NANOEXPRESSOpenAccessThermalconductivityinporoussiliconnanowirearraysJeffreyMWeisse1,AmyMMarconnet1,DongRipKim1,PratapMRao1,MatthewAPanzer2,KennethEGoodson1andXiaolinZheng1*AbstractThenanoscalefeaturesinsiliconnanowires(SiNWs)cansuppressphononpropagationandstronglyreducetheirthermalconductivitiescomparedtothebulkvalue.
ThisworkmeasuresthethermalconductivityalongtheaxialdirectionofSiNWarrayswithvaryingnanowirediameters,dopingconcentrations,surfaceroughness,andinternalporositiesusingnanosecondtransientthermoreflectance.
ForSiNWswithdiameterslargerthanthephononmeanfreepath,porositysubstantiallyreducesthethermalconductivity,yieldingthermalconductivitiesaslowas1W/m/KinhighlyporousSiNWs.
However,whentheSiNWdiameterisbelowthephononmeanfreepath,boththeinternalporosityandthediametersignificantlycontributetophononscatteringandleadtoreducedthermalconductivityoftheSiNWs.
Keywords:Thermalconductivity,Siliconnanowires,Poroussilicon,ThermoreflectanceBackgroundSiliconwithahighdensityofnanoscalefeaturessuchasinterfaces,porosity,andimpuritiescanhavethermalconductivities(κ)uptothreeordersofmagnitudelowerthanthatofbulkSithroughenhancedphononscattering[1-17].
Forexample,thethermalconductivityofnano-porousbulkSigenerallydecreaseswithincreasingpor-osityanddecreasingporesize[1-9]and,withhighporosity,approachestheamorphouslimit(0.
2to0.
5W/m/K)[1-3].
Similarly,siliconnanowires(SiNWs)withdiameterssignificantlysmallerthanthebulkphononmeanfreepath(Λ%100to300nmat300K)werereportedtohavethermalconductivityvaluesaslowas0.
76W/m/KduetostrongphononscatteringattheSiNWboundary[10,11].
IntroducingsurfaceroughnesstotheSiNWsleadstoadditionalphononscatteringatlengthscalesevensmallerthantheNWdiameter[12-16].
However,therehavebeenfewinvestigationsonthecombinedeffectsofexternaldimensionsandinternalporosityonthethermalconductivityvaluesofSiNWs.
Inthiswork,wereporttheeffectsofinternalporosityonthethermalconductivityofSiNWsoftwodifferentdiametersthatallowthephononpropagationtospantherangefromballistictodiffusivethermaltransport(davg%350and130nm)bymeasuringthethermalcon-ductivityofverticallyalignedSiNWarraysusingnano-secondtransientthermoreflectance(TTR).
AsopposedtomeasurementsofindividualSiNWs,measurementsofarraysofSiNWsoffertheadvantageofaveragingouttheinherentthermalconductivityvariationsthatarecausedbydifferencesinSiNWdiameter,surfaceroughness,anddefectswithinthearrays.
MethodsTheverticallyalignedSiNWarraysarefabricatedusingafour-steppreparationprocessillustratedinFigure1.
TwosetsofverticallyalignedSiNWarrayswithdifferentdiametersarefabricated(Figure1a,e)usingtop-downetchingtechniquestoachievearangeofporosities(Table1).
Forthefirstset,thediameter(davg%300to350nm)anddensityoftheSiNWsarecontrolledbynanospherelithography[18].
Specifically,amonolayerofSiO2spheresisdepositedusingtheLangmuir-BlodgettmethodontoSiwafers(p-typewithborondopantatoms,(100))andusedasamaskforthesubsequentetchingsteps.
TheinternalporosityoftheSiNWsisvariedfromnonporoustohighlyporousbychangingtheetchingmethodsandconditions[19-21].
NonporousSiNWsare*Correspondence:xlzheng@stanford.
edu1DepartmentofMechanicalEngineering,StanfordUniversity,Stanford,CA94305,USAFulllistofauthorinformationisavailableattheendofthearticle2012Weisseetal.
;licenseeSpringer.
ThisisanOpenAccessarticledistributedunderthetermsoftheCreativeCommonsAttributionLicense(http://creativecommons.
org/licenses/by/2.
0),whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalworkisproperlycited.
Weisseetal.
NanoscaleResearchLetters2012,7:554http://www.
nanoscalereslett.
com/content/7/1/554formedbydeepreactiveionetching(DRIE),andtheresultingSiNWshaveslightlysmallerdiameters(davg%300nm)thanthespheresusedastheetchmask[22].
PorousSiNWarraysarefabricatedbymetal-assistedchemicaletching(MACE)inasolutionof4.
8MHFand0.
3MH2O2,andtheporosityiscontrolledbyvaryingthemetalcatalystandwaferdopingconcentrations[19-21,23-25].
Forlow-porositynanowires,thecatalystlayerconsistsofa15-nmAgfilmcoveredby5-nmAu,whileforthemoderatetohighlyporousnanowires,a50-nmAgfilmisusedasthecatalystandtheinitialwaferdopingconcentrationisvaried.
ThesecondsetofSiNWs,withgenerallysmallerdiameters,isfabricatedusingatwo-stepMACEprocesswithsilversalts[19,20,23,26,27].
First,theAgfilmisdepositedusingasolutionof0.
005MAgNO3and4.
8MHFfor1min.
Then,theSiNWsareformedbyetchinginasolutionof4.
8MHFwithvariousconcentrationsofH2O2(0.
15,0.
30,0.
60,and1.
20M)toadjusttheSiNWporosity[19,20,23,26,27].
TheresultingSiNWshaveanaveragediameterof130nm,butthereissignificantdiametervariationwithintheSiNWarray(d%20to300nm).
Forallthesamples,theSiNWlengthisapproximately10μm.
FollowingtheformationoftheSiNWarrays,thegapsbetweenSiNWsarecompletelyfilledwithparyleneN(poly-para-xylylene;Figure1b,f),whichhasathermalconductivitysignificantlylowerthantheSiNWs(Kparylene=0.
125W/m/K)andahighmeltingtemperature(Tm%410°C).
Theparylenefillingqualityisinspectedbyexaminingmultiplefreshlycutcrosssec-tionsunderascanningelectronmicroscope(SEM),andnoparylenevoidsareobserved.
TheSiNWtipsaresub-sequentlyexposedviachemicalmechanicalpolishingtoremovetheparylenecoveringtheSiNWs(Figure1c,g)thatfacilitatestheSiNWstoformagoodthermalcon-tactwiththetopmetalfilm.
Finally,a15-nmCrlayer(foradhesion)anda500-nmCulayeraredepositedbyelectronbeamevaporationontopoftheSiNWtipstoformaflat,reflectivetransducerlayerforthethermore-flectancemeasurements(Figure1d,h).
ThethermalconductivityoftheverticalSiNWarraysismeasuredatroomtemperaturebynanosecondTTR;thedetailsofwhichcanbefoundinPanzeretal.
[28].
Briefly,themetaltransducerlayerthatisdepositedontheparylene-filledSiNWarrayisheatedbya3-mmFigure1FabricationoftheverticallyalignedSiNWarraysforthenanosecondthermoreflectancemeasurements.
(a,e)SiNWarraysareformedusingthetop-downetching.
(b,f)ParyleneisconformallydepositedinbetweenNWsandactsasamechanicalscaffoldforthetopmetaltransducerlayer.
(c,g)TheSiNWtipsareexposedbychemicalmechanicalpolishingtoensuregoodthermalcontactbetweentheSiNWsandthemetalfilm,and(d,h)ametalfilmisdepositedovertheSiNWarray.
ThescalebarsontheSEMimagesare5μm.
Table1SummaryofSiNWarrayswithvarieddiametersandporositiesDiametercontrolPorositycontrolSet1NanospherelithographyEtchingmethodanddopingconcentrationdavg%300to350nmNonporous:DRIEVFDRIE=21%to23%Lowporosity:Ag/AuMACEVFMACE=45%to60%Moderateporosity:AgMACE,lightlydopedHighporosity:AgMACE,heavilydopedSet2SilversaltsMACEetchantsolutiondavg%130nmLowporosity,0.
15MH2O2VF=26%to35%Highporosity,1.
2MH2O2Weisseetal.
NanoscaleResearchLetters2012,7:554Page2of5http://www.
nanoscalereslett.
com/content/7/1/554diameter,532-nmwavelength,6-nspulsefromaNd:YAGlaseratafrequencyof10Hz.
Thereflectedinten-sityoftheprobelaser(d%20μm,10mW,658nm,continuouswave)isdirectlycorrelatedtothetemperatureofthemetallayerthatisaffectedbythethermalconductivityoftheSiNW/parylenecomposite.
ThethermalconductivityoftheSiNW/parylenecom-positeanditsinterfacethermalresistanceatthetopmetallayerareextractedusingatwo-parameterfitofthemeasuredtemperaturedecaytrace(normalizedbythemaximumtemperature)tothesolutionofaone-dimensionalheatdiffusionequationforamultilayerstackwithsurfaceheating.
Thevolumetricheatcapacityofthefilm(Cv,composite)isassumedtobethevolumetricaverageoftheheatcapacityofparylene(Cv,parylene)andbulksili-con(Cv,Si):Cv,composite=VFCv,Si+(1VF)Cv,parylene,whereVFisthevolumefractionofSiNWswithinthecomposite.
TheVFofSiNWswithineacharrayismea-sureddirectlyfromtop-viewSEMimagesofthefilmbysettingabrightnessthresholdtodefinetheedgeofSiNWs.
TheaveragethermalconductivityofanindividualSiNWwithinthearrayiscalculatedfromtheextractedfilmthermalconductivity(Kcomposite)usinganeffectivemediummodel:KNW=[Kcomposite(1VF)Kparylene]/VF,whereKNWandKparylenearethethermalconductivitiesoftheSiNWsandparylene,respectively.
Inthismodel,SiNWarraysaretreatedasthermalresistorsinparallelwiththeparylenematrix.
TheuncertaintyoftheextractedkNWiscalculatedthroughanerrorpropagationanalysisgivenbythefollowingequation:ΔkNW@kNW@kfilmΔkfilm2@kNW@VFΔVF2@kNW@kparlyeneΔkparlyene2s1whereΔkparyleneisthethermalconductivityvariationfromtheliterature.
ΔkfilmandΔVFarethemeasuredspot-spotvariationinthesametypeofsamples.
DetailederroranalysisdataforallthedatareportedherecanbefoundinAdditionalfile1.
ResultsanddiscussionThethermalconductivityfortheSiNWswithlargedia-meters(davg%300to350nm)demonstratesaclearde-creasewithincreasingporosity(Figure2).
ThethermalconductivityofnonporousSiNWs,thoughwithroughsurfaces,is142±13W/m/K,whichisveryclosetothatofbulkSi(κ%150W/m/K).
Thissuggeststhatforlarge-diameterSiNWs,surfaceroughnessatthisdepthandperiodicitydoesnotcauseeffectivephonon-externalboundaryscatteringandthereforehaslittleeffectonthethermalconductivity.
Ontheotherhand,theinternalporosityofSiNWssignificantlyreducesthethermalcon-ductivityfrom142W/m/KforthenonporousSiNWsto98W/m/K(Au/Ag-MACE)and51W/m/K(Ag-MACE)fortheincreasinglyporousSiNWs.
Thethermalconductivityoflarge-diameterSiNWarrays(davg%350nm)withthreedifferentp-typeborondopantatomconcentrations(1014,1016,and1018cm3)isfurtherinvestigatedforbothnonporousandporousNWs(Figure3).
Thethermalconductivityofnonpor-ousSiNWsdecreasesslightlywithincreasingdopingconcentrationduetotheincreasedphonon-impurityscattering,similartobulkSi[29,30].
Conversely,thethermalconductivityofporousSiNWsdropstoabout1W/m/Kwhenthedopingconcentrationisincreasedfrom1016to1018cm3.
Itshouldbenotedthatthemainreasonforthedramaticdropinconductivitywithdopingconcentrationisthathigherdopingcon-centrationsleadtoincreasedporosityinSiNWsfabri-catedwithMACE(Figure3b,c,d).
Thedopantatomsitesactaspreferredlocationsforporeformation[19,23,26,27].
IncomparisontotheinternalNWpor-osity,thephonon-impurityscatteringathigherdopingconcentrationhasamuchsmallerimpactonthether-malconductivity[2,12].
ThethermalconductivitiesofSiNWswithsmalldia-meters(davg%130nm)alsodecreasewithincreasingporosity(Figure4),similartothelarge-diameterSiNWs.
However,thethermalconductivityoftheseSiNWsismuchsmallerthanthatoflarge-diameterSiNWsofsimilarporosities(i.
e.
,thesameetchantsolution,0.
3MH2O2).
Specifically,thethermalconductivityisreducedfrom51W/m/Kforthelarge-diameter(davg%350nm)Figure2Thermalconductivityoflarge-diameterSiNWs(approximately350nm;1014cm3p-typedoping).
Thethermalconductivitywiththreelevelsofporosity,correspondingtodifferentetchingconditions,isshown.
Thethermalconductivitydecreasessignificantlywithincreasingporosity.
TheinsetimagesshowthetopviewoftheSiNWs,andthescalebarsare200nm.
Weisseetal.
NanoscaleResearchLetters2012,7:554Page3of5http://www.
nanoscalereslett.
com/content/7/1/554SiNWsto28W/m/Kforthesmaller-diameterSiNWs(davg%130nm).
Thishighlightsthesignificantimpactofphonon-externalboundaryscatteringonthethermalconductivityatlengthscalesthataresmallerthanthephononmeanfreepath.
Theadditionalreductioninthermalconductivity(to17W/m/K)withincreasingH2O2concentrationforthesmaller-diameterSiNWsindicatesthattheincreasinginternalporosityalsohasasignificantimpactonthethermalconductivity.
ConclusionsInsummary,wemeasuredthethermalconductivityofSiNWarrayswithvariousnanowirediameters,dopingconcentrations,surfaceroughnessandinternalporositiesusingananosecondtransientthermoreflectancemethod.
WhentheSiNWdiameter(davg%350nm)islargerthanthephononmeanfreepathinthebulksilicon,thether-malconductivityshowslittledependenceonthedopingFigure3Thermalconductivityoflarge-diameternonporousandporousSiNWarrays.
(a)ThermalconductivityofnonporousandporousSiNWarraysoflargediametersasafunctionofdopingconcentrations.
TEMimagesshowtherelativeporosityforAg-MACESiNWarraysfabricatedwithdopingconcentrationsof(b)1014,(c)1016,and(d)1018cm3.
ThescalebarsontheTEMandinsetTEMimagesare5and200nm,respectively.
TheuncertaintybarfortheMACEnanowireswithadopingconcentrationof1018cm3isontheorderofthedatapointmarkersize.
Figure4Thermalconductivityofsmall-diameter(approximately130nm)SiNWs(1014cm3)asafunctionofporosity.
Forcomparison,thethermalconductivityofthelarge-diameterSiNWetchedatthesameconditionisshownastheredcircle.
IncreasingnanowireporosityisrealizedbyincreasingtheH2O2concentrationduringMACE,asevidencedbytheinsetTEMimages.
ThescalebarsonalltheTEMimagesare100nm.
Weisseetal.
NanoscaleResearchLetters2012,7:554Page4of5http://www.
nanoscalereslett.
com/content/7/1/554concentrationandsurfaceroughnessbutdecreasessig-nificantlywithincreasingporosityduetophononscat-teringattheporeinterfaces.
Incontrast,whentheSiNWdiameter(davg%130nm)issmallerthanthepho-nonmeanfreepath,thethermalconductivitystronglydependsonboththeexternalboundary-phononscatter-ingandtheinternalporeinterface-phononscattering,leadingtoasignificantreductioninthethermalcon-ductivityforsmall-diameterSiNWs.
AdditionalfileAdditionalfile1:ErroranalysisofthethermalconductivityofverticalSiNWarrays.
AnXLSXfileshowingdetailederroranalysisdataforallthedatareported.
CompetinginterestsTheauthorsdeclarethattheyhavenocompetinginterests.
Authors'contributionsJMW,AMM,KEG,andXLZdesignedandinterpretedtheexperiments.
JMWandDRKfabricatedthesamples.
JMWandPMRperformedSEMandTEMcharacterization.
AMMandMAPdesignedandcarriedoutthethermoreflectancesetupandmeasurements.
Allauthorscontributedtoandapprovedthefinalmanuscript.
AcknowledgmentsTheauthorsgratefullyacknowledgethesupportofthePECASEprogram,theLinkFoundationEnergyFellowshipprogram,theNationalScienceFoundationGraduationResearchFellowshipprogram,andtheStanfordGraduateFellowshipprogram.
Authordetails1DepartmentofMechanicalEngineering,StanfordUniversity,Stanford,CA94305,USA.
2KLA-TencorCorporation,Milpitas,CA95035,USA.
Received:16August2012Accepted:24September2012Published:6October2012References1.
GeseleG,LinsmeierJ,DrachV,FrickeJ,Arens-FischerR:Temperature-dependentthermalconductivityofporoussilicon.
JPhysD:ApplPhys1997,30:2911–2916.
2.
YangCC,LiS:Basicprinciplesforrationaldesignofhigh-performancenanostructuredsilicon-basedthermoelectricmaterials.
ChemPhysChem2011,12:3614–3618.
3.
MiyazakiK,TanakaS,NagaiD:Heatconductionofaporousmaterial.
JHeatTransfer2012,134:051018.
4.
AlvarezFX,JouD,SellittoA:Pore-sizedependenceofthethermalconductivityofporoussilicon:aphononhydrodynamicapproach.
ApplPhysLett2010,97:033103.
5.
deBoorJ,KimDS,AoX,HagenD,CojocaruA,FoellH,SchmidtV:Temperatureandstructuresizedependenceofthethermalconductivityofporoussilicon.
EurophysLett2011,96:16001.
6.
GomesS,DavidL,LysenkoV,DescampsA,NychyporukT,RaynaudM:Applicationofscanningthermalmicroscopyforthermalconductivitymeasurementsonmeso-poroussiliconthinfilms.
JPhysD:ApplPhys2007,40:6677–6683.
7.
HeY,DonadioD,LeeJ-H,GrossmanJC,GalliG:Thermaltransportinnanoporoussilicon:interplaybetweendisorderatmesoscopicandatomicscales.
ACSNano2011,5:1839–1844.
8.
LeeJ-H,GalliGA,GrossmanJC:NanoporousSiasanefficientthermoelectricmaterial.
NanoLett2008,8:3750–3754.
9.
RomanoG,DiCarloA,GrossmanJC:MesoscalemodelingofphononicthermalconductivityofporousSi:interplaybetweenporosity,morphologyandsurfaceroughness.
JComputElectron2012,11:8–13.
10.
BoukaiAI,BunimovichY,Tahir-KheliJ,YuJK,GoddardWA,HeathJR:Siliconnanowiresasefficientthermoelectricmaterials.
Nature2008,451:168–171.
11.
LiDY,WuYY,KimP,ShiL,YangPD,MajumdarA:Thermalconductivityofindividualsiliconnanowires.
ApplPhysLett2003,83:2934–2936.
12.
HochbaumAI,ChenRK,DelgadoRD,LiangWJ,GarnettEC,NajarianM,MajumdarA,YangPD:Enhancedthermoelectricperformanceofroughsiliconnanowires.
Nature2008,451:163–167.
13.
LimJ,HippalgaonkarK,AndrewsSC,MajumdarA,YangP:Quantifyingsurfaceroughnesseffectsonphonontransportinsiliconnanowires.
NanoLett2012,12:2475–2482.
14.
LiuL,ChenX:Effectofsurfaceroughnessonthermalconductivityofsiliconnanowires.
JApplPhys2010,107:033501.
15.
LuisierM:InvestigationofthermaltransportdegradationinroughSinanowires.
JApplPhys2011,110:074510.
16.
MartinP,AksamijaZ,PopE,RavaioliU:Impactofphonon-surfaceroughnessscatteringonthermalconductivityofthinSinanowires.
PhysRevLett2009,102:125503.
17.
AbramsonAR,KimWC,HuxtableST,YanHQ,WuYY,MajumdarA,TienCL,YangPD:Fabricationandcharacterizationofananowire/polymer-basednanocompositeforaprototypethermoelectricdevice.
JMicroelectromechSyst2004,13:505–513.
18.
HaynesCL,VanDuyneRP:Nanospherelithography:aversatilenanofabricationtoolforstudiesofsize-dependentnanoparticleoptics.
JPhysChemB2001,105:5599–5611.
19.
ZhongX,QuYQ,LinYC,LiaoL,DuanXF:Unveilingtheformationpathwayofsinglecrystallineporoussiliconnanowires.
ACSApplMaterInterfaces2011,3:261–270.
20.
QuY,ZhouH,DuanX:Poroussiliconnanowires.
Nanoscale2011,3:4060–4068.
21.
WeisseJM,LeeCH,KimDR,ZhengX:Fabricationofflexibleandverticalsiliconnanowireelectronics.
NanoLett2012,12:3339–3343.
22.
GarnettE,YangPD:Lighttrappinginsiliconnanowiresolarcells.
NanoLett2010,10:1082–1087.
23.
QuYQ,LiaoL,LiYJ,ZhangH,HuangY,DuanXF:Electricallyconductiveandopticallyactiveporoussiliconnanowires.
NanoLett2009,9:4539–4543.
24.
WeisseJM,KimDR,LeeCH,ZhengX:Verticaltransferofuniformsiliconnanowirearraysviacrackformation.
NanoLett2011,11:1300–1305.
25.
KimJ,HanH,KimYH,ChoiS-H,KimJ-C,LeeW:Au/AgbilayeredmetalmeshasaSietchingcatalystforcontrolledfabricationofSinanowires.
ACSNano2011,5:3222–3229.
26.
ZhangML,PengKQ,FanX,JieJS,ZhangRQ,LeeST,WongNB:Preparationoflarge-areauniformsiliconnanowiresarraysthroughmetal-assistedchemicaletching.
JPhysChemC2008,112:4444–4450.
27.
ChiappiniC,LiuX,FakhouryJR,FerrariM:Biodegradableporoussiliconbarcodenanowireswithdefinedgeometry.
AdvFunctMater2010,20:2231–2239.
28.
PanzerMA,ZhangG,MannD,HuX,PopE,DaiH,GoodsonKE:Thermalpropertiesofmetal-coatedverticallyalignedsingle-wallnanotubearrays.
JHeatTransfer2008,130:052401.
29.
AsheghiM,KurabayashiK,KasnaviR,GoodsonKE:Thermalconductionindopedsingle-crystalsiliconfilms.
JApplPhys2002,91:5079–5088.
30.
SlackGA:Thermalconductivityofpureandimpuresilicon,siliconcarbide,anddiamond.
JApplPhys1964,35:3460–3465.
doi:10.
1186/1556-276X-7-554Citethisarticleas:Weisseetal.
:Thermalconductivityinporoussiliconnanowirearrays.
NanoscaleResearchLetters20127:554.
Weisseetal.
NanoscaleResearchLetters2012,7:554Page5of5http://www.
nanoscalereslett.
com/content/7/1/554
georgedatacenter怎么样?georgedatacenter这次其实是两个促销,一是促销一款特价洛杉矶E3-1220 V5独服,性价比其实最高;另外还促销三款特价vps,大家可以根据自己的需要入手。georgedatacenter是一家成立于2019年的美国vps商家,主营美国洛杉矶、芝加哥、达拉斯、新泽西、西雅图机房的VPS、邮件服务器和托管独立服务器业务。georgedatacen...
ihostart怎么样?ihostart是一家国外新商家,主要提供cPanel主机、KVM VPS、大硬盘存储VPS和独立服务器,数据中心位于罗马尼亚,官方明确说明无视DMCA,对版权内容较为宽松。有需要的可以关注一下。目前,iHostART给出了罗马尼亚vps的优惠信息,罗马尼亚VPS无视DMCA、抗投诉vps/2核4G内存/40GB SSD/100M端口月流量2TB,€20/年。点击直达:ih...
UCloud优刻得近日针对全球大促活动进行了一次改版,这次改版更加优惠了,要比之前的优惠价格还要低一些,并且新增了1核心1G内存的快杰云服务器,2元/首年,47元/年,这个价格应该是目前市面上最低最便宜的云服务器产品了,有需要国内外便宜VPS云服务器的朋友可以关注一下。UCloud好不好,UCloud服务器怎么样?UCloud服务器值不值得购买UCloud是优刻得科技股份有限公司旗下拥有的云计算服...
4444yy.com为你推荐
地图应用哪个手机定位软件最好用?西部妈妈网啊,又是星期天嘉兴商标注册我想注册个商标怎么注册啊?罗伦佐娜手上鸡皮肤怎么办,维洛娜毛周角化修复液月神谭求古典武侠类的变身小说~!长尾关键词挖掘工具怎么挖掘长尾关键词,可以批量操作的那种网站检测请问论文检测网站好的有那些?同一服务器网站同一服务器上的域名/网址无法访问www.kanav001.com翻译为日文: 主人,请你收养我一天吧. 带上罗马音标会更好wwwwww.585ccc.com手机ccc认证查询,求网址
云服务器租用 申请免费域名 80vps 联通c套餐 http500内部服务器错误 坐公交投2700元 ftp教程 双十一秒杀 静态空间 太原网通测速平台 100mbps 卡巴斯基免费试用版 创建邮箱 中国电信测速器 西安服务器托管 广东服务器托管 腾讯云平台 windowsserver2012r2 美国代理服务器 香港打折信息 更多