–41.
27.
BalmerA,PastorV,GamirJ,FlorsV,Mauch-ManiB.
The'prime-ome':towardsaholisticapproachtopriming.
TrendsPlantSci.
2015;20:7.
28.
GrabskiK,TukajZ.
AutoinductionactivityofaconditionedmediumobtainedfromhighdensityculturesofthegreenalgaScenedesmussubspicatus.
JApplPhycol.
2008;20:323–30.
29.
GuccioneA,BiondiN,SampietroG,RodolfiL,BassiN,TrediciMR.
Chlorellaforproteinandbiofuels:fromstrainselectiontooutdoorcultivationinaGreenWallPanelphotobioreactor.
BiotechnolBiofuels.
2014;7:84.
30.
TatkowskaE,BuczekJ.
EffectofphytohormonesonthegrowthofScened-esmusquadricauda(Turp.
)Breb.
ActaSocBotPol.
1980;49:211–20.
31.
TateJJ,Gutierrez-WingMT,RuschKA,BentonMG.
TheeffectsofplantgrowthsubstancesandmixedculturesongrowthandmetaboliteproductionofgreenalgaeChlorellasp.
:areview.
JPlantGrowthRegul.
2013;32:417–28.
32.
JiangL,PeiH,HuW,HouQ,HanF,NieC.
Biomassproductionandnutri-entassimilationbyanovelmicroalga,Monoraphidiumspp.
SDEC-17,cultivatedinahigh-ammoniawastewater.
EnergyConversManag.
2016;123:423–30.
33.
PanchaI,ChokshiK,GeorgeB,GhoshT,PaliwalC,MauryaR,MishraS.
NitrogenstresstriggeredbiochemicalandmorphologicalchangesinthemicroalgaeScenedesmussp.
CCNM1077.
BioresourTechnol.
2012;156:146–54.
34.
StateEnvironmentalProtectionAdministration.
Monitoringmethodofwaterandwastewater.
Beijing:ChinaEnvironmentalSciencePress;2002.
p.
246–8.
35.
BuchananBB,GruissemW,JonesRL.
Biochemistryandmolecularbiologyofplants.
AmSocPlantPhysiol.
2000;21:369–76.
36.
WangH,ZhangW,ChenL,WangJ,LiuT.
Thecontaminationandcontrolofbiologicalpollutantsinmasscultivationofmicroalgae.
BioresourTechnol.
2013;128:745–50.
37.
Demmig-AdamsB,AdamsWI.
ChlorophyllandcarotenoidcompositioninleavesofEuonymuskiautschovicusacclimatedtodifferentdegreesoflightstressinthefield.
FunctPlantBiol.
1996;23:649–59.
38.
OziokoFU,ChiejinaNV,OgbonnaJC.
EffectofsomephytohormonesongrowthcharacteristicsofChlorellasorokinianaIAM-C212underphotoau-totrophicconditions.
AfrJBiotechnol.
2015;14:2367–76.
39.
WuY,HuH,YuY,ZhangT,ZhuS,ZhuangL,ZhangX,LuY.
Microalgalspeciesforsustainablebiomass/lipidproductionusingwastewaterasresource:areview.
RenewSustEnergRev.
2014;33:675–88.
40.
ParkW,YooG,MoonM,KimCW,ChoiY,YangJ.
Phytohormonesup-plementationsignificantlyincreasesgrowthofChlamydomonasreinhardtiicultivatedforbiodieselproduction.
ApplBiochemBiotechnol.
2013;171:1128–42.
41.
VigeolasH,DubyF,KaymakE,NiessenG,MotteP.
IsolationandpartialcharacterizationofmutantswithelevatedlipidcontentinChlorellasorokinianaandScenedesmusobliquus.
JBiotechnol.
2012;162:3–12.
42.
PolishchukA,ValevD,TarvainenM,MishraS,KinnunenV,AntalT,YangB,RintalaJ,TyystjarviE.
CultivationofNannochloropsisforeicosapentaenoicacidproductioninwastewatersofpulpandpaperindustry.
BioresourTechnol.
2015;193:469–76.
43.
LurlingM.
Effectofgrazing-associatedinfochemicalsongrowthandmorphologicaldevelopmentinScenedesmusacutus(Chlorophyceae).
JPhycol.
1998;34:578–86.
44.
SiverP,TrainorFR.
MorphologicalcontrolandphysiologyofScenedesmusstrain170.
Phycologia.
1981;20:1–11.
45.
PrasadPVD.
Effectofsomegrowthsubstancesonthreefreshwatergreenalgae.
CryptogamieAlgol.
1982;4:315–22.
46.
GeorgiannaDR,MayfieldSP.
Exploitingdiversityandsyntheticbiologyfortheproductionofalgalbiofuels.
Nature.
2012;488:329–35.
47.
WilliamsPJ,LaurensLML.
Microalgaeasbiodieselandbiomassfeed-stocks:reviewandanalysisofthebiochemistry,energeticsandeconom-ics.
EnergyEnvironSci.
2010;3:554–90.
48.
GiordanoM,PalmucciM,RavenJA.
Growthratehypothesisandefficiencyofproteinsynthesisunderdifferentsulphateconcentrationsintwogreenalgae.
PlantCellEnviron.
2015;38:2313–7.
49.
SinghED.
Cadmiumaccumulationanditsinfluenceonlipidperoxidationandantioxidativesysteminanaquaticplant,BacopamonnieriL.
Chemos-phere.
2006;62:233–46.
50.
PiotrowskaA,CzerpakR,PietryczukA,OlesiewiczA,WedolowskaM.
TheeffectofindomethacinonthegrowthandmetabolismofgreenalgaChlorellavulgarisBeijerinck.
PlantGrowthRegul.
2008;55:125–36.
51.
YuX,SunJ,SunY,ZhengJ,WangZ.
Metabolomicsanalysisofphytohor-monegibberellinimprovinglipidandDHAaccumulationinAuranti-ochytriumsp.
BiochemEngJ.
2016;112:258–68.
52.
LvJ,ChengL,XuX,ZhangL,ChenH.
EnhancedlipidproductionofChlo-rellavulgarisbyadjustmentofcultivationconditions.
BioresourTechnol.
2010;101:6797–804.
53.
SalamaE,KabraAN,JiM,KimJR,MinB,JeonB.
Enhancementofmicro-algaegrowthandfattyacidcontentundertheinfluenceofphytohor-mones.
BioresourTechnol.
2014;172:97–103.
54.
LiuJ,QiuW,SongY.
StimulatoryeffectofauxinsonthegrowthandlipidproductivityofChlorellapyrenoidosaandScenedesmusquadricauda.
AlgalRes.
2016;18:273–80.
55.
JusohM,LohSH,ChuahTS,AzizA,ChaTS.
Indole-3-aceticacid(IAA)inducedchangesinoilcontent,fattyacidprofilesandexpressionoffourfattyacidbiosyntheticgenesinChlorellavulgarisatearlystationarygrowthphase.
Phytochemistry.
2015;111:65–71.
56.
BarsantiL,GualtieriP.
Algae:anatomy,biochemistry,andbiotechnology.
BocaRaton:CRCPress;2014.
p.
93–9.
57.
TanKWM,LeeYK.
Thedilemmaforlipidproductivityingreenmicroalgae:importanceofsubstrateprovisioninimprovingoilyieldwithoutsacrific-inggrowth.
BiotechnolBiofuels.
2016;9:255.
58.
KlokAJ,LamersPP,MartensDE,DraaismaRB,WijffelsRH.
Edibleoilsfrommicroalgae:insightsinTAGaccumulation.
TrendsBiotechnol.
2014;32:521–8.
59.
HuQ,SommerfeldM,JarvisE,GhirardiM,PosewitzM,SeibertM,DarzinsA.
Microalgaltriacylglycerolsasfeedstocksforbiofuelproduction:per-spectivesandadvances.
PlantJ.
2008;54:621–39.
Page18of18Peietal.
BiotechnolBiofuels(2017)10:7660.
ChistiY.
Biodieselfrommicroalgaebeatsbioethanol.
TrendsBiotechnol.
2008;26:126–31.
61.
AjeejA,ThanikalJV,NarayananCM,KumarRS.
RenewSustEnergRev.
2015;50:270–6.
62.
ZhangJ,WangQ,ZhengP,WangY.
Anaerobicdigestionoffoodwastestabilizedbylimemudfrompapermakingprocess.
BioresourTechnol.
2014;170:270–7.

HostKvm:夏季优惠,香港云地/韩国vps终身7折,线路好/机器稳/适合做站

hostkvm怎么样?hostkvm是一家国内老牌主机商家,商家主要销售KVM架构的VPS,目前有美国、日本、韩国、中国香港等地的服务,站长目前还持有他家香港CN2线路的套餐,已经用了一年多了,除了前段时间香港被整段攻击以外,一直非常稳定,是做站的不二选择,目前商家针对香港云地和韩国机房的套餐进行7折优惠,其他套餐为8折,商家支持paypal和支付宝付款。点击进入:hostkvm官方网站地址hos...

日本CN2、香港CTG(150元/月) E5 2650 16G内存 20M CN2带宽 1T硬盘

提速啦简单介绍下提速啦 是成立于2012年的IDC老兵 长期以来是很多入门级IDC用户的必选商家 便宜 稳定 廉价 是你创业分销的不二之选,目前市场上很多的商家都是从提速啦拿货然后去分销的。提速啦最新物理机活动 爆炸便宜的香港CN2物理服务器 和 日本CN2物理服务器香港CTG E5 2650 16G内存 20M CN2带宽 1T硬盘 150元/月日本CN2 E5 2650 16G内存 20M C...

HostSailor:罗马尼亚机房,内容宽松;罗马尼亚VPS七折优惠,罗马尼亚服务器95折

hostsailor怎么样?hostsailor成立多年,是一家罗马尼亚主机商家,机房就设在罗马尼亚,具说商家对内容管理的还是比较宽松的,商家提供虚拟主机、VPS及独立服务器,今天收到商家推送的八月优惠,针对所有的产品都有相应的优惠,商家的VPS产品分为KVM和OpenVZ两种架构,OVZ的比较便宜,有这方面需要的朋友可以看看。点击进入:hostsailor商家官方网站HostSailor优惠活动...

javmoo.info为你推荐
futureshop加拿大Boxing day, 一般商场几点开门? 什么类的商品打折?打折力度怎样呢? 请逐条sherylsandbergLean In是一个怎样的组织18comic.fun黑色禁药http://www.lovecomic.cn/attachment/Fid_18/18_4_00d3b0cb502ea74.jpg这幅画名字叫什么?7788k.com以前有个网站是7788MP3.com后来改成KK130现在又改网站域名了。有知道现在是什么域名么?冯媛甑冯媛甄详细资料777k7.com怎么在这几个网站上下载图片啊www.777mu.com www.gangguan23.comip在线查询通过对方的IP地址怎么样找到他的详细地址?5xoy.com求个如月群真汉化版下载地址789se.comhttp://gv789.com/index.php这个网站可信吗?是真的还是假的!www.zhiboba.com看NBA直播的网站哪个知道
美国虚拟主机购买 2019年感恩节 bbr 最好的空间 bgp双线 共享主机 服务器托管什么意思 免费申请网站 域名与空间 双线asp空间 镇江高防 云销售系统 七十九刀 免费赚q币 新网dns 酷锐 美国asp空间 sonya e-mail 卡巴斯基免费下载 更多