sion4444yy.com

4444yy.com  时间:2021-04-09  阅读:()
NANOEXPRESSOpenAccessHighperformanceofcarbonnanotubes/silvernanowires-PEThybridflexibletransparentconductivefilmsviafacilepressing-transfertechniqueMao-xiangJing*,ChongHan,MinLiandXiang-qianShenAbstractToobtainlowsheetresistance,highopticaltransmittance,smallopenspacesinconductivenetworks,andenhancedadhesionofflexibletransparentconductivefilms,acarbonnanotube(CNT)/silvernanowire(AgNW)-PEThybridfilmwasfabricatedbymechanicalpressing-transferprocessatroomtemperature.
Themorphologyandstructurewerecharacterizedbyscanningelectronmicroscope(SEM)andatomicforcemicroscope(AFM),theopticaltransmittanceandsheetresistanceweretestedbyultraviolet-visiblespectroscopy(UV-vis)spectrophotometerandfour-pointprobetechnique,andtheadhesionwasalsomeasuredby3Mstickytape.
Theresultsindicatethatinthishybridnanostructure,AgNWsformthemainconductivenetworksandCNTsasassistantconductivenetworksarefilledintheopenspacesofAgNWsnetworks.
Thesheetresistanceofthehybridfilmscanreachapproximately20.
9to53.
9Ω/withtheopticaltransmittanceofapproximately84%to91%.
ThesecondmechanicalpressingstepcangreatlyreducethesurfaceroughnessofthehybridfilmandenhancetheadhesionforcebetweenCNTs,AgNWs,andPETsubstrate.
Thisprocessishopefulforlarge-scaleproductionofhigh-endflexibletransparentconductivefilms.
Keywords:Flexibletransparentconductivefilm;CNTs/AgNWs;Adhesion;Pressing-transferBackgroundFlexibletransparentconductivefilms(FTCFs)havere-ceivedmuchattentionbecauseoftheirelectricalandop-ticalpropertiesandtheirfeasibilityinbending,folding,andmountingtoasurface,whichhaveagreatpotentialtobeappliedinalarge-areadisplay,touchscreen,light-emittingdiode,solarcell,semiconductorsensor,etc.
[1-7].
Indiumtinoxide(ITO)asatraditionaltransparentconductivematerialhasbeenwidelyusedfororganicsolarcellsandlight-emittingdiodes;however,itcannotmeetthemarketdemandofFTCFduetoitsrisingcostandbrittlenessandhenceithaslimitedapplicabilityinflexibleelectronicdevices[8-10].
Carbonnanotubes(CNTs)[11,12],graphene[13,14],orahybridofthem[15]haveattractedsignificantinterestandhavebeensuccessfullyusedastransparentconductivematerialsonflexiblesubstratesinorganiclight-emittingdiodesandsolarcells.
However,theirperformanceintermsofsheetresistanceandtransparencyisstillinferiortoITO.
Metalnanowires(MNWs)areapromisingreplacementofITO,CNTs,orgraphenebecauseoftheirhighdccon-ductivityandopticaltransmittance[16,17].
Goldnano-wire(AuNW)[18],silvernanowire(AgNW)[19-23],coppernanowire(CuNW)[24-27],aluminiumnanowire(AlNW)[28],andhybrid[29,30]filmshavebeendemon-stratedtohaveopticaltransmittancecomparabletoanITOfilmatthesamesheetresistance.
EspeciallyMNWsonaplasticsubstratecanhavebettermechanicalprop-ertiesthanITO.
Nevertheless,researchersfoundthatMNWfilmshaveelectricallynonconductiveopenspaces(approximately200to1,000μm),andtheopenspacesbecomebiggerforsparsernetworks[31,32],andsomeapplicationsre-quirecontinuouslyconductiveorlownonconductivere-gions.
ThelargeopeningsinaMNWnetworkcouldbeproblematicforsomedeviceapplicationswhenthechargediffusionpathlengthislessthantheholesize.
*Correspondence:mxjing2004@mail.
ujs.
edu.
cnInstituteforAdvancedMaterials,JiangsuUniversity,Xuefuroad301Zhenjiang212013,China2014Jingetal.
;licenseeSpringer.
ThisisanOpenAccessarticledistributedunderthetermsoftheCreativeCommonsAttributionLicense(http://creativecommons.
org/licenses/by/4.
0),whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalworkisproperlycredited.
Jingetal.
NanoscaleResearchLetters2014,9:588http://www.
nanoscalereslett.
com/content/9/1/588OnestrategytoovercomethedefectofMNWfilmsistofillcomponentssuchasgraphene[32-34],CNTs[35],conductivepolymers[36-39],ormetaloxides[40],butthesereportedmethodsmaycauseprocessingandcostproblems.
IncreasingthedensityofMNWsmayalsore-ducetheopenspacesandthesheetresistance,buttheopticaltransmittancemayalsobegreatlyaffected.
Meanwhile,thepriceofMNWs,especiallyAuNWsandAgNWs,isstilltoohightobeheavilyusedfordecreas-ingmanufacturingcost.
Significantimprovementisneededfornewmaterialsorprocesseswhichcanbringcost-effectiveandreliabletransparentconductivefilms.
Inthiswork,weattemptedtomixanduseCNTsandAgNWsasconductivematerialsandtransferCNT/AgNWhybridsonflexiblepolyethyleneterephthalate(PET)filmandthenformCNT/AgNW-PETfilmsbyafaciletwo-stepmechanicalpressingtechnique.
Inthisdesign,AgNWswerethemainconductivenetworks,andCNTsastheassistantconductivenetworkswerefilledintheopenspacesoftheAgNWnetworks;bothofthemhadgoodconnections,whichmadetheCNT/AgNW-PETfilmspossesslowsheetresistanceandhighopticaltransmittance.
MethodsThesilvernanowireswithadiameterofapproximately50to90nmandalengthofapproximately10to20μmandthemulti-walledcarbonnanotubeswithadiameterofapproximately20to50nmandalengthofapproxi-mately5to15μmusedduringthefabricationofthefilmswerepurchasedfromNanjingXianfengTechCo.
,Ltd(Nanjing,Jiangsu,China)andsuppliedwithacon-centrationof10and2mg/mLinalcohol,respectively.
Thesuspensionswerefurtherdilutedtoaconcentrationof0.
1and0.
01mg/mL,respectively,inalcoholwhichwassubsequentlyusedinallthetransferprocesses.
TheschematicrepresentationofthepreparationprocessofCNT/AgNW-PETfilmsisshowninFigure1a.
First,thehybridsuspensionsofCNTs/AgNWswithdif-ferentratios(mL/mLapproximately0.
5/2,1/2,2/2,4/2,2/1,2/3,2/4)wereobtainedbydirectmixingofCNTandAgNWsuspensions,dilutingtoavolumeof10mLandthensupersonicdispersingtreatmentfor30min.
Then,thehybridsuspensionwasvacuumfilteredbyusingapolyvinylidenefluoride(PVDF)filtermembrane(Φ5cm,holediameterof0.
2μm).
Third,thehybridCNT/AgNWfilmwastransferredontoaPETsubstratebypressingthefiltermembraneusingastainlesssteelplateandapressmachineatapressureof3MPafor10s.
Then,theCNT/AgNW-PETfilmwasobtainedafterliftingthepressureandremovingthePVDFfiltermem-braneslowly.
Whenthesemi-finishedproductwasdriedatroomtemperatureformorethan30min,toenhancetheadhesionofCNT/AgNWnetworksonthePETsub-strateandreducethejunctionresistancebetweenCNTsandAgNWs,asecondpressingatapressureof10MPafor30swasimplementedusingabareglassplateasacounter.
Asacomparison,ahybridfilmwasheatedto120°Cfor30mintotesttheeffectofheatingontheopticaltransmittanceandsheetresistance.
Opticaltransmittance(T)wasobtainedusingaBeijingPGeneralTU-1900ultraviolet-visiblespectroscopy(UV-vis)spectrophotometer(BeijingPurkinjeGeneralInstru-mentCo.
,Ltd.
,Beijing,China)withablankPETasthereference.
Thesurfacemorphologyandstructuralpic-tureswereobtainedusingaJEOLJSM-7001fieldemis-sionscanningelectronmicroscope(SEM;JEOLLtd.
,Tokyo,Japan)andShanghaiZhuolunMicroNanoD3000(a)(b)(c)(d)Figure1TransferpreparationofCNT/AgNW-PETfilms(a)andsuspensions(b);SEMpicturesofAgNWs(c)andCNTs(d).
Jingetal.
NanoscaleResearchLetters2014,9:588Page2of7http://www.
nanoscalereslett.
com/content/9/1/588atomicforcemicroscope(AFM;ShanghaiZhuolunMicroNanoInstrumentCo.
,Ltd.
,China).
Sheetresist-ance(Rs)wasmeasuredusingfour-pointprobetech-niquebydepositingsilverpaintwithathicknessmorethan80nmatthecornersinasquareshapewithsidesofapproximately3mmandatleasttenlocationsacrossthesample,andthevaluesreportedinthisworkarethemeanvalueobtainedacrosstheentirefilm.
Theadhe-siontestwascarriedoutbyobservingtheremainingnanowiresadheringtothePETsubstrateandmeasuringtheRsandToffilmswhenthe3Mstickytapewaspeeledoff.
ResultsanddiscussionFigure1ashowstheschematicrepresentationofthetransferprocessofCNT/AgNWnetworksontothePETsubstrate.
Itcanbefoundthatthisprocesshasseveraldistinguishingfeatures.
Theentireprocessisimple-mentedatroomtemperatureandtakesonlyseveralmi-nutes.
Itisverycriticalforactualproductionduetoavoidingthedisadvantagesfromhightemperatureandcomplicatedprocess.
Theprocessisalsoeasytocontrolandadjust.
First,themeasuredamountofCNTsandAgNWsaremixedinalcoholandsonicatedfor30minwithoutaddinganysurfaceactiveagentthatisenoughtoguaranteethatthesuspensionisstableformorethan12h,andthesuspensionandSEMpicturesofAgNWsandCNTsareshowninFigure1b,c.
Thenanowirescanbedispersedverywellbythismethod.
Then,thesuspen-sionisfilteredonacommerciallyavailablePVDFfiltermembranetoobtainauniformfilmofCNTs/AgNWs.
Whereafter,thePVDFmembranebearingtheCNTs/AgNWsispressedagainstthePETsubstrateatamoder-atepressureof3MPa,becausewefoundthatinourex-perimentsthesheetresistanceofAgNWfilmhaslittlechangewhenpressedatapressureofmorethan3MPa,so3MPaisenoughforaAgNWfilmtoreduceresist-ance.
WhenthepressureisreleasedafterafewsecondsandthePVDFmembraneispeeledoffslowlyfromthesubstrate,theCNT/AgNWfilmisentirelytransferredontothesubstrate.
ThesizeofthehybridfilmislimitedonlybythesizeofthestartingPVDFfiltermembrane.
Wenotethatthestaticpressingstepcanbereplacedbyrollingpressingtorealizemassiveproduction.
Inthelaststep,ahighpressureof10MPaisneededtoenhancethejunctionbetweenCNTsand/orAgNWs.
Actually,thehighpressuretreatmentisalsoveryimportanttore-ducesurfaceroughnessandadhesionoffilmsthatwillbementionedinthelatersection.
Inbrief,theseabove-mentionedfeaturesarebeneficialforthelarge-scalepro-ductionofflexibletransparentconductivefilms.
Figure2showstheSEMpicturesofCNT/AgNWfilmsatdifferentratiosonPETsubstratesfabricatedwiththemechanicalpressing-transferprocess.
FromFigure2a,itcanbeseenthatthetransferprocessisextremelyuni-formovertheentireareaofthefilmleadingtoauni-formdensityofnanowireseverywhereonthesubstrate.
WiththedifferentratiosofCNTs/AgNWsshowninFigure2b,c,d,e,f,theAgNWsformthemainconductivenetworks,andCNTsastheassistantconductivenetworksarefilledintheopenspacesoftheAgNWsnetworks;bothofthemhavegoodconnections.
ThedifferencebetweenthemisthedensityofCNTnetworksduetothedifferentadditionamountofCNTs.
Thecorrespondingopticaltransmittanceandsheetre-sistanceofCNT/AgNW-PETfilmsofseveraldifferentratiosareshowninFigure3.
Itcanbeseenthatmostofthefilmshaveaconstanttransmittancefrom400to900nmandlowsheetresistance.
WhentheaddingamountofCNTstoAgNWsisapproximately0.
25to2,thesheetabcdefFigure2SEMpicturesofCNT/AgNWfilmsatdifferentratios.
Thedifferentratiosare(a)and(b)1:10,(c)2:10,(d)0.
5:10,(e)0.
25:10,and(f)1:15.
Jingetal.
NanoscaleResearchLetters2014,9:588Page3of7http://www.
nanoscalereslett.
com/content/9/1/588resistanceofhybridfilmscanreachapproximately20.
9to53.
9Ω/withtheopticaltransmittanceofapproxi-mately84to91%atλ=550nm(T550).
ToomuchadditionofCNTsorAgNWswouldaffectthesheetre-sistanceandtransmittanceofhybridfilmsbecauseoftheabsorptionofvisiblelightbyCNTsandreflectionbyAgNWs[31].
Meanwhile,wenotethatwhentheamountofAgNWsisfixedandwiththeincreaseofCNTsfrom0.
5to2,theopticaltransmittanceandsheetresistanceofAgNWfilmhavearelativelysmallchange,whiletheamountofCNTsisfixedandwiththeincreaseofAgNWsfrom5to20,theopticaltransmittanceandsheetresistanceofAgNWfilmhaveadistinctdecreasesimultaneously,soitcanbeconcludedthattheAgNWnetworkplaysamajorpartfortheopticaltransmittanceandsheetresistanceofCNT/AgNW-PETfilms,whiletheCNTnetworkjustplaysanassistantrole.
Forpracticalapplicationssuchasdisplaysandsolarcells,lowroughnessandenhancedadhesionarealsoal-waysrequired[41-45].
Inourstudy,theserequirementswererealizedbysecondmechanicalpressingatroomtemperature.
Figure4ashowstheSEMimageofaCNT/AgNW-PETfilmafterpressingat10MPafor30s.
Thecompressed,closelycontactpointsbetweenCNTsand/orAgNWscanbeseendistinctly,anditwillbebenefi-cialforstrongadhesion,lowroughness,andjunctionre-sistance.
Asaconsequence,theAFMimagesoftheCNT/AgNW-PETfilmbeforeandaftersecondpressinginFigure4b,cshowthatthesurfaceroughnessdecreasesgreatlyfrom97.
6to28.
1nmaftersecondmechanicalpressing.
Adhesiontestswereimplementedby3Mstickytape.
Althoughitisenoughforthehybridfilmtoreducethejunctionresistanceunder3MPa,andsecondmech-anicalpressinghaslittleeffectonthetransmittanceandsheetresistanceofthehybridfilmasshowninFigure5,wenotethatcomparingwiththosewithoutsecondpressingthehybridfilmaftersecondmechanicalpress-inghasstrongeradhesiontothePETsubstrate,andwetriedtopeelofftheCNT/AgNWfilmfromthePETsub-strateusing3Mstickytapebyfirmlyattachingitonthe300400500600700800900506070809010090%91%89%87%84%77%74%T%Wavelength(nm)Figure3OpticaltransmittanceandsheetresistanceofCNT/AgNW-PETfilmsbypressing-transferprocess,ablankPETsubstratewasthereference.
abcFigure4SEMandAFMimagesofCNT/AgNW-PETfilmandCNT/AgNWnetwork.
(a)SEMimageofCNT/AgNW-PETfilmpressedat10MPafor30s;AFMimagesoftheCNT/AgNWnetwork(b)beforeand(c)aftersecondpressing.
Jingetal.
NanoscaleResearchLetters2014,9:588Page4of7http://www.
nanoscalereslett.
com/content/9/1/588surfaceoftheCNT/AgNWfilm,butthefilmremainedonthePETwithoutvisiblechangeindicatingitsstrongadhesionbetweenCNTs/AgNWsandsubstrate.
Mean-while,fromtheresultsofRsandT550oftheCNT/AgNWfilmbeforeandafteradhesiontest,theRsofthefilmwithoutsecondpressingincreasesrapidlyfrom20.
9to117Ω/;theT550alsochangesfrom87%to91%.
WhilewithsecondpressingtheRsjustincreasesfrom20.
4to22.
3Ω/,theT550changesfrom85%to85.
5%.
Therefore,webelievethatthemainroleofthesecondmechanicalpressingisreinforcingtheadhesionforcebe-tweenCNTs,AgNWs,andPETsubstrateexceptforre-ducingsurfaceroughness.
Tocomparetheeffectofsecondpressingwithtraditionalheatingprocess[46],afilmofpressingtransferwithoutsecondpressingwasheatedat120°Candalsotestedby3Mstickytapeasshowninfilm2ofFigure5.
TheRsandT550offilm2byheatingprocessdecreasefrom41to32Ω/and90%to86%,respectively,whiletheRsoftheheatedfilmafteradhesiontestrisesdramaticallyto198Ω/,whichmeansthattheheatingprocessplaysarolenotasmuchassecondmechanicalprocessingforadhesionenhance-ment.
Furthermore,comparingwithotherreportedre-sults,e.
g.
,AgNWfilmwithRsapproximately20Ω/andT550approximately80%preparedviameyerrodcoatingandpressingunder18GPabyCui'sgroup[31],AgNWsfilmwithRsapproximately8.
6Ω/andT550approximately80%preparedviadrop-coatingandmech-anicalpressingunder25MPabyNoji'sgroup[45],andAgNW/CNTfilmwithRsapproximately17Ω/andexcellentstretchableproperty,butnoTinformationpre-paredviavacuumfiltrationandplasmonicweldingprocessbyWooandco-workers[35],ourresultsandthissimpletechniquehaveanobviousadvantageandpotentialtobeappliedtopracticefromtheeconomicandpracticalpointofview.
ConclusionsCNT/AgNW-PETflexibletransparentconductivefilmswerefabricatedbymechanicalpressing-transferprocessatroomtemperature.
AgNWsformthemainconductivenetworks,andCNTsastheassistantconductivenet-worksarefilledintheopenspacesoftheAgNWsnet-works;bothofthemhavegoodconnections,andthesheetresistanceofthehybridfilmsreachesapproxi-mately20.
9to53.
9Ω/withtheopticaltransmittanceofapproximately84to91%.
ThesecondmechanicalpressingstepcangreatlyreducethesurfaceroughnessofthehybridfilmandreinforcetheadhesionforcebetweenCNTs,AgNWs,andPETsubstrate.
Thisprocessismorehopefultobeusedinpracticalproductionofflexibletransparentconductivefilmscomparedwithtraditionalheating-treatmentprocess.
CompetinginterestsTheauthorsdeclarethattheyhavenocompetinginterests.
Authors'contributionsSXQdesignedtheresearch,JMXperformedtheexperimentsandwrotethemainmanuscripttextandpreparedallfigures,andLMandHCdidsometestingworkandmodifiedthemanuscriptandfigures.
Allauthorsreadandapprovedthefinalmanuscript.
87.
78690198324185.
591858722.
311720.
420.
9T550(%)RsT550(%)RsFilm1ofpressingtransferFilm1ofsecondpressingFilm1ofpressingtransferbyadhensiontestFilm1ofsecondpressingbyadhensiontestFilm2ofpressingtransferFilm2ofpressingtransferbyheatingFilm2ofheatingbyadhensiontestFigure5RsandT550ofCNT/AgNWfilmsbefore/aftersecondmechanicalpressing,adhesiontest(3Mstickytape),andheating(120°C).
Jingetal.
NanoscaleResearchLetters2014,9:588Page5of7http://www.
nanoscalereslett.
com/content/9/1/588AcknowledgementsTheauthorswishtoacknowledgethefinancialsupportofthePriorityAcademicProgramDevelopmentofJiangsuHigherEducation(1033000003),theNationalNaturalScienceFoundationofChina(51274106),theScienceandTechnologySupportProgramofJiangsuProvince(BE2012143,BE2013071),theNaturalScienceResearchProgramofJiangsuProvinceHigherEducation(12KJA430001,14KJB430010),theChinesePostdoctoralFoundation(2013M531280),andtheTalentsFoundationofJiangsuUniversity(12JDG073).
Received:21September2014Accepted:18October2014Published:28October2014References1.
YimJH,JoeS,PangC,LeeKM,JeongH,ParkJY,YeongAhnH,MelloJC,LeeS:Fullysolution-processedsemitransparentorganicsolarcellswithasilvernanowirecathodeandaconductingpolymeranode.
ACSNano2014,8(3):2857–2863.
2.
HamJ,KimS,JungGH,DongWJ,LeeJL:Designofbroadbandtransparentelectrodesforflexibleorganicsolarcells.
JMaterChemistA2013,1:3076–3082.
3.
MayousseC,CelleC,MoreauE,MainguetJF,CarellaA,SimonatoJP:Improvementsinpurificationofsilvernanowiresbydecantationandfabricationofflexibletransparentelectrodes.
Applicationtocapacitivetouchsensors.
Nanotechnology2013,24(21):215501.
4.
HamJ,LeeJL:ITObreakers:highlytransparentconductingpolymer/metal/dielectric(P/M/D)filmsfororganicsolarcells.
AdvEnergyMater2014,4:11–15.
5.
LiXS,ZhuYW,CaiWW,BorysiakM,HanBY,ChenD,PinerRD,ColomboL,RuoffRS:Transferoflarge-areagraphenefilmsforhigh-performancetransparentconductiveelectrodes.
NanoLett2009,9(12):4359–4363.
6.
WuJ,AgarwalM,BecerrilHA,BaoZ,LiuZ,ChenY,PeumansP:Organiclight-emittingdiodesonsolutionprocessedgraphenetransparentelectrodes.
ACSNano2010,4:43–48.
7.
YuZ,ZhangQ,LiL,ChenQ,NiuX,LiuJ,PeiQ:Highlyflexiblesilvernanowireelectrodesforshape-memorypolymerlight-emittingdiodes.
AdvMater2011,23:664–668.
8.
NohYJ,KimSS,KimTW,NaSI:Cost-effectiveITO-freeorganicsolarcellswithsilvernanowire–PEDOT:PSScompositeelectrodesviaaone-stepspraydepositionmethod.
SolarEnergyMaterSolarCells2014,120:226–230.
9.
NohYJ,KimSS,KimTW,NaSI:EffectofsheetresistanceofAg-nanowire-basedelectrodesoncell-performancesofITO-freeorganicsolarcells.
SemicondSciTechnol2013,28:125008.
10.
MinamiT:Transparentconductingoxidesemiconductorsfortransparentelectrodes.
SemicondSciTechnol2005,20:S35–S44.
11.
OlivaJ,PapadimitratosA,RosaE,ZakhidovA:Semi-transparentpolymerlightemittingdiodeswithmultiwallcarbonnanotubesascathodes.
PhysicastatussolidiA.
inpress.
12.
HuLB,HechtDS,GrunerG:Carbonnanotubethinfilms:fabrication,properties,andapplications.
ChemRev2010,110:5790–5844.
13.
DeS,ColemanJN:AretherefundamentallimitationsonthesheetresistanceandtransparentofthingraphenefilmsACSNano2010,4:2713–2720.
14.
ZhengQB,LiZG,YangJH,KimJK:Grapheneoxide-basedtransparentconductivefilms.
ProgressinMaterSci2014,64:200–247.
15.
TungVC,ChenLM,AllenMJ,WasseiJK,NelsonK,KanerRB,YangY:Low-temperaturesolutionprocessingofgraphene-carbonnanotubehybridmaterialsforhigh-performancetransparentconductors.
NanoLett2009,9:1949–1955.
16.
WuH,HuLB,RowellMW,KongDS,ChaJJ,McDonoughJR,JiaZ,YangY,McGeheeMD,CuiY:Electrospunmetalnanofiberwebsashigh-performancetransparentelectrode.
NanoLett2010,10:4242–4248.
17.
AzulaiD,BelenkovaT,GilonH,BarkayZ,MarkovichG:Transparentmetalnanowirethinfilmspreparedinmesostructuredtemplates.
NanoLett2009,9:4246–4249.
18.
LyonsPE,DeS,EliasJ,SchamelM,PhilippeL,BellewAT,BolandJJ,ColemanJN:High-performancetransparentconductorsfromnetworksofgoldnanowires.
JPhysChemLett2011,2:3058–3062.
19.
CoskunS,AtesES,UnalanHE:Optimizationofsilvernanowirenetworksforpolymerlightemittingdiodeelectrodes.
Nanotechnology2013,24:125202.
20.
MahajanA,FrancisL,FrisbieCD:Facilemethodforfabricatingflexiblesubstrateswithembedded,printedsilverlines.
ACSApplMaterInterfaces2014,6:1306–1312.
21.
ImHG,JinJ,KoJH,LeeJ,LeeJY,BaeBS:FlexibletransparentconductingcompositefilmsusingamonolithicallyembeddedAgNWelectrodewithrobustperformancestability.
Nanoscale2014,6:711–715.
22.
HuangGW,XiaoHM,FuSY:Paper-basedsilver-nanowireelectroniccircuitswithoutstandingelectricalconductivityandextremebendingstability.
Nanoscale2014,6:8495–8502.
23.
KumarABVK,BaeCW,PiaoLH,KimSH:Silvernanowirebasedflexibleelectrodeswithimprovedproperties:highconductivity,transparency,adhesionandlowhaze.
MaterResBulletin2013,48:2944–2949.
24.
SachseC,WeiN,GaponikN,Müller-MeskampL,EychmüllerA,LeoK:ITO-free,small-moleculeorganicsolarcellsonspray-coatedcopper-nanowire-basedtransparentelectrodes.
AdvEnergyMater.
inpress.
25.
RathmellAR,WileyBJ:Thesynthesisandcoatingoflong,thincoppernanowirestomakeflexible,transparentconductingfilmsonplasticsubstrates.
AdvMater2011,23:4798–4803.
26.
LiSJ,ChenYY,HuangLJ,PanDC:Large-scalesynthesisofwell-dispersedcoppernanowiresinanelectricpressurecookerandtheirapplicationintransparentandconductivenetworks.
InorganicChem2014,53:4440–4444.
27.
ChengY,WangS,WangR,SunJ,GaoL:Coppernanowirebasedtransparentconductivefilmswithhighstabilityandsuperiorstretchability.
JMaterChemC2014,2:5309–5316.
28.
AzumaK,SakajiriK,MatsumotoH,KangS,WatanabeJ,TokitaM:Facilefabricationoftransparentandconductivenanowirenetworksbywetchemicaletchingwithanelectrospunnanofibermasktemplate.
MaterLett2014,115:187–189.
29.
EomH,LeeJ,PichitpajongkitA,AmjadiM,JeongJH,LeeE,LeeJY,ParkI:Ag@Nicore–shellnanowirenetworkforrobusttransparentelectrodesagainstoxidationandsulfurization.
Small.
inpress.
30.
StewartIE,RathmellAR,YanL,YeSR,FlowersPF,YouW,WileyBJ:Solution-processedcopper–nickelnanowireanodesfororganicsolarcells.
Nanoscale2014,6(11):5980–5988.
31.
HuLB,KimHS,LeeJY,PeumansP,CuiY:Scalablecoatingandpropertiesoftransparent,flexible,silvernanowireelectrodes.
ACSNano2010,4:2955–2963.
32.
KholmanovIN,DominguesSH,ChouH,WangXH,TanC,KimJY,LiHF,PineR,ZarbinAJG,RuoffRS:Reducedgrapheneoxide/coppernanowirehybridfilmsashigh-performancetransparentelectrodes.
ACSNano2013,7:1811–1816.
33.
HsiaoST,TienHW,LiaoWH,WangYS,LiSM,MaCC,YuYH,ChuangWP:Ahighlyelectricallyconductivegraphene–silvernanowirehybridnanomaterialfortransparentconductivefilms.
JMaterChemC2014,2:7284–7291.
34.
TienHW,HsiaoST,LiaoWH,YuYH,LinFC,WangYS,LiSM,MaCCM:Usingself-assemblytoprepareagraphene-silvernanowirehybridfilmthatistransparentandelectricallyconductive.
Carbon2013,58:198–207.
35.
WooJY,KimKK,LeeJ,KimJT,HanCS:HighlyconductiveandstretchableAgnanowire/carbonnanotubehybridconductors.
Nanotechnology2014,25:285203.
36.
ChoiDY,KangHW,SungHJ,KimSS:Annealing-free,flexiblesilvernanowire-polymercompositeelectrodesviaacontinuoustwo-stepspray-coatingmethod.
Nanoscale2013,5:977–983.
37.
KiranKumarABV,JiangJW,BaeCW,SeoDM,PiaoLH,KimSH:Silvernanowire/polyanilinecompositetransparentelectrodewithimprovedsurfaceproperties.
MaterResBulletin2014,57:52–57.
38.
AmjadiM,PichitpajongkitA,LeeS,RyuS,ParkI:Highlystretchableandsensitivestrainsensorbasedonsilvernanowire-elastomernanocomposite.
ACSNano2014,8:5154–5163.
39.
KimYS,ChangMH,LeeEJ,IhmDW,KimJY:ImprovedelectricalconductivityofPEDOT-basedelectrodefilmshybridizedwithsilvernanowires.
SyntheticMetals2014,195:69–74.
40.
MorgensternFSF,KabraD,MassipS,BrennerTJK,LyonsPE,ColemanJN,FriendRH:Ag-nanowirefilms,coatedwithZnOnanoparticlesasatransparentelectrodeforsolarcells.
ApplPhysLett2011,99:183307.
41.
ParkJ,KimM,ShinJB,ChoiKC:Transparentchromaticelectrodeusingthemixtureofsilvernanowireandsilvernanoprism.
CurrentApplPhys2014,14:1005–1009.
Jingetal.
NanoscaleResearchLetters2014,9:588Page6of7http://www.
nanoscalereslett.
com/content/9/1/58842.
KhalighHH,GoldthorpeIA:Hot-rollingnanowiretransparentelectrodesforsurfaceroughnessminimization.
NanoscaleResLett2014,9:310.
43.
LeeJ,LeeI,KimTS,LeeJY:Efficientweldingofsilvernanowirenetworkswithoutpost-processing.
Small2013,9:2887–2894.
44.
HaugerTC,Al-RafiSMI,BuriakJM:Rollingsilvernanowireelectrodes:simultaneouslyaddressingadhesion,roughness,andconductivity.
ACSApplMaterInterfaces2013,5(23):12663–12671.
45.
TokunoT,NogiM,KarakawaM,JiuJT,NgeTT,AsoY,SuganumaK:Fabricationofsilvernanowiretransparentelectrodesatroomtemperature.
NanoRes2011,4(12):1215–1222.
46.
MadariaAR,KumarA,IshikawaFN,ZhouCW:Uniform,highlyconductive,andpatternedtransparentfilmsofapercolatingsilvernanowirenetworkonrigidandflexiblesubstratesusingadrytransfertechnique.
NanoRes2010,3:564–573.
doi:10.
1186/1556-276X-9-588Citethisarticleas:Jingetal.
:Highperformanceofcarbonnanotubes/silvernanowires-PEThybridflexibletransparentconductivefilmsviafacilepressing-transfertechnique.
NanoscaleResearchLetters20149:588.
Submityourmanuscripttoajournalandbenetfrom:7Convenientonlinesubmission7Rigorouspeerreview7Immediatepublicationonacceptance7Openaccess:articlesfreelyavailableonline7Highvisibilitywithintheeld7RetainingthecopyrighttoyourarticleSubmityournextmanuscriptat7springeropen.
comJingetal.
NanoscaleResearchLetters2014,9:588Page7of7http://www.
nanoscalereslett.
com/content/9/1/588

香港云服务器 1核 256M 19.9元/月 Mineserver Ltd

Mineserver(ASN142586|UK CompanyNumber 1351696),已经成立一年半。主营香港日本机房的VPS、物理服务器业务。Telegram群组: @mineserver1 | Discord群组: https://discord.gg/MTB8ww9GEA7折循环优惠:JP30(JPCN2宣布产品可以使用)8折循环优惠:CMI20(仅1024M以上套餐可以使用)9折循...

两款半月湾 HMBcloud 春节88折日本和美国CN2 VPS主机套餐

春节期间我们很多朋友都在忙着吃好喝好,当然有时候也会偶然的上网看看。对于我们站长用户来说,基本上需要等到初八之后才会开工,现在有空就看看是否有商家的促销。这里看到来自HMBcloud半月湾服务商有提供两款春节机房方案的VPS主机88折促销活动,分别是来自洛杉矶CN2 GIA和日本CN2的方案。八八折优惠码:CNY-GIA第一、洛杉矶CN2 GIA美国原生IP地址、72小时退款保障、三网回程CN2 ...

硅云香港CN2+BGP云主机仅188元/年起(香港云服务器专区)

硅云怎么样?硅云是一家专业的云服务商,硅云的主营产品包括域名和服务器,其中香港云服务器、香港云虚拟主机是非常受欢迎的产品。硅云香港可用区接入了中国电信CN2 GIA、中国联通直连、中国移动直连、HGC、NTT、COGENT、PCCW在内的数十家优质的全球顶级运营商,是为数不多的多线香港云服务商之一。目前,硅云香港云服务器,CN2+BGP线路,1核1G香港云主机仅188元/年起,域名无需备案,支持个...

4444yy.com为你推荐
云计算什么叫做“云计算”?地陷裂口山崩地裂的意思haokandianyingwang有什么好看的电影网站kb123.netwww.zhmmjyw.net百度收录慢?partnersonline国外外贸平台有哪些?www.ijinshan.com在电脑看港台电视台那个网站最好而又不用钱速度又快javlibrary.com大家有没有在线图书馆WWW。QUESTIA。COM的免费帐号机器蜘蛛尼尔机械纪元机械蜘蛛怎么过 机械蜘蛛打法攻略解析汴京清谈汴京还被称为什么?邯郸纠风网河北邯郸有几个县个名单非法集资
域名解析 美国服务器租用 花生壳免费域名 justhost vultr美国与日本 鲜果阅读 win8.1企业版升级win10 一点优惠网 中国特价网 qingyun anylink 空间论坛 谁的qq空间最好看 qq云端 1美金 卡巴斯基破解版 搜索引擎提交入口 ca187 超级服务器 最漂亮的qq空间 更多