18.569uuu.com

69uuu.com  时间:2021-04-09  阅读:()
TransverseSpinAsymmetriesinNeutralStrangeParticleProductionbyThomasBurtonAthesissubmittedtoTheUniversityofBirminghamforthedegreeofDOCTOROFPHILOSOPHYSchoolofPhysicsandAstronomyTheUniversityofBirminghamMay2009.
UniversityofBirminghamResearchArchivee-thesesrepositoryThisunpublishedthesis/dissertationiscopyrightoftheauthorand/orthirdparties.
TheintellectualpropertyrightsoftheauthororthirdpartiesinrespectofthisworkareasdefinedbyTheCopyrightDesignsandPatentsAct1988orasmodifiedbyanysuccessorlegislation.
Anyusemadeofinformationcontainedinthisthesis/dissertationmustbeinaccordancewiththatlegislationandmustbeproperlyacknowledged.
Furtherdistributionorreproductioninanyformatisprohibitedwithoutthepermissionofthecopyrightholder.
AbstractTheoriginofthequantummechanicalspinoftheprotonintermsofitsconstituentsisnotyetfullyunderstood.
Thediscoverythattheintrinsicspinofquarkscontributesonlyasmallfractionofthetotalprotonspinsparkedahugetheoreticalandexperimentalefforttounderstandtheoriginoftheremainder.
Inparticularthetransversespinpropertiesoftheprotonremainpoorlyunderstood.
Signicanttransversespinasymmetriesintheproductionofhadronshavebeenobservedovermanyyears,andarerelatedtoboththetransversepolarisationofquarksinatransverselypolarisedprotonandtothespindependenceoforbitalmotion.
TheseasymmetriesareofinterestbecauseofperturbativeQCDpredictionsthatsuchasymmetriesshouldbesmall.
Measurementsofsuchasymmetriesmayyieldfurtherinsightsintothetransversespinstructureoftheproton.
TheRelativisticHeavyIonCollider(RHIC)istheworld'srstpolarisedprotoncollider,andhasbeentakingprotondatasince2001.
Polarisedprotoncollisionsat√s=200GeVtakenduringthe2006RHICrunhavebeenanalysedandthetransversesingleanddoublespinasym-metriesintheproductionoftheneutralstrangeparticlesK0S,ΛandΛhavebeenmeasuredinthetransversemomentumrange0.
50.
2thevalencequarksdominate.
Notethattheupquarkdistributionhastwicethemagnitudeofthedownquarkdistribution,asexpectedfromthequarkmodeloftheproton.
Thevalencequarkdistributiondecreaseswithdecreasingx,whiletheantiquarkandgluondistributionsallincrease.
Atsmallx,gluonsdomi-natethePDF.
Apictureemergesofthevalencequarksoftheproton,eachcarryingasignicantportionoftheprotonmomentum,plusaseaoflow-momentumgluonsandquark-antiquarkpairs.
1.
3QCDFactorisationCalculatinghighenergyhadroniccrosssectionsreliesuponthefactorisationtheorem.
Considerahighenergycollisionbetweentwohadrons,A+B→C+X,whereCisameasurednalstateparticleandXistheremainingunmeasuredhadronicnalstate.
Atlargemomentumscalesthecollisioncanbeviewedasoccurringbetweentwopartons,aandbfromthehadronsAandBrespectively,producingapartoncthatsubsequentlyfragmentsintotheobservedhadronC.
Thefactorisationtheoremstatesthatthehadroniccrosssectionforthecollision,σA+B→C+Xcanbesplitintothreeseparateparts:thePDFsoftheinitialstatehadronsAandB,thepartoniccrosssectionσa+b→candthefragmentationfunction(FF)ofthescatteredquark:σA+B→C+X=∑a,b,cfa(xA)fb(xB)σa+b→cDc→C(z).
(1.
5)Thesumrunsoverallpartonicspeciesa,b,andcthatcontributetothecrosssectionforA+B→C.
fa(xA)isthePDFofthepartonaasafunctionofitsfraction,xA,ofthemomentumofhadronA.
fb(xB)isdenedcorrespondingly.
Dc→C(z)isthefragmentationfunctiondescribingthefragmentationofpartoncintoahadronCwithafractionzofthemomentumofc.
OnlythehardpartoniccrosssectioncanbecalculatedusingperturbativeQCD,providedthattheQ2of11theinteractionissufcientlyhighthatthestrongcouplingstrengthαSissmall.
ThePDFsandFFarenon-perturbativeandmustbeempiricallydetermined.
BothPDFsandFFareuniversal;theyarethesameforallcollisionprocesses.
Thusifmeasuredinoneprocesstheycanbeusedinpredictingthecrosssectionsofanotherprocess.
Theapplicabilityoffactorisationhasbeendemonstratedforthecrosssectionsofhadroniccollisions(forexamplep+p→jets[20])andlepton-nucleoncollisions(seeforexample[19]),whereonlyonePDFisinvolved.
1.
4NucleonSpinInanaive,non-relativisticquarkmodelinwhichanucleoncontainsthreequarks,allthespinofthenucleoniscarriedbytheintrinsicspinsofthesethreequarks.
Thespinsofthethree(spin-)quarkssumtogivethenucleonspin-.
Modelstakingaccountofrelativisticeffectswithinthenucleonpredictthatsomeofthespinwillbecarriedbytheorbitalangularmomentumofthequarks.
Theamountcarriedbyquarkintrinsicspinisreducedtoabout60%ofthenucleonspin[21].
DISexperimentsshowthatthestructureofthenucleonismorecomplicatedthanathree-quarksystem.
HowdoesthisaffectourunderstandingofthenucleonspinInanalogytotheunpolarisedcase,thespinstructureofthenucleoncanbeprobedusingpolarisedDeepInelasticScattering(pDIS),whereinboththeincidentleptonandnucleontargetarepolarised.
Throughsuchmeasurementsthespin-dependentnucleonstructurefunctiong1,thespin-dependentanalogueoftheF1structurefunction,canbedetermined.
Thefunctiong1isrelatedtothespin-dependentquarkdistributionsviag1(x)=∑qe2q(q↑(x)q↓(x)),(1.
6)wherethesumisoverbothquarkandantiquarkavours,eqisthechargeofthe(anti-)quarkspeciesand↑(↓)indicatesaquarkwithspincomponentparallel(opposite)tothatofitsparentnucleon.
Theintegralofg1overallxgivesthetotal(seaplusvalence)quarkplusanti-quarkintrinsicspincontributiontothenucleon.
PolarisedDISmeasurementsbytheEuropeanMuonCollaboration(EMC)inthelateeight-12ieswerethersttoindicatethattheintrinsicspinsofthequarksinthenucleoncarryasig-nicantlysmallerfractionofthenucleonspinthanhadbeenpredicted[22,23].
EMCresultsfrom++pcollisionsindicatedaquark-plus-antiquarkintrinsicspincontributionintheregionof10to15%.
Theexperimentaluncertaintyonthemeasurementinfactmadeitcompatiblewithzero.
Thiswasmuchsmallerthanthevalueof60%predictedfromrelativisticmodelsofthenucleonspin.
Thisunexpectedlysmallcontributionfromquarkspinhasbeentermedthe'spincrisis'.
Subsequentlymoreprecisemeasurementshavebeenmadeby:SMC(SpinMuonCollaboration,thesuccessortoEMC),SLACE-142,E143,E154andE-155Collaborations,HERMES,J-LabHallAandCOMPASS(seeforexample[24–36]).
Thesehaveindicatedthattheintrinsicspinofquarksandantiquarksaccountsforabout30%oftheprotonspin.
ArecentanalysisofglobalpDISdata[37]givesatotalfractionof0.
27±0.
07.
Thetotalprotonspincomponent,measuredalongaparticulardirection,mustbeonehalf.
Thehelicityspinsumrule12=12Σ+G+Lq+Lg(1.
7)describesallthepossiblecontributionstothenucleonspin:thequarkandanti-quarkintrinsicspin,Σ,thegluonintrinsicspin,G,andthequarkandgluonorbitalangularmomenta,LqandLgrespectively.
AsΣ≈0.
3,theremainderoftheprotonspinmustcomprisegluonintrinsicspinandpartonorbitalangularmomentum.
Untanglingthesecontributionsisamajorobjectiveinspinphysics.
MostDISexperimentsareinclusive,andsoonlyaccessthetotalquark-plus-anti-quarkspincontribution,summedoverallavours.
Semi-inclusivedeepinelasticscattering(SIDIS)canprovideinformationonthecontributionfromdifferentquarkandantiquarkavours.
SIDISdiffersfrominclusiveDISinthatahighenergyhadron,producedfromthefragmentationofthestruckquark,isdetectedincoincidencewiththescatteredlepton.
Thehadronprovidesanindicatoroftheavourofthestruckquark.
Thisisbecauseofthepreferenceforaquarktofragmentintoahadroncontainingavalencequarkofthesameavour.
Forexampleanupquarkismorelikelythanadownquarktofragmentintoaπ+becausetheπ+valencestructureisud.
Differenthadronsprovide'tags'fordifferentquarkandanti-quarkavours,allowing1300.
2xu-0.
20xd-0.
20xu–-0.
20xd–-0.
20xs0.
030.
10.
6xFigure1.
7:Flavour-dependenthelicitydistributionsatQ2=2.
5GeV2fromtheHERMESCol-laboration[34].
Theproductxqisshownforeachlight(anti-)quarkspeciesexcepts.
Thedatawerenotabletoconstrainthes(x)distribution;resultsshownareextractedassumings=0.
thetotalquark-plus-anti-quarkspindistributiontobedecomposedintothecontributionsfromdifferentavours.
TheHERMESCollaborationhaveperformedSIDISmeasurementsusingapolarisede±beamincidentonpolarisedprotonanddeuteriumtargets.
Taggingwithpionsand(forthedeuteriumtargetonly)kaons,thedataprovideinformationabouttheu,u,d,dandshelicitydistributions.
Figure1.
7from[34]showstheextracteddistributionsasafunctionofBjorkenx.
Theupquarkdistributionispositiveforallxandthedownquarkdistributionisnegative,indicatingthesequarksarepolarisedparallelandopposite,respectively,tothenucleonspin.
Theseaquarkdistributions,u(x),d(x)ands(x),wereallfoundtobeconsistentwithzerowithinuncertainties.
141.
5GluonPolarisationThegluonhelicitydistribution,G,cannotbedirectlyaccessedinDISbecausephotonsdonotcouplewithgluons.
Howeverlimitedinformationcanbeinferredaboutgluonspinfromscalingviolations,inthesamewaythatg(x)canbeinferredfromscalingviolationsinF2.
MeasurementoftheQ2-dependenceoftheg1structurefunctionallowslimitstobeplacedonthegluonpolarisation.
Analysesofglobalg1data(forexample[38,39])provideameasureofG,buttheuncertaintiesareverylarge;forexample[38]reportsatotalgluonspincontributionof0.
499±1.
266.
Thoughapositivegluoncontributionisfavouredbythetstothedata,anegativegluondistribution,oronewhichchangessignasafunctionofx,cannotbedismissed,asdiscussedin[39].
DISdataalonedonotthereforestronglyconstrainG(gure1.
8).
OtherconstraintsonGusinglepton-nucleoncollisionscomefrommeasurementsofjets,charmmesonsandhadronsproducedatlargemomentumtransversetothebeam(pT).
Theproductionofallofthesearesensitivetoprocessesinvolvinggluons.
MeasurementshavebeencarriedoutofjetsandhighpThadronsbyHERMES,SMC,andCOMPASS[41–43]andofcharmmesonsbyCOMPASS[44].
Anotherpromisingavenueispolarisedproton-protoncollisionsatRHIC.
Jets,highpThadrons,heavyavourproductionandpromptphotonsaresensitivetothegluonpolarisa-tion,andmeasurementsbytheSTARandPHENIXcollaborationsareexpectedtoputmuchstrongerconstraintsonthegluonpolarisation;indeed,earlymeasurementsfrombothPHENIXandSTARhavealreadydoneso[20,45–48].
BothexperimentshaveperformedmeasurementsoflongitudinaldoublespinasymmetriesoftheformALL=σ++σ+σ+++σ+,(1.
8)whereσ++(+-)isthecrosssectionforprotonswiththesame(opposite)helicities.
STARmea-surementsofALLininclusivejetproduction,p+p→jet+X,disfavouralargepositivegluonpolarisation[20],suggestingamaximumvalueof65%oftheprotonspinata90%condencelevel(gure1.
9).
PHENIXmeasurementsofALLforp+p→π0+X[45]havebeenincorpo-15x10-210-1x-0.
0100.
010.
020.
03COMPASSSMCg1d(a)Measurementsoftheg1structurefunctionofthedeuteronbySMCandCOM-PASS[36].
xxgQ2=5GeV2GRSVAACBB-0.
500.
5110-310-210-11(b)ComparisonofanumberofNLOanalysesofpDISdata[40].
Figure1.
8:Measurementsoftheg1structurefunction,suchasthoseshownin(a),areusedinQCDanalysestoextractthepolarisedgluondistribution.
Theconstraintsobtainedbyanumberofanalysesarecomparedin(b).
160.
20.
40.
60.
82/c2=100GeV2Q-310-210-11010Xgluonp=28GeV/cTp=5.
6GeVT/ca)1Gx1050.
250.
50.
751.
00fracdN/d(logx)-410-310-21010CL/c)2=0.
4GeV2G(Q20-1-0.
500.
51-11STARjet+X→ppg=-gGRSVg=0GRSVGRSV-stdg=gGRSVb)Pol.
uncertaintyFigure1.
9:ConstraintsonGfromjetmeasurementsbytheSTARCollaboration.
CListhecondencelevelforvariousgluondistributions.
Themaximallypositive(G=g)distributionisstronglydisfavoured.
ratedintoglobalanalyseswithpDISdatatosignicantlyreducetheuncertaintyonG[37].
Thoughtheuncertaintyremainslargecomparedtothatofthequarkspincontribution,theanal-ysisstronglyfavoursapositivegluonhelicitydistribution.
17Chapter2TransverseSpinPhysics2.
1TheTransversityDistributionTofullydescribethenucleon,athirdcategoryofpartondistributionfunctionsisrequired,inadditiontotheunpolarisedpartondistributionsq(x)andthehelicitydistributionsq(x).
Thesearethetransversitydistributions,δq(x).
TransversityisalsofrequentlydenotedTq(x)orhq1(x)intheliterature.
Transversitycanbeconsideredasthetransverse-spinanalogueofthehelicitydistribution.
Itdescribesthedifferencebetweenthedistributionsofquarkswithspinparallelandoppositetothatoftheirtransverselypolarisedparentnucleon,δq(x)=q↑(x)q↓(x).
(2.
1)indicatesthenucleonspindirectionand↑(↓)thequarkspindirection.
q↑(↓)(x)isthedistributionofquarksofavourqwithinthenucleonwithspinparallel(opposite)tothatoftheparentnucleon.
Thustransversitydescribesthedegreetowhichthetransversequarkspiniscorrelatedwiththetransversenucleonspin.
Fromthedenitioninequation(2.
1)itfollowsthatthetransversitydistributionsmustobeytheboundδq(x)≤q(x)(2.
2)18inordertoalwaysbepositive.
TheSofferinequality[49]providesanothermodel-independentconstraintonthetransversitydistributionandrelatesittotheunpolarisedandhelicitydistribu-tionsatleadingorderinQCD:2|δq(x)|≤q(x)+q(x).
(2.
3)Thefactthatthehelicityandtransversitydistributionsdifferreectstherelativisticnatureofthenucleon'sconstituents.
Inanon-relativisticcaseaseriesoftransformationsandrotationscanbeusedtochangefromalongitudinallypolarisedtoatransverselypolarisedproton.
IntherelativisticcaseLorentzboostsandrotationsdonotcommute.
Asaresultthetransversityandhelicitydistributionsneednotbethesame.
Bytheopticaltheorem,thetransversitydistributionisrelatedtoscatteringamplitudesthatinvolveaipofthequarkandnucleonhelicities[50].
Transversitydistributionsarethusde-scribedas'chiral-odd'becausetheyareinvolvedwithahelicityip.
Thiscontrastswiththeunpolarisedandhelicitydistributionfunctionswhichare'chiral-even':theyinvolvenohelicityip.
Thereisnoleading-twist1gluontransversitydistributionforapolarisedspin-targetbe-causeofhelicityconservation.
Gluonsarespin-1bosons,sohavehelicity±1.
Agluonhelicityipthereforeinvolvesahelicitychangeof±2,whichaspin-nucleoncannotaccomodate.
Ininclusivedeepinelasticscattering,whichprovidesthemajorityofourunderstandingofpartondistributions,chiral-oddprocessesarenotobserved,becausehelicityisconservedinper-turbativeQCDinteractions.
Forthisreasontransversitydistributionsaremuchlesswellunder-stoodthanhelicitydistributions.
Inorderforaprocessrelatedtotransversitytobeobservable,asecondchiral-oddfunctionmustbeinvolved.
Thecombinationoftwochiral-oddfunctionsthenconserveshelicityoverall.
Inhadron-hadroncollisions,thetwochiral-oddfunctionscanbeprovidedbythetransversitydistributionsofthetwonucleons.
Transversitymaythenbestudiedviatransversedoublespinasymmetriesinparticleproductionresultingfromcollisionsbetweentwotransverselypolarisedhadrons.
Anotherpossibilityisachiral-odd,spin-dependent1twistdescribestheorderin1/Qatwhichaneffectisseeninexperiment.
Aneffectoftwistt,wheret>1,issuppressedbyafactorQ(2t).
Aneffectatthelowesttwist,t=2,isreferredtoas"leadingtwist",andisnotsuppressedbyafactorofQ,whilesuppressedeffects,associatedwithlargervaluesoft,are"highertwist".
19fragmentationprocess.
This,combinedwithtransversity,cangiverisetotransversespinasym-metries.
Transversityisthereforerelatedtotheobservationoftransversespinasymmetriesinhadroniccollisions.
Bymeasuringthese,itmaybepossibletoinferinformationaboutthetransver-sitydistributions.
Transversespinasymmetriesarealsorelatedtothestudyoftransverse-momentum-dependentpartondistributionsandpartonorbitalmotion.
Iwillrstgiveasummaryofexperimentalmeasurementsofsuchtransversespinasymmetries,whichhaveahistoryspan-ninganumberofdecades.
Afterdescribingthemeasurements,Iwillhighlightthemechanismsproposedtoexplaintheirexistence.
Theserelatetotransversity,spin-dependentfragmentationandtransverse-momentum-dependentpartondistributions.
Finally,Ishalldiscussrecentexper-imentalworkthatisbeginningtoprovidetherstinformationonthetransversitydistribution.
2.
2TransverseSpinAsymmetriesSincethe1970's,signicanttransversespineffectshavebeenobservedinhadroniccollisions.
TherstobservationwasthatΛhyperonsproducedininelasticproton-berylliumcollisions,p+Be→Λ+X,arestronglyspin-polarisedtransversetotheirproductionplane[51].
Laterexperimentsfoundunexpectedlylargetransverseproductionasymmetriesformanyspeciesininclusiveproton-protoncollisions.
Considercollisionsbetweenatransverselypo-larisedandanunpolarisedproton:p+p→d+X,wherepdenotesthetransverselyspin-polarisedproton.
Theparticled,ofaspeciesofinterest,isdetected,whileXindicatestheremainingunmeasuredhadronicnalstate.
Thesinglespinasymmetry(SSA)oranalysingpower(AN)intheproductionofdcanbedenedasAN=1PNleftNleftNleft+Nleft,(2.
4)wherePistheaveragetransversespin-polarisationofthepolarisedprotonbeamortarget.
N()leftisthenumberofparticlesproducedtotheleftofthebeamwhenthetransverselypolarisedbeamdirectionisup(down).
Nleft+Nleftissimplythetotalnumberofparticlesproducedtotheleftof20thebeam.
Theasymmetrythusmeasuresthedifferenceinparticleproductiontobeam-leftuponippingofthebeampolarisation.
Rotationalinvariancerequiresproductiontotheleftwhenpolarisationisuptoequalproductiontotherightwhenpolarisationisdown:Nleft=Nright.
Thesinglespinasymmetryisthusequivalenttothedifferencebetweenparticleproductiontotheleftandrightofthebeamforaxedpolarisation.
Hencethesinglespinasymmetryisoftenreferredtoastheleft-rightasymmetry.
Equation(2.
4)isdenedsuchthatthattheasymmetryispositiveifparticleproductiontotheleftofthebeammomentum-polarisationplaneexceedsthattotherightwhenthebeampolarisationdirectionisup.
InitialexpectationsfromperturbativeQCDargumentswerethatsuchasymmetriesshouldbesmallathighenergies[52].
AtleadingorderinQCD,ANispredictedtobeapproximatelyzero,beingsuppressedbyafactorofmquark/√s,where√sisthecentreofmassenergyofthecollision.
Howeversuchasymmetrieshavebeenobservedandareinmanycasesverylarge.
ResultstakenattheArgonneZeroGradientSynchrotron(ZGS)inthe1970sfoundlargeasym-metries,inexcessof10%,intheproductionofchargedpionsandkaonsinp+pandp+2Hcollisionsat6and11.
8GeV/c[53,54].
AsymmetrieswerefoundtobesmallatsmallFeynmanx(xF=2pL/√s,wherepListheparticle'slongitudinalmomentum)andlargeatlargexF.
Asignicantasymmetryinπ0productionnearxF=0wasfoundatCERNin24GeV/cp+pcol-lisions,whichincreasedwiththepTofthepion[55].
AnumberofmeasurementswerecarriedoutattheBrookhavenNationalLaboratory(BNL)AlternatingGradientSynchrotron(AGS)withbeammomentaof13.
3and18.
5GeV/c[56–59].
Thespeciesmeasuredwereπ±,p,K0SandΛ.
π+showedaclearpositiveasymmetryatforwardangles,xF>0.
2,increasingwithpTtoaround25%atpTof2GeV/c.
AtsmallervaluesofxFtheasymmetrywasconsistentwithzero.
K0Sshowedasignicantnegativeasymmetryof-10%forxF0.
6andmoderatetransversemomentum,0.
60.
2,andmoder-atepT1GeV/cfrompolarisedprotoncollisionsat√s=62.
4GeV[72].
Atbackwardangles22Figure2.
1:SinglespinasymmetriesforpionsmeasuredbytheE704Collaborationforp+p→π+Xwitha200GeV/cpolarisedbeam.
(GeV/c)Tp0.
511.
522.
533.
544.
55NA-0.
2-0.
15-0.
1-0.
05-00.
050.
10.
150.
2h+h-035%notincludedscaleuncertaintyofNAFigure2.
2:Singlespinasymmetryinmid-rapidityπ0andchargedhadron(h±)productionfrompolarisedproton-protoncollisionsat√s=200GeV,measuredbythePHENIXCollaboration[69].
23Figure2.
3:Singlespinasymmetryintheproductionofπ0mesonsfrompolarisedproton-protoncollisionsat√s=200GeV,measuredbytheSTARCollaboration[71].
Largeasymmetriesareseentopersisttolargetransversemomentaatforwardangles(xF>0.
4).
asymmetriesareallconsistentwithzero,butpionsandkaonsshowsignicantasymmetriesatforwardangles,increasingwithxFtoAN≈0.
2atxF=0.
6(gure2.
4).
Protonsshowzeroasymmetryatforwardangles,unlikethemesonspecies.
Experimentalresultstodatehaveshownsignicantnon-zeroasymmetriesinavarietyofspecies.
Themagnitudesandsignsoftheasymmetriesarehighlydependentontheavouroftheproducedparticle.
Itisthereforeusefultomeasuretheasymmetriesforawidevarietyofidentiedspecies,asinformationontheavourdependenceoftheasymmetriesmayprovideinsightsintotheirphysicalorigin.
Additionally,thedependenciesoftheasymmetriesonpTandxFarenotyetunderstood.
Measurementsoverdifferentkinematicrangesarethereforealsousefulinconstrainingmodelsoftheasymmetry.
Understandingtheoriginoftransversespinasymmetrieswillaideinelucidatingthetransversespinstructureofthenucleon.
ResultsbeforetheRHICerawereatlowtransversemomenta,typicallymeasuringtheasym-metriesinparticlesproducedwithpT≈1GeV/candsmaller.
ThisistoolowforpQCDtobeapplicableintheanalysisofthedata.
HigherenergyexperimentsatRHIChavedoneandcon-tinuetomeasureasymmetriesatmuchlargertransversemomenta,facilitatingtheapplicabilityofpQCDtotheanalysisofthedata.
ItsexcellentparticletrackingcapabilitymeansthattheSTARexperimentinparticulariswellsuitedtotheidenticationofavarietyofspeciesatlarge24Figure2.
4:SinglespinasymmetryintheproductionofK±mesonsfrompolarisedproton-protoncollisionsat√s=62.
4GeV,measuredbytheBRAHMSCollaboration[72].
momenta,especiallynearmid-rapidity.
2.
3CollinsFragmentationFunctionsAsdiscussedabove,thechiral-oddnatureoftransversitymeansthatitcanonlybestudiedincombinationwithanotherchiral-oddfunction.
Collins[73]proposedachiral-odd,transverse-momentum-dependentfragmentationfunctioninwhichtheazimuthaldistributionofhadronsproducedbyafragmentingquarkiscorrelatedwiththequark'stransversespindirection.
Inacollisionsuchasp+p→π+Xthiscorrelation,combinedwiththetransversitydistribution,cangiverisetoaspin-dependenttransverseasymmetryintheproductionofthepion.
TheCollinsfragmentationfunctionactsasananalyserofthetransversequarkpolarisationinatransverselypolarisedhadron.
Thefragmentationofatransverselypolarisedquark,q↑,intoanunpolarisedhadron,h,canbeexpressedas[74]Dh/q↑(z,Ph⊥)=Dq1z,P2h⊥+H⊥q1z,P2h⊥k*Ph⊥·SqzMh.
(2.
5)kisthemomentumdirectionofthequarkandSqisitstransversespin.
TheproducedhadronhasmassMhandcarriesafractionzofthemomentumofthequark.
Ph⊥isthetransversemomentum25ofthehadronwithrespecttotheoriginalquarkdirection.
Therstterminequation(2.
5)containsthespin-independentpartofthefragmentationprocess.
Thesecondtermdescribesthetransverse-spin-dependentpartoffragmentation.
ThefunctionH⊥q1iscalledtheCollinsfunctionanddescribesthemomentumdependenceofthespin-dependentpart.
Theterm(k*Ph⊥)·Sqchangessignunderaipofspin,andgeneratesaspin-dependentazimuthalvariationinhadronproduction.
ExperimenthasbeguntoprovidetherstinformationabouttheCollinseffectandindicatesthatitisnon-vanishing.
TheHERMESCollaborationhavereportedresultsfromsemi-inclusiveDISofpositronsincidentonatransverselypolarisedprotontarget[75].
Anon-zeroasymme-tryinchargedpionproduction,arisingfromthecombinationoftransversityandtheCollinsfunctions,isobserved.
ThisindicatesthatboththetransversitydistributionandtheCollinsfunctionarenon-vanishing.
Theobservedasymmetryhasoppositesignandcomparablemag-nitudeforpositiveandnegativepions.
ThelargemagnitudeandoppositesignofthenegativepionasymmetrycanbeexplainedifthedisfavouredCollinsfunctionhasasigncantmagnitudeandoppositesigncomparedtothefavoured2Collinsfunction.
TheCOMPASSCollaborationhavemeasuredchargedhadronproductionincollisionsbe-tweenmuonsandpolariseddeuteronsandfoundallasymmetriestobesmallandcompatiblewithzero[76].
Whentakenwiththenon-zeroresultswithaprotontargetfromHERMES,theCOMPASSresultssuggestthecancellationofasymmetriesfromtheprotonandtheneutroninthetarget.
TheBelleCollaborationhaveobservedazimuthalasymmetriesofafewpercentindihadronproductionine+ecollisionsat√s=10.
58GeV[77,78].
Becausetheseareleptoniccolli-sions,transversityisnotinvolvedandtheBelleresultsprovideadirectindicationoftheCollinsfunctions.
TheseresultsconrmtheHERMESobservationthatthefavouredanddisfavouredCollinsfunctionshaveoppositesign.
2Afragmentationfunctiondescribingaquarkfragmentingintoahadronissaidtobefavouredifthehadroncontainsavalencequarkofthesameavourasthefragmentingquark,forexampleauquarkfragmentingintoaπ+.
Iftheproducedhadrondoesnotcontainaquarkofthesameavour,thefragmentationfunctionisdisfavoured.
262.
4TheSiversMechanismAnothermechanismforgeneratingtransversesinglespinasymmetrieswasproposedbySivers,involvingtheintrinsictransversemomentumofthenucleonconstituents,kT[79].
Siversas-sumedthattherecouldbeacorrelationbetweenthespinofaprotonandtheorbitalmotionofthe(unpolarised)partonconstituents.
ThisgivesthepossibilityofanasymmetryinthepartonickTdistributioninthedirectionnormaltotheplanedenedbytheprotonmomentumandspindirections.
IftheintrinsickTsurvivesthefragmentation/hadronisationprocessfollowingscat-tering,theimbalanceintheintrinsicmomentumcanbeobservedasaleft-rightimbalanceinthepTdistributionoftheproducedhadrons.
TheSiversmechanismisthereforerelatedtopartonicmotionwithinthenucleon.
TheSiversmechanismisnotrelatedtotransversity;itisaseparatemechanisminvolvedinSSAs.
Thepartondistributionfunctioncanbeexpressedasa(conven-tional)spin-independentterm,plusaspin-dependenttermmultipliedbyaspecialpartondensityfunction.
ThisspecialpartondensityiscommonlyreferredtoastheSiversdistributionfunc-tionandisdenotedf⊥1T(x,kT).
Notethatitisatransverse-momentum-dependentdistribution,incontrasttousual,transverse-momentum-integratedPDFs,q(x).
ForalongtimetheSiversdistributionwasbelievedtoberequiredtobezeroduetoargu-mentsrelatedtotime-reversalsymmetryinQCD[73].
Morerecentlyhowever[80–83],workhasshownthatsuchanasymmetryisallowed,byaccountingfornalstateinteractionsbetweentheoutgoing,scatteredquarkandthespectatorhadronicremnant.
'Finalstate'referstothefactthattheinteractionsoccurafterthescatteringofthequark.
However,thisinteractionisnot'-nalstate'inthesenseofbeingrelatedtofragmentationorhadronisationofthequark;thegluonexchangenalstateinteractionsoccurbeforethis.
IthasalsobeenshownthattheSiversdistributionisnon-universal[81,82];thatis,themeasuredfunctiondependsontheprocessstudied.
Thisisincontrasttotheconventional(transverse-momentum-integrated)PDFs,whichareuniversal(thesameineveryscatteringpro-cess).
Forexampleapredictiongivenin[81]isthattheSiversdistributionforDrell-Yanpro-ductionisequalinmagnitudebutdiffersinsigntothatindeepinelasticscattering.
Aqualitativeunderstandingisprovided[40]byrecallingthatthequarkmustundergoadditionalinteractions27inorderfortheSiverseffecttobenon-vanishing.
Thisinteractioncanbethoughtofasthequarkscatteringinthecoloureldofthespectatorremnant.
Differentcollisionprocesseswillresultindifferentforcesactingonthequark,givingrisetodifferentSiversfunctions.
TheHERMESCollaborationhavemadetherstreportofanon-zeroSiversfunction[75].
SIDISproductionofπ+withtheHERA27.
5GeVpositronbeamshowedanasymmetrycorre-spondingtoanegative,non-zeroSiversfunction.
TheCOMPASSCollaborationhavereportedmeasurementsofSiversasymmetriesforinclusivepositivelyandnegativelychargedhadrons[76],andforpionsandkaons[84]inSIDISwitha160GeV/cmuonbeamanddeuterontarget.
Allasymmetrieswerefoundtobesmallandconsistentwithzero,suggestingcancellationofupanddownquarkcontributionsfromthedeuterontarget.
TheSTARexperimenthaspresentedresultsfordi-jetproductioninp+pcollisionsat√s=200GeV[85].
Measurementsweremadeoftheopeninganglebetweenthejets.
ThekTasymmetryproducedbytheSiversmech-anismmaymanifestasanopeningangleotherthan180degrees(back-to-backjets).
Observedasymmetrieswerefoundtobesmallandconsistentwithzero,andsmallerthanSIDISresultsfromHERMES.
pQCDcalculationssuggestthedifferenceisduetocancellationbetweenupanddownquarkcontributions[86],andbetweennal-andinitial-stateinteractions,bothofwhichcontributeinthejetproductionmechanism[87].
2.
5MeasurementsofTransversityRecentlythetransversitydistributionsofuanddquarksintheprotonhavebeenextractedforthersttime[88].
SIDISdatafromtheHERMESandCOMPASSCollaborations,measuring+p→+π+X,ande++e→h+h+XdatafromtheBelleCollaborationwerestudied.
TheHERMEStransverseasymmetriesinvolvethecombinationoftransversitywiththeCollinsmechanism.
TheBelledataprovideadirectmeasureoftheCollinsfunctions,andsoallowthetransversitydistributionstobedeterminedfromtheHERMESdata.
Thetransversitydistribu-tionswereparameterisedandthebest-tparametersdeterminedfromaglobalttothedata.
Theextractedtransversitydistributionsareshowningure2.
5.
Theextractedupquarkdistribu-28tionispositiveforallxwhilethedownquarkdistributionisnegative.
Theupquarkdistributionisgreaterinmagnitudethanthedownquarkdistribution,|δu(x)|>|δd(x)|andbotharesmallerinmagnitudethantheSofferboundgiveninequation(2.
3).
Therststepsarenowbeingmadetowardunderstandingthequarktransversitydistribu-tions,thoughtheyremainmuchlesswellunderstoodthantheunpolarisedandhelicitydistribu-tions.
2.
6AimsofThisThesisTheworktobepresentedherewasperformedusingdatatakenbytheSTARexperimentattheRelativisticHeavyIonCollider(RHIC).
TheRHICphysicsprogrammeencompassesstudiesofheavyioncollisionsandpolarisedprotoncollisions,ofwhichthepolarisedprotonprogrammeisofinteresthere.
RHICiscapableofprovidingbothlongitudinallyandtransverselypolarisedprotons,andanextensivespinprogrammehasbeeninoperationsince2002.
Studiesusinglon-gitudinallypolarisedprotonshaveyieldedconstraintsonthepolarisedgluoncontribution,G,tothespinoftheprotonbymeasuringdoublehelicityasymmetries,ALL,intheproductionofjetsandpions.
Withtransverselypolarisedprotons,investigationshavebeenperformedintothetransversespinstructureoftheprotonviameasurementsoftransversesinglespinasymmetriesinhadronandjetproduction.
Thisthesispresentsastudyofsingleanddoubletransversespinasymmetriesinthepro-ductionoftheneutralstrangeparticlesK0S,ΛandΛ,usingtransverselypolarisedprotondataacquiredduringthe2006RHICrun.
TheseparticlesarewellsuitedtostudybySTAR,astheycanbeidentiedoveralargemomentumrangeusingtopologicalreconstructionoftheirdecayproducts,whilealsohavingareasonableproductioncrosssection.
Bycontrast,chargedspeciessuchaspionsandprotonscanonlybemeasuredoveralimitedmomentumrange.
TransversesinglespinasymmetriesintheproductionoftheseparticleshavebeenmeasuredbeforeatAGSandbytheE704Collaboration,asmentionedinsection2.
2.
STARprovidestheopportunitytoextendthesestudiestosignicantlyhighercollisionenergyandparticlemomentumthanhas29Figure2.
5:Transversitydistributionsofuanddquarksintheprotonextractedfromaglobalttodata,takenfrom[88].
Theshadedregionshowsaone-sigmauncertaintyaroundthebest-tdistribution.
TheboldlinesoutsidetheshadedregionindicatetheSofferbound.
30previouslybeenattained.
Theremainderofthethesisisorganisedasfollows.
Inchapter3theRHICcomplex,itsoperationasapolarisedprotoncolliderandtheSTARexperimentaredescribed.
ThetechniquesusedtoidentifyK0S,ΛandΛparticlesarethendetailed.
Inchapter4thedatasetusedintheanalysisispresentedandtheextractionofK0S,ΛandΛyields,usingthetechniquesoutlinedinchapter3,isdescribed.
Chapter5presentsthemethodsusedtocalculatethetransversesinglespinasymmetriesintheproductionofeachparticlespecies,anddescribesanumberofsystematicchecksperformedontheresults.
Chapter6presentstheanalysisoftransversedoublespinasymmetries.
Finally,chapter7summarisestheresultsandprovidesanoverviewoffuturetransversespinphysicsexperimentsplannedatRHICandelsewhere.
31Chapter3TheExperiment3.
1TheRelativisticHeavyIonColliderTheRelativisticHeavyIonCollider(RHIC)[89,90]islocatedatBrookhavenNationalLabo-ratory,NewYork.
Itisanintersectingstorageringthatacceleratestwoindependentbeamsofionswithmassnumbersfromonetoaround200usingsuperconductingmagnets.
Themaxi-mumenergypernucleondecreaseswithmassnumberfrom250GeVforprotonbeamsto100GeVfortheheaviestionssuchasgold,A=197u.
Becausethebeamsareindependentofoneanothereachneednotbeofthesamespeciesandasymmetriccollisionscanbeandhavebeenperformed(forexamplebetweendeuteronsandgoldions).
Figure3.
1showsaschematicviewofalltheelementsoftheRHICcomplex.
TheRHICringhasa3.
8kmcircumferenceandisapproximatelycircular,withsixarcsectionsandsixstraightregions.
Inthestraightsectionsthebeamsaresteeredtointersectsothatcollisionscanoccur.
Collisionpointsareatthetwo,four,six,eight,tenandtwelveo'clockpositions,inthemiddleofthestraightsections.
Experimentalhallsaresituatedatthecollisionspoints:BRAHMSattwoo'clock,STARatsix,PHENIXateightandPHOBOSatten.
TheboosteracceleratorandAGSareusedtoaccelerateionstoRHICinjectionenergy.
TheLINACaccelerateshydrogenionsforuseinprotoncollisions,whiletheTandemvanderGraaffgeneratorisusedtoaccelerateheavierions.
Onlyoperationsrelatingtoproton-protoncollisionswillbediscussedhere.
32Figure3.
1:TheRHICcomplex.
ProtonsfollowapaththroughtheLinac,Booster,AGS,ATR(AGStoRHICline)andintotheRHICring.
TheTandemVandeGraaffgeneratorisusedintheaccelerationofheavyions.
Polarisedprotonsareproducedusinganoptically-pumpedpolarisedionsource[91,92],whichtypicallygenerates0.
5mA,300spulsesofions,correspondingto9x1011ionsperpulse,withupto90%polarisation.
TobetterachievehighluminositytheRHICbeamsarenotcontinuousbutareinsteadcompressedinto120'bunches'ofparticles,eachlessthan30cminlength.
BecauseoflossesduringaccelerationandtransfertoRHIC,pulsesof9x1011ionsareneededfromthesourcetoprovidetherequiredRHICluminosityof1.
4x1031cm-2s-1,whichcorrespondstobunchesof2x1011protons.
Protonsarepassedthrougharubidiumvapourpumpedwithcircularlypolarisedlaserlightinastrongmagneticeld,wherebytherubidiumelectronsare95-100%polarised[93].
Apolarisedelectronistransferredtotheprotonsthroughcollisions,andmagneticeldsareusedtotransfertheelectronpolarisationtothehydrogennucleus.
Theneutral,nuclear-polarisedhydrogenatomsarenallyionisedtoH-bycollisionswithasodiumvapour.
Accelerationoccursinfourstages:LINAC,booster,AGSandRHIC.
FirsttheH-ionsare33acceleratedtoakineticenergyof200MeVintheLINAC,withanefciencyofaround50%,andthenstrippedoftheirelectronsandinjectedasasingle4x1011ionbunchintotheboosterring.
Theboosteracceleratestheprotonstoakineticenergyof1.
5GeVanddeliversthemtotheAlternatingGradientSyncrotron(AGS),whichacceleratestheprotonsto25GeVforinjectionintoRHIC.
RHICthenaccelerateseachbeamtothedesiredcollisionenergy;forprotonsthedesignminimumis30GeVandthemaximum250GeV.
TheRHICcomplexisdescribedinmoredetailinreferences[89,90,94].
ThestableprotonspindirectionintheRHICringisverticali.
e.
transverselypolarisedbeams.
TheprotonspinsprecessaroundtheverticalmagneticeldintheRHICringatarateofGγprecessionsperorbit,whereG=1.
7928,theanomalousmagneticmomentoftheproton,andγistherelativisticfactor.
Imperfectionsinelectricandmagneticeldscanperturbthespindirection.
Theseperturbationstypicallycancelovermanyorbitsbecausethespinisatadifferentpointinitsprecessionineachorbit.
However,whentheprotonspinisatthesamepointinitsprecessiononeachorbit,correspondingtoGγ=integer,the'kicks'tothespindirectionsadduponconsecutiveorbitsandleadtodepolarisationofthebeam.
Spinresonancesofthissortoccurevery523MeVforprotons,somanyareencounteredduringbeamacceleration.
Topreventlossofbeampolarisationduetothesespinresonances,twohelicalSiberianSnakemagents[95]areinstalledineachbeam,oneatthethreeo'clockandoneatthenineo'clockposition.
ASiberianSnakerotatesthestablespindirectionby180degreesaroundahorizontaldirection,whicheliminatespolarisationlossesfromspinresonances.
ThedesignmaximumpolarisationforRHICis70%.
The80-90%polarisationatthepolarisedsourceisreducedbylossesduringthevariousaccelerationandtransportstages.
SpinrotatorsplacedeithersideofbothPHENIXandSTARallowrotationofthestabledirectionattheseexperimentsifsodesired,inordertostudylongitudinallypolarisedprotons.
AlldatausedinthisanalysiswereacquiredwithtransversebeampolarisationsatSTAR.
Eachbeam'spolarisationismonitoredusingitsowncarbon-targetCoulomb-NuclearInter-ference(CNI)polarimeter.
Thesemeasuretheasymmetryinrecoilcarbonatomsfromelasticp+CscatteringbetweenthepolarisedRHICprotonbeamandthecarbontargetofthepo-34larimeter.
Atthesmallmomentumtransfers(0.
002to0.
01GeV2)atwhichthescatteringsoccur,thep+Cscatteringprocesshasasignicantanalysingpowerofaround4%.
Thescat-teringcross-sectionislargeandonlyweaklydependentonbeamenergyovertheRHICrange,allowingquickmeasurementsofthebeampolarisation.
Measurementsof107carbonatoms,sufcientforastatisticalprecisionofafewpercentonthepolarisationmeasurement,canbeacquiredin30seconds.
Thecarbontargetsusedareverythin(≈5mwideand150thickforatarget2.
5cminlength),allowingtherecoilcarbonatomstoescapethetargetandbedetected.
Theuseofthintargetsalsokeepsthelossofbeamluminosityduetoscatteringtoanacceptablelevel.
Siliconstripdetectorssurroundingthecarbontargetallowmeasurementofboththeverticalandradialtransversecomponentsofthebeampolarisation.
Becauseoftheoreticaluncertain-tiesinthep+Canalysingpower,thepCpolarimetersarecalibratedusingasinglepolarisedhydrogenjettargetsharedbetweenthebeams.
AmeasurementofonetotwodaysisrequiredtocalibratethepCpolarimeterstowithin5%.
ThecalibratedpCpolarimetersarethenusedtomeasurerelativevariationsinthebeampolarisation.
EachRHICbeamstoretypicallylastseighttotenhours.
Thepolarisationofeachbeamismeasuredatthestartofthestoreandagainatapproximatelytwo-tothree-hourintervalsduringthestoreusingthepCpolarimeters.
Thisintervalisacompromisebetweenthedesirestomonitorthepolarisationfrequentlyandtominimisebeamlossesincurredduringpolarisationmeasurement(0,forbeam-right,(5.
3)wherepV0istheV0momentumvectorandpbeamandPbeamarerespectivelythebeammomen-tumandpolarisationvectors.
BeamleftcorrespondstonegativexintheSTARcoordinatesys-68temfortheclockwisebeam,andpositivexfortheanticlockwisebeam.
Becausetheasymmetryinvolvestakingratiosofparticleyields,theacceptanceofthedetectorandtheefcienciesoftheSTARtrigger,V0reconstructionandanalysiscutscancelout,greatlysimplifyingtheanalysis.
Thefactorofcosφinequation(5.
2)andhowthisisaccountedforintheanalysisarediscussedfurtherinsection5.
2.
Singlespinasymmetrymeasurementsrequireonlyonebeamtobepolarised.
BecausethetwoRHICbeamsareindependentlypolarised,twomeasurementsofthesinglespinasymmetrycanbemadeusingthesamedata.
Ineachcase,onebeamistreatedasthepolarisedbeam,whiletheotheristreatedasunpolarisedbysummingparticleproductionoverboththepolarisationstatesofthatbeam.
Twomethodswereusedtocalculatethesinglespinasymmetriesandtheresultscomparedtocheckconsistency.
Onemethodinvolvedusingtherelativeluminositiesofthebeamstocorrectthecountsforeachpolarisationpermutation.
Theotherusesacombinationofparticleproductiontobothsidesofthebeamtocanceltheeffectsofdifferingbeamluminosities.
Thesetwomethodswillbediscussedindetailnow.
5.
1.
1RelativeluminosityMethodThebunchesineachRHICbeamarenotidenticalintheirspatialprole,andsoeachprovidesaslightlydifferentluminosity.
Themoretightlytheprotonsarebunched,thehigherthelumi-nositywillbe.
Thismeansthatthereiseffectivelyadifferentluminosityforeachpermutationofthebeampolarisationsand)inanygivenbeamstore.
Toaccountforthis,whencalculatingtheasymmetrytheyieldforeachpolarisationstatemustbescaledbythecorrespondingluminosity.
Accountingforthis,equation(5.
2)thenbecomes:ANP=1cosφNLNLNL+NL.
(5.
4)whereLandLindicatethebeamluminosityforbunchesofupanddownpolarisationrespectively.
Totreatonebeamaseffectivelyunpolarised,yieldsfromthetwopolarisation69statesofthatbeamaresummed,N=N+N,N=N+N,(5.
5)wheretherstsuperscriptarrowineachtermontherightofequation(5.
5)indicatesthepolari-sationdirectionofthe'polarisedbeam'andthesecondarrowindicatesthepolarisationdirectionofthe'unpolarisedbeam'.
Astheluminositiesforthesestatesarenotnecessarilythesame,theymustbescaledbytheappropriateluminosityindividually:NL→NL+NL,NL→NL+NL.
(5.
6)Becausetheasymmetrymeasurementinvolvestakingaratio,itisadequatetouseonlytherel-ativeluminositiesbetweenbeams,meaningthattheabsolutenormalisationoftheluminositiesdidnotneedtobeknown.
Buncheswithbothbeamspolariseddown(bunches)wereusedasthereferenceforcalculatingrelativeluminosities.
Thefourrelativeluminositieswerethusdened:R=LL,R=LL,R=LL,R≡1.
(5.
7)TherelativeluminositieswerecalculatedbytakingtheratiosofBBCcountratesforcollisions70witheachpermutationofbeampolarisations.
Particleyieldsforeachpermutationofbeampolarisationswerescaledbytherelativelumi-nosityforthatpermutation.
Thefullexpressionfortheasymmetrywasthen:ANP=1cosφN/R+N/RN/R+NN/R+N/R+N/R+N.
(5.
8)Theasymmetrycanbecalculatedusingcountstobeamleftorcountstobeamright.
Byro-tationalinvariance,theasymmetryusingparticleproductiontotheleftisequivalenttothenegativeofthatusingproductiontotheright.
Foreachbeam,boththeleft-asymmetryandtheright-asymmetrywerecalculated,andtheleft-asymmetryaveragedwiththenegativeoftherightasymmetry.
Asymmetrieswerecalculatedseparatelyforforwardandbackwardanglesrelativetothebeamdirection.
Theresultsforeachbeamwerethensummedtogiveanaveragevaluefortheasymmetryatforwardanglesandatbackwardangles.
5.
1.
2CrossRatioMethodForthe'cross-ratio'method,NandNinequation(5.
2)weredenedasN=LR,N=LR,(5.
9)whereLandRindicateparticleyieldtobeam-leftandbeam-rightrespectively.
Thiscombinedtheparticleproductiontoeachsideofthebeamforoppositebeampolarisationsatthestart,ratherthancombiningbyaveraging'left'and'right'asymmetriesattheendasintheafore-mentionedmethod.
Becauseofrotationalinvariance,particleproductiontothebeam-leftforonepolarisationmustbeequivalenttothattobeam-rightfortheoppositepolarisation.
Equation(5.
9)thusdenes'effective'yieldstobeamleft.
Tomeasurethesinglespinasymmetry,onebeamisagaintreatedasunpolarisedbysummingoveritspolarisationstates.
Thetermsinequation(5.
9)arethendenedas71L=L+L,L=L+L,R=R+R,R=R+R.
(5.
10)Therstsuperscriptarrowsinthetermsontherightindicatethepolarisationstateofthepo-larisedbeamandthesecondthestateofthe'unpolarised',beam.
Thecompleteexpressionfortheasymmetryusingthecross-ratiomethodisANP=1cosφL+LR+RL+LR+RL+LR+R+L+LR+R.
(5.
11)Thecross-ratiomethodofcalculatingtheasymmetryhastwoadvantages.
First,itcancelsouttheeffectsofdetectoracceptance,aswiththeabovemethod.
Second,becauseeachterminthenumeratoranddenominatorinequation(5.
2)containsacontributionfrombuncheswithbothupanddownpolarisationviaequation(5.
9),polarisation-dependentluminositydifferencesbetweenbunchesalsocancelout.
Thismeansthattheasymmetrycanbecalculatedwithoutknowledgeofthebeamluminosities.
Itisthereforeunnecessarytoscaleparticleyieldsbytheluminosityforthecorrespondingpolarisationstateofthecollisionscreatingthem.
Thissimpliesthecalculationoftheasymmetryandallowsmorerunstobeusedintheanalysis,asrelativeluminositymeasurementswerenotavailableforallruns.
Italsonegatestheeffectofanysystematicerrorsintheluminositymonitoring.
Todemonstratethecancellationoftheluminosity,theasymmetrywascalculatedforanum-berofrunsusingequation(5.
11).
Theasymmetrieswerethenrecalculated,usingyieldsscaledbytherelativeluminosities.
Theresultsofthesecalculationsarecomparedingure5.
2.
Thesinglespinasymmetrycalculatedwhentherelativeluminosityeffectsareexplicitlyaccounted72STARrun71290017129002712900371290187129020712902371290317129032712903571290367129041NAnalysingpower,A-1-0.
8-0.
6-0.
4-0.
200.
20.
40.
60.
81Figure5.
2:Thecancellationofbeamluminosityusingthecross-ratiomethodofasymmetrycalculation(equation(5.
11)).
TheshownasymmetriesarecalculatedusingyieldsofΛhyperonsatforwardangles,treatingtheclockwisebeamasthepolarisedbeamandtheanticlockwisebeamasunpolarised.
Solidpointsshowtheasymmetrycalculatedwithnoaccounttakenofbeamluminosity.
Theempty,offsetpointsshowtheeffectofexplicitlyincludingluminosity.
Thedifferenceisnegligible.
forbarelydifferfromthosewithouttheluminosityconsidered.
Deviationsarenegligiblecom-paredtothestatisticaluncertaintiesinallcases,showingthatthecross-ratiomethodsuccessfullyaccountsfortheeffectofbeamluminosity.
Forthisreasonthecross-ratiomethodisthepreferredmethodforcalculatingtheasymme-try.
Therelativeluminositymethodwasusedasacheckonthecross-ratioresults,tolookforsystematicerrors.
5.
2AzimuthalWeightingCaremustalsobetakentoaccountfortheazimuthalparticledistributionwhencalculatingtheasymmetry.
Theasymmetryisstrongestinthedirectionnormaltothebeam-polarisationplaneandgoestozeroalongthepolarisationdirection.
Thefactorof1/cosφinequation(5.
2)accountsforthis.
Inpreviousxed-targetexperimentssuchasthoseattheAGSthedetectoracceptedonlyparticlesproducedinasmallrangeinazimuth,wherebyasinglevalueforcosφ73couldbeused[56].
TheSTARdetectorcoversinsteadafull2πradiansinazimuth.
Theφdistributionofparticles,producedfromabeamwithpolarisationPandwithanalysingpowerANisgivenbyequation(5.
1),N(φ)∝1+ANPcosφ.
Theanalysingpowercaninprinciplebeextractedbybinningtheparticleyieldsintorangesincosφandttingastraightlinetotheresults.
Theanalysingpowerwouldthenbefoundfromthegradientofthelineusingtheknownbeampolarisation.
Howeveritwasfoundthatthestatisticsinthedataavailablewereinsufcienttoallowbinningintoasufcientnumberofcosφrangesforameaningfult.
Thereforeyieldswereintegratedoverallanglesineachhemisphere:beam-left(|φ|π/2).
Theseyieldswereenteredinequation(5.
11)tocalculatetheasymmetry.
Usingthefullazimuthalacceptance'waters-down'themeasuredasymmetryduetoproductionatsmallvaluesofcosφ,resultingintheanalysingpowermeasuredbyequation(5.
11)beingsmallerbyafactorof2/πthanthephysicalanalysingpowerinequation(5.
1).
Toaccountfortheazimuthaldistributionwithoutdividingthedataintocosφranges,theparticlecountsusedinthedenominatorwereweightedby|cosφ|.
Doingthisequation(5.
2)becomesANP=1cosφNNN+N→NN∑Ni=1|cosφ|+∑Ni=1|cosφ|(5.
12)Equations(5.
8)and(5.
11),derivedfromequation(5.
2),weresimilarlymodied.
Thisaccountsfortheazimuthaldependenceoftheasymmetryandmeansthatthesinglespinasymmetrydeterminedusingequations(5.
8)or(5.
11)correspondstothephysicalanalysingpowerANinequation(5.
1).
Tochecktherelationshipbetweenaphysicalasymmetryandthatextractedbymeasurement,K0Scandidateswererandomlyassignedazimuthalanglesfromthedistributioninequation(5.
1)withdifferentchosenvaluesofANP.
TheasymmetryANinthemodelledparticleswascalcu-latedusingequation(5.
11),bothwithandwithoutthecosφweightingprocedure.
Theresults74Recovered(asymmetryxpolarisation)0.
50.
60.
70.
80.
911.
11.
200.
050.
10.
150.
20.
250.
30.
350.
4WeightedUnweightedFigure5.
3:Effectof|cosφ|weightingindenominatortermsforasymmetrycalculation.
10,000K0Swererandomlyassignedaφangle,usingapolarisationof100%andananalysingpowerof1.
0,andtheasymmetrycalculatedusingthecross-ratiomethod.
Theimageshowstheresultsfrom100repetitionsofthiscalculation.
Thedashedpeakshowstheasymmetrycalculatedbyequation(5.
11)withnoweighting.
Thedottedlineindicatesthevalueof2/πexpected.
Thesolidlineshowsthesameasymmetrycalculatedwithweighting,recoveringtheinputvalueof1.
0.
areshowningure5.
3.
5.
3ResultsThecross-ratioasymmetrywascalculatedforeachRHICstoreindividually,summingparticleyieldsfromeverySTARrunthatoccurredinagivenstore.
Asymmetrieswerecalculatedforeachbeam,separatelyforforwardandbackwardangles.
Poisson(√N)errorswerecalculatedforeachparticleyieldinequation(5.
11)andpropagatedtocalculatethestatisticaluncertaintyontheasymmetryforeachstore.
Theasymmetryforeachstorewasthenscaledusingthemeanpolarisationmeasuredforthecorrespondingstore.
Theuncertaintiesontheasymmetrieswere75/ndf2χ32.
99/32Mean0.
019262±0.
003152RHICstore771877227724772577297739774077817785778677887790779177927794779577967797780078037804781078117815781778207823782478257826782778307831NAnalysingpower,A-1-0.
8-0.
6-0.
4-0.
200.
20.
40.
60.
81/ndf2χ23/32Mean0.
02017±0.
05217Figure5.
4:ANcalculatedusingthecross-ratiomethodforK0S,1.
00fromboththeclockwiseandanticlockwisebeamsforasingletransversemomentumbin.
Notethattheresultsarenotcorrectedfortheglobaluncertaintyinbeampolar-isation(4.
7%clockwisebeam,4.
8%anticlockwisebeam).
Consistencybetweenthetwobeamsisgoodonastore-by-storebasis.
Foreachbeamanddirectionrelativetothebeam(forwardandbackwardangles)abest-tlinewasappliedtothestore-by-storeresultstogiveaweightedmeanasymmetry.
Ineachcasethebest-tlineshaveaχ2perdegreeoffreedomclosetoone,indicatingagoodqualityoftandshowingstore-to-storesystematicdifferencesaresmallcomparedtothestatisticaluncertainties.
Theresultsfromeachbeamprovideindependentmeasurementsoftheasymmetry,sothemeanasymmetriescalculatedfromeachshouldshowconsistencywithinstatisticaluncertain-ties.
Figure5.
5showscomparisonsoftheasymmetryinK0Sproduction,asafunctionofK0Stransversemomentum,calculatedforbothbeams.
Thedifferencesbetweenthetwobeamsaretypicallyonestandarddeviationorsmaller.
Largerdifferencesareseenatforwardanglesinthe76pTrange1.
0to2.
0GeV/c,butthedeviationsarenotfoundtobeinconsistentwithstatisticaluctuations.
TheresultsforΛandΛatbothforwardandbackwardproductionangles(notshown),showedgoodagreementbetweentheresultsforthetwobeams.
Inallcasesaatbest-tlinettedtotheresultsfromeachbeamshowedresultsconsistentwithazeroasymmetryatallvaluesoftransversemomentum.
Theresultsfromeachbeamatthesamerelativeproductionangleswerethenaveragedtogiveameanasymmetryatforwardanglesandameanasymmetryatbackwardangles.
Theseaveragedasymmetries,asafunctionofparticletransversemomentum,areshowningures5.
6(K0S),5.
7(Λ)and5.
8(Λ)andarelistedintable5.
1.
Alluncertaintiesshownarestatisticalonly,exceptforthesmallcontributionfromthepolar-isationsystematicuncertaintyforeachstore.
FortheΛandΛ,theasymmetriesarefoundtobeconsistentwithzerowithinstatisticaluncertaintiesatallmomentastudied,forbothforwardandbackwardangles.
ThesameisobservedforK0Satbackwardangles.
Smallnon-zeroasymme-triesareseenfortheK0Satforwardangles.
Apositiveasymmetryisobservedattheleveloftwostandarddeviationsintherange1.
00intheSTARco-ordinatesystem.
Theazimuthalangleφwasdenedtocovertherangeπto+π.
Withthisdenition,thefourquadrantsspannedtheφrangesgivenintable6.
1.
CalculatingATTinthiswayutilisestheparticleproductionthroughoutthewholedetec-tor,minimisingstatisticaluncertainties.
Becausebothbeamsenterequation(6.
2)equivalently,anyasymmetrymustbesymmetricaboutη=0.
Yieldsatbothforwardandbackwardanglesarethereforesummed.
Inanalogywiththesinglespincase,integratingoveranangularrange89QuadrantφminφmaxTopπ/43π/4Left-π/4π/4Bottom-3π/4-π/4Right3π/4-3π/4Table6.
1:φanglerangesdeningthefourquadrantsusedforcalculatingATT.
dilutestheasymmetrybecauseofitsangulardependence.
Thisresultsinthemeasuredasym-metrybeingsmallerthanthephysicalasymmetry.
Thecos2φdependenceisaccountedforbyweightingeachcountinthedenominatorby|cos2φ|oftheparticle.
Yieldsforeachspeciesareextracted,asdiscussedpreviously,foreachSTARrun.
Thesearescaledbytheappropriaterelativeluminosity,R.
Thesinglespinasymmetryresultscal-culatedusingtheluminosity-dependentmethodandthecross-ratiomethodcorrespondedwell.
Thisindicatesthattherelativeluminosityscalingprocedureusedisreliable,andsystematicuncertaintiesduetotheluminositymeasurementsarenotlarge.
ScaledyieldsfromeachruninagivenRHICstoreareaddedtogivetotalstore-by-storeyields.
TheasymmetryforeachRHICstoreisthencalculatedusingequations(6.
3)and(6.
4).
Therawasymmetriesarecorrectedfortheproductofthetwobeampolarisations.
Abesttlinetothestore-by-storeresultsisusedtoobtainaweightedmeanvaluefortheasymmetry.
Thecalculatedasymmetryisshownforeachbeamstoreingure6.
1.
Resultsareintegratedoverallparticletransversemomentatominimisestatisticaluncertainties.
Theglobaluncertaintyintheproductofthebeampolarisations,δ(PAPC)/(PAPC)isnotincorporated.
Nosignicantstore-to-storeuctuationsareobserved.
Asymmetriesaresmall,inagreementwiththeoreti-calpredictions.
Thebest-tmeanasymmetriesareconsistentwithzerowithinthestatisticaluncertainties.
ThemeanvaluesofATTextractedasafunctionoftransversemomentumaresummarisedingure6.
2andarelistedintable6.
2.
TheresultsareatandconsistentwithzeroateachpTbinstudied.
90RHICstore77227724772577297739774077817785778677887790779177927795779677977815781778207823782478257826782778307831TTDoubleasymmetry,A-1-0.
8-0.
6-0.
4-0.
200.
20.
40.
60.
81/ndf2χ12.
12/25Mean0.
01685±-0.
01047(a)K0SRHICstore77227724772577297739774077817785778677887790779177927795779677977815781778207823782478257826782778307831TTDoubleasymmetry,A-1-0.
8-0.
6-0.
4-0.
200.
20.
40.
60.
81/ndf2χ30.
5/25Mean0.
0273±-0.
0322(b)ΛRHICstore77227724772577297739774077817785778677887790779177927795779677977815781778207823782478257826782778307831TTDoubleasymmetry,A-1-0.
8-0.
6-0.
4-0.
200.
20.
40.
60.
81/ndf2χ18.
98/25Mean0.
028641±0.
005922(c)ΛFigure6.
1:ATTforeachRHICstoreintegratedoverallparticletransversemomenta.
Thehorizontalstraightlinesshowbesttstothedataoverallstores.
91Transversemomentum(GeV/c)0.
511.
522.
533.
54TTMeanasymmetry,A-0.
2-0.
15-0.
1-0.
05-00.
050.
10.
150.
2(a)K0STransversemomentum(GeV/c)0.
511.
522.
533.
54TTMeanasymmetry,A-0.
2-0.
15-0.
1-0.
05-00.
050.
10.
150.
2(b)ΛTransversemomentum(GeV/c)0.
511.
522.
533.
54TTMeanasymmetry,A-0.
2-0.
15-0.
1-0.
05-00.
050.
10.
150.
2(c)ΛFigure6.
2:ATTofeachV0speciesasafunctionofparticletransversemomentum.
92pTinterval(GeV/c)DoublespinasymmetryUncertaintyK0S0.
5to1.
0-0.
00970.
02931.
0to1.
5-0.
01430.
02821.
5to2.
0-0.
06060.
03402.
0to3.
0-0.
02020.
02983.
0to4.
00.
02690.
0419Λ0.
5to1.
0-0.
02770.
07171.
0to1.
5-0.
04520.
05931.
5to2.
0-0.
03520.
05172.
0to3.
0-0.
04620.
04833.
0to4.
00.
05510.
0833Λ0.
5to1.
00.
02000.
08471.
0to1.
50.
04170.
06581.
5to2.
0-0.
07540.
05692.
0to3.
00.
03050.
04873.
0to4.
00.
01500.
0693Table6.
2:DoublespinasymmetriesandassociatedstatisticaluncertaintiesasafunctionofparticlepT.
936.
1SummaryTransverselypolarisedproton-protoncollisionshavebeenanalysedforacos2φdoublespinasymmetry,ATT,intheproductionoftheneutralstrangespeciesK0S,ΛandΛ.
Theasymme-tryisfoundtobesmallandconsistentwithzerowithinstatisticaluncertaintiesof0.
017fortheK0Sand0.
028forthe(anti-)Λwhenthedataareintegratedoveralltransversemomentum.
Nonon-zeroresultsareseenforparticleproductionintherange0.
50GeV/cwhentheresultsareplottedasafunctionofpT.
TheasymmetriesaremeasuredatxF≈0,wherecollisionsinvolvinggluonsdominate.
Whilequarkscanpossessanon-zerotransversitydistri-butionatleadingtwist,gluonscannot.
Thereforethedoublespinasymmetry,whichinvolvesthetransversitydistributionsofboththepartonsinvolvedinacollision,ispredictedtobeverysmallatsmallxF.
Thereresultspresentedhereareconsistentwiththisprediction.
94Chapter7OverviewandOutlookIshallrstgiveanoverviewoftheworkpresentedanditssignicanceintheanalysisoftrans-versespinasymmetries.
IwillthengiveabriefoverviewofsomeoftheworkbeingcarriedoutnowandproposedforthefutureatRHICandotherfacilitiesthatwillincreaseourunderstandingofthetransversespinofthenucleon.
7.
1AnOverviewoftheWorkPresentedTheresultspresentedinthisthesisshowmeasurementsofthetransversesinglespinasymmetryANandtransversedoublespinasymmetryATToftheneutralstrangeparticlesK0S,ΛandΛatmid-rapidity(|xF|<0.
05)andtransversemomentumintherange0.
5ForeachspeciesthemeasurementsofthesinglespinasymmetryareallsmallandconsistentwithzeroacrossthewholepTrangestudied,withinstatisticaluncertaintiesofafewpercent.
Noevidencehasbeenfoundofsystematiceffectsintheresultsofasizesignicantatthecurrentlevelofstatisticalprecision.
TheresultsfortheΛhyperonareconsistentwiththoseobtainedbytheAGSexperimentat√s=13.
3and18.
5GeVintheregionofkinematicaloverlap[57],andtwiththelow-xFtrendseeninE704dataat√s=20GeV[65].
TheK0SasymmetryisnotinagreementwiththesignicantnegativeasymmetryAN(K0S)≈-0.
10obtainedattheAGSat√s=18.
5GeV[57].
Theresultisconsistentwiththatobservedforneutralpions,anotherme-95sonspeciesmeasuredatthesamecentre-of-massenergyandkinematicrangebythePHENIXCollaboration[69].
Moreworkwouldberequiredtounderstandtheproductionmechanismleadingtothenon-zeroK0Sasymmetryatlowbeamenergies.
TherearetwomeasurementsthatcouldbemadeoftheK0Sasymmetrythatwouldbeinformative.
First,itwouldbeinterestingtomeasuretheK0SasymmetryatlargexFtoseeiftheasymmetrythereremainsathighenergies,asisthecaseforpions,orifittoovanishes.
Secondly,itwouldbeinterestingtomeasuretheK0SasymmetryatenergiesintermediatebetweenthoseoftheAGSmeasurementandthismea-surement,toobservetheevolutionoftheasymmetrywithbeamenergy.
ThoughRHIChasrunat√s=62.
4GeV/c,thedataacquiredbySTARtodateatthisenergyareinsufcienttomakeameasurementoftheK0Sasymmetryattherequiredprecision.
AmeasurementoftheΛasymmetryattheAGSat√s=18.
5GeVandsmallpTgaveAN(Λ)=0.
03±0.
10.
Theresultspresentedhereareconsistentwiththisvalue,butprovideimprovedstatisticalprecisionandareoveramuchlargerrangeofpT.
Themeasurementshereextendthetransversemomentumrangeatwhichtheasymmetriesaremeasuredsignicantlybeyondthatpreviouslyachieved.
ThemeasurementsareatsufcientmomentathatpQCDwillbeapplicableintheiranalysis,unlikepreviousmeasurementsofthesamespecies[111].
CombinedwithchargedkaonresultsfromtheBRAHMSCollaboration[72],RHIChasnowproducedhigh-energymeasurementsofsinglespinasymmetriesintheproductionofseveralstrangespecies,providingconstraintsonstrangequarkcontributionstonucleonspin.
Theresultspresentedhere,thoughinadifferentxFrangefromthereportedBRAHMSK±results,tthetrendseenthere.
TransversedoublespinasymmetriesatxF≈0involvetheseaquarkandantiquarktransver-sitydistributions.
ThemeasurementsofATTareconsistentwithzeroforeachspeciesasafunc-tionoftransversemomentum.
Thisisthersttimesuchameasurementhasbeenattemptedforanyofthesespecies.
Calculationspredictthatdoublespinasymmetriesinthismomentumrangeinhadroniccollisionsshouldbevanishinglysmall,duetosmallasymmetriesandlargebackgroundsfromgluoniccollisions.
Theresultsagreewiththesepredictions,andruleoutunexpectedlylargevaluesforthetransversedoublespinasymmetry.
967.
1.
1GluonicSiversEffectAtlargexF,particleproductionprocessesaredominatedbyvalencequark-quark(qq)collisions.
AtsmallxFgluon-quark(gq)collisions(involvingseaquarks)andgluon-gluon(gg)collisionsaredominant.
ThismeansthatmeasuringasymmetriesindifferentrangesinxFgivesaccesstothespindistributionsanddynamicsofdifferentconstituentsofthenucleon.
ThetrendintransversesinglespinasymmetriestoincreasewithlargexFindicatesthattheasymmetryisassociatedwithmechanismsinvolvingthevalencequarksofthepolarisednucleon.
ConverselysmallasymmetriesatxF≈0indicatethateffectsduetoseaquarksandgluonsaresmall.
TheresultsatsmallxFpresentedherearethereforerelatedtotheseaquarkandgluoncon-tentofthenucleon.
ThedominanceofgluonicscatteringinthisxFrangemeansthattheCollinsmechanismisunlikelytobesignicantintheanalysis.
HowevertheSiversmechanism(spin-dependenttransverse-momentumdistribution)willbeinvolved.
ThoughmostworktodatehasconcentratedonthequarkSiverseffect-thatis,thecorrelationbetweenthetransversemomen-tumofthequarksandthenucleonspin-therecanalsobeacorrelationwiththemotionofthegluons.
ThesmallresultsforANpresentedhereindicatethatthegluonicandsea-quarkSiversfunctionsaresmall.
AnanalysisusingPHENIXmeasurementsofp+p→π0+X,whichcoveredacomparablekinematicrangetothiswork,hasbeenperformedtoprovideaconstraintonthegluonicSiversfunction(GSF)[112].
ItfoundthatthePHENIXdata,combinedwithotherdataonpionproductioninhadroniccollisionsandSIDIS,areconsistentwithanon-zerovalence-likequarkSiversdistributionandavanishingsea-quarkandgluoniccontribution.
ThePHENIXresultswereusedtoprovideanupperlimitonthesizeofthegluonicSiversfunction,showningure7.
1.
TheresultspresentedherecanbeusedtoprovidefurtherconstraintsonthegluonicSiverseffect.
7.
2TheFutureWhatdoesthefutureholdfortransversespinphysicsTherehavebeengreatstridesinthepastfewyearsinunderstandingtransversespineffects:therstmeasurementshavebeenmadeof97Figure7.
1:UpperlimitonthegluonicSiversfunction,normalisedtothepositivitylimit,ob-tainedusingattoPHENIXp+p→π0+Xdata[112].
Thedataconstrainthefunctionwellatsmallxwheregluonsdominate.
Thesolidlineshowstheresultsassumingavanishingseaquarkcontribution.
Thedashedlineassumesamaximalseaquarkdistributionthatbalancesthegluoncontribution.
98CollinsandSiversfunctions,andtherstextractionofuanddquarktransversitydistributionshavebeenperformed.
Howeveruncertaintiesarestilllargecomparedtounpolarisedandhelicitydistributions,somuchmoreworkisneededbeforetransversespinphenomenaareunderstoodtothesamedegree.
Transversespinprogrammesarecurrentlybeingperformedorplannedatarangeofexper-iments.
Ishallgivehereabriefoverviewofsometheadvancesandmeasurementsanticipatedoverthenextfewyears,andhowtheywillimpactonourunderstandingoftransversespinphenomena.
7.
2.
1AtRHICRHICissoontobeginacceleratingprotonbeamsto250GeV,providingacentreofmassenergy√s=500GeV,animportantmilestoneinitsoperation.
Thisisasignicantincreaseover√s=200GeVatwhichdatahasbeenacquiredtodate,andwillopenuptheabilitytostudyprocessesinvolvingWbosondecays.
MeasurementsofWasymmetrieswillprovideinformationontheavourdependenceofspincontributionsfrombothseaandvalencequarksandantiquarksintheproton.
InthelongertermthereareplansforaRHICluminosityupgrade(RHICII),andthereareproposalstoupgradeRHICtoapolarisedelectron-protoncollider(eRHIC).
BothongoingRHICexperiments,PHENIXandSTAR,maintainstrongspinprogrammes.
ImprovementstotheSTARdataacquisitionsystemarenowallowingittotakemuchlargerdatasetsthanpreviously.
Thiswillcontributegreatlytoimprovingtheprecisionofitsspinmeasurements.
STARisintheprocessofdevelopingaforwardmesonspectrometer(FMS),anadvancedversionoftheforwardpiondetectorthathasbeenusedinmeasurementsofπ0singlespinasymmetries.
Non-zerovaluesforbothSiversdistributionfunctionsandCollinsfragmentationfunctionshaverecentlybeenshownbyHERMESandBELLE[75,77,78],andbothmechanismsareexpectedtocontributetotransversesinglespinasymmetriesinhadron-hadroncollisions.
TheSTARFMSwillallowdisentanglingoftherelativecontributionsoftheSiversdistributionfunctionandCollinsfragmentationfunctiontotheneutralpionasymmetry.
ThePHENIXexperimentcandetectmuonsfromthedecaysu+d→W+→++νand99d+u→W→+ν.
StudyingthesinglespinasymmetryinW±decayswillseparatetheu,d,uandd(anti)quarkSiversdistributions.
PHENIXisreceivinganupgradetoitsmuontriggeringsystemsinpreparationfortheincreaseinbeamenergy.
7.
2.
2SIDISMeasurementsThoughHERMEShasnowceasedtakingdata,theCOMPASSexperimentcontinuesapro-grammeoftransversespinstudiesusingSIDISmeasurementswithdeuteronandprotontargets,sheddingfurtherlightonthequarkavourdependenceoftransversityandtheCollinseffect.
ThespinprogrammeatJeffersonLaboratoryplanscontinuedtransversespinmeasurements[113].
TheJeffersonLaboratoryHallAexperimentispreparingameasurementoftheneutrontransversityusingapolarisedhelium-3target[114].
Measurementswillbemadeofthesinglespinasymmetryinsemi-inclusivechargedpionproduction,e+n→e+π±+X,witha6GeVelectronbeam.
ThiswillcomplementSIDISmeasurementsmadebyHERMESusingaprotontargetandcontinuingmeasurementsbyCOMPASSusingadeuterontarget,andwillaidinconstrainingtheuanddvalencequarktransversitydistributions.
JLabexperimentswillalsohaveafuture12GeVbeamupgrade.
Oncethisisimplemented,datawillgiveaccesstoboththeSiversandCollinsfunctionsatlargemomentumfractions[115].
7.
2.
3PolarisedAntiprotonsThePAX(PolarisedAntiprotoneXperiments)Collaborationhaveproposedapolarisedproton-antiprotoncollider.
MeasurementsofDrell-YanproductioncantestthepredictionthattheSiversfunctionsinpDISandDrell-Yanproductionareequalinmagnitudebutoppositeinsign,aresultofthenon-universalityoftheSiversfunctions.
PAXcouldalsostudytransversitybymeasure-mentsofATTinpolarisedDrell-Yanproduction.
Inthisprocesstheasymmetryresultssolelyfromthetransversitydistributionsofthepolarisedprotonandantiproton.
TheCollinsfrag-mentationfunctionsarenotinvolvedintheasymmetry,unlikethecase,forexample,ofHER-MESandCOMPASSSIDISdata.
InthiswayPAXcoulddirectlyaccesstransversity.
OthermeasurementsmaybeabletodisentanglethecontributionsoftheSiversandCollinsfunc-100tionstosinglespinasymmetries,viameasurementsofcharmmesonproduction,forexampleinp+p↑→D+X.
7.
2.
4GeneralisedPartonDistributionsTheSiverseffectisrelatedtotheorbitalmotionofpartonswithinthenucleon.
However,moredirectaccesstoorbitalinformationmaybeprovidedbystudyingGeneralisedPartonDistribu-tions(GPDs)[116].
Ordinarypartondistributionscontaininformationaboutthelongitudinalmomentumfractionofthepartons(x),butdonotcontainanyinformationabouttransversemotion.
GPDshowevercontaininformationaboutboththetransverseandlongitudinalpartonmomenta.
Theyarecharacterisedbythreekinematicvariablesinsteadofone;xandξ,whichcharacterisethelongitudinalpartonmomentum,andt,thesquareofthefour-momentumtrans-fertothetarget,whichinvolvestransversemomentum.
GPDsthereforeprovideameanstogivea'multi-dimensional'descriptionofpartonsinthenucleon.
Theyareofinterestinrelationtospinbecausetheycanyieldinformationonthetotalpartonangularmomentum:boththeintrin-sicandorbitalcontributions.
TwoGPDs,denotedEandH,canberelatedtothetotalangularmomentumofapartonspeciesbytheintegralJ=limt→010x(H+E)dx(7.
1)ThereforeiftheGPDscanbesufcientlywelldetermined,thetotalangularmomentumcontri-butionsofthepartonswillbecomeaccessible.
Combinedwithknowledgeoftheintrinsicspincontributionsfromothermeasurements,theorbitalcontributionscanbedetermined.
DeeplyVirtualComptonScattering(DVCS)(e+p→e′+p+γ)hasbeenusedasameansaccesstheGPDs.
InvestigationofGPDsviaDVCShasbeenperformedbytheexperimentsH1,ZEUS,HERMESandJLabHallAandCLAS[117–121].
ThereisalsoaproposedprogrammeofstudyattheCOMPASSexperiment.
101Bibliography[1]J.
J.
Thomson,"CathodeRays",PhilosophicalMagazine44:293–316(1897).
[2]J.
J.
Thomson,"OntheStructureoftheAtom:anInvestigationoftheStabilityandPeri-odsofOscillationofanumberofCorpusclesarrangedatequalintervalsaroundtheCir-cumferenceofaCircle;withApplicationoftheResultstotheTheoryofAtomicStructure",PhilosophicalMagazine7:237–265(1904).
[3]H.
GeigerandE.
Marsden,"Onadiffusereectionofthealpha-particles",ProceedingsOfTheRoyalSocietyOfLondonSeriesA-ContainingPapersOfAMathematicalAndPhysicalCharacter82:495–500(1909).
[4]E.
Rutherford,"TheScatteringofαandβParticlesbyMatterandtheStructureoftheAtom.
",PhilosophicalMagazine21:669–688(1911).
[5]E.
Rutherford,"Collisionsofalphaparticleswithlightatoms.
IV.
Ananomalouseffectinnitrogen.
",PhilosophicalMagazine37:581–587(1919).
[6]J.
Chadwick,"Theexistenceofaneutron",ProceedingsOfTheRoyalSocietyOfLon-donSeriesA-ContainingPapersOfAMathematicalAndPhysicalCharacter136:692–708(1932).
[7]O.
R.
FrischandO.
Stern,"UberdiemagnetischeAblenkungvonWasserstoffmolekulenunddasmagnetischeMomentdesProtonsI",ZeitschriftFurPhysik85:4(1933).
[8]I.
EstermannandO.
Stern,"UberdiemagnetischeAblenkungvonWasserstoffmolekulenunddasmagnetischeMomentdesProtonsII",ZeitschriftFurPhysik85:17(1933).
[9]L.
W.
AlvarezandF.
Bloch,"Aquantitativedeterminationoftheneutronmomentinabso-lutenuclearmagnetons",PhysicalReview57:111–122(1940).
[10]M.
Gell-Mann,"SymmetriesOfBaryonsAndMesons",PhysicalReview125:1067–1084(1962).
[11]M.
Gell-Mann,"ASchematicModelofBaryonsandMesons",PhysicsLetters8:214–215(1964).
[12]G.
Zweig,"AnSU3ModelforStrongInteractionSymmetryandItsBreaking",CERNpreprint8182/TH401.
[13]G.
Zweig,"AnSU3ModelforStrongInteractionSymmetryandItsBreakingII",CERNpreprint8419/TH412.
102[14]V.
Bernard,"Chiralperturbationtheoryandbaryonproperties",ProgressInParticleAndNuclearPhysics60:82–160(2008).
[15]K.
G.
Wilson,"Connementofquarks",PhysicalReviewD10:2445–2459(1974).
[16]C.
G.
CallanandD.
J.
Gross,"High-EnergyElectroproductionAndConstitutionOfElec-tricCurrent",PhysicalReviewLetters22:156–159(1969).
[17]S.
Chekanovetal.
,"MeasurementoftheneutralcurrentcrosssectionandF2structurefunctionfordeepinelastice+pscatteringatHERA",EuropeanPhysicalJournalC21:443–471(2001).
[18]C.
Adloffetal.
,"MeasurementandQCDanalysisofneutralandchargedcurrentcrosssectionsatHERA",EuropeanPhysicalJournalC30:1–32(2003).
[19]S.
Chekanovetal.
,"AnNLOQCDanalysisofinclusivecross-sectionandjet-productiondatafromtheZEUSexperiment",EuropeanPhysicalJournalC42:1–16(2005).
[20]B.
I.
Abelevetal.
,"Longitudinaldouble-spinasymmetryandcrosssectionforinclusivejetproductioninpolarizedprotoncollisionsatsquarerootofs=200GeV.
",PhysicalReviewLetters97:252001(2006).
[21]F.
E.
CloseandR.
G.
Roberts,"ConsistentAnalysisOfTheSpinContentOfTheNucleon",PhysicsLettersB316:165–171(1993).
[22]J.
Ashmanetal.
,"AMeasurementOfTheSpinAsymmetryAndDeterminationOfTheStructure-Functiong1InDeepInelasticMuonProton-Scattering",PhysicsLettersB206:364–370(1988).
[23]J.
Ashmanetal.
,"AnInvestigationOfTheSpinStructureOfTheProtonInDeepInelastic-ScatteringOfPolarizedMuonsOnPolarizedProtons",NuclearPhysicsB328:1–35(1989).
[24]B.
Adevaetal.
,"Thespin-dependentstructurefunctiong1(x)oftheprotonfrompolarizeddeep-inelasticmuonscattering",PhysicsLettersB412:414–424(1997).
[25]D.
Adamsetal.
,"Thespin-dependentstructurefunctiong1(x)ofthedeuteronfrompolar-izeddeep-inelasticmuonscattering",PhysicsLettersB396:338–348(1997).
[26]B.
Adevaetal.
,"SpinasymmetriesA1andstructurefunctionsg1oftheprotonandthedeuteronfrompolarizedhighenergymuonscattering",PhysicalReviewD58:112001(1998).
[27]P.
L.
Anthonyetal.
,"DeepinelasticscatteringofpolarizedelectronsbypolarizedHe-3andthestudyoftheneutronspinstructure",PhysicalReviewD54:6620–6650(1996).
[28]K.
Abeetal.
,"Precisiondeterminationoftheneutronspinstructurefunctiongn1",PhysicalReviewLetters79:26–30(1997).
[29]K.
Abeetal.
,"Measurementsoftheprotonanddeuteronspinstructurefunctionsg1andg2",PhysicalReviewD58:112003(1998).
103[30]P.
L.
Anthonyetal.
,"Measurementofthedeuteronspinstructurefunctiongd1(x)for1(GeV/c)2[31]P.
L.
Anthonyetal.
,"MeasurementsoftheQ2-dependenceoftheprotonandneutronspinstructurefunctionsgp1andgn1",PhysicsLettersB493:19–28(2000).
[32]K.
Ackerstaffetal.
,"Measurementoftheneutronspinstructurefunctiongn1withapolar-ized3Heinternaltarget",PhysicsLettersB404:383–389(1997).
[33]A.
Airapetianetal.
,"Measurementoftheprotonspinstructurefunctiongp1withapurehydrogentarget",PhysicsLettersB442:484–492(1998).
[34]A.
Airapetianetal.
,"Quarkhelicitydistributionsinthenucleonforup,down,andstrangequarksfromsemi-inclusivedeep-inelasticscattering",PhysicalReviewD71:012003(2005).
[35]X.
Zhengetal.
,"PrecisionmeasurementoftheneutronspinasymmetryAn1andspin-avordecompositioninthevalencequarkregion",PhysicalReviewLetters92:012004(2004).
[36]E.
S.
Ageevetal.
,"MeasurementofthespinstructureofthedeuteronintheDISregion",PhysicsLettersB612:154–164(2005).
[37]M.
Hirai,S.
KumanoandN.
Saito,"Determinationofpolarizedpartondistributionfunc-tionswithrecentdataonpolarizationasymmetries",PhysicalReviewD74:014015(2006).
[38]M.
Hirai,S.
KumanoandN.
Saito,"Determinationofpolarizedpartondistributionfunc-tionsandtheiruncertainties",PhysicalReviewD69:054021(2004).
[39]E.
Leader,A.
V.
SidorovandD.
B.
Stamenov,"ImpactofCLASandCOMPASSdataonpolarizedpartondensitiesandhighertwist",PhysicalReviewD75:074027(2007).
[40]W.
Vogelsang,"Thespinstructureofthenucleon",JournalOfPhysicsG-NuclearAndParticlePhysics34:S149–S171(2007).
[41]A.
Airapetianetal.
,"Measurementofthespinasymmetryinthephotoproductionofpairsofhigh-p(T)hadronsatHERMES",PhysicalReviewLetters84:2584–2588(2000).
[42]B.
Adevaetal.
,"Spinasymmetriesforeventswithhighp(T)hadronsinDISandaneval-uationofthegluonpolarization",PhysicalReviewD70:012002(2004).
[43]E.
S.
Ageevetal.
,"Gluonpolarizationinthenucleonfromquasi-realphotoproductionofhigh-pThadronpairs",PhysicsLettersB633:25–32(2006).
[44]M.
Alekseev,"DirectMeasurementoftheGluonPolarisationintheNucleonviaCharmedMesonProduction",hep-ex/0802.
3023.
[45]S.
S.
Adleretal.
,"Doublehelicityasymmetryininclusivemidrapidityπ0productionforpolarizedp+pcollisionsat√s=200GeV",PhysicalReviewLetters93:202002(2004).
[46]S.
S.
Adleretal.
,"Improvedmeasurementofdoublehelicityasymmetryininclulsivemidrapidityπ0productionforpolarizedp+pcollisionsat√s=200GeV",PhysicalReviewD73:091102(2006).
104[47]A.
Adareetal.
,"Inclusivecrosssectionanddoublehelicityasymmetryforπ0productioninp+pcollisionsat√s=200GeV:Implicationsforthepolarizedgluondistributionintheprotons",PhysicalReviewD76:051106(2007).
[48]B.
I.
Abelevetal.
,"Longitudinaldouble-spinasymmetryforinclusivejetproductionin→p+→pcollisionsat√s=200GeV",PhysicalReviewLetters100:232003(2008).
[49]J.
Soffer,"PositivityConstraintsForSpin-DependentPartonDistributions",PhysicalRe-viewLetters74:1292–1294(1995).
[50]V.
Barone,A.
DragoandP.
G.
Ratcliffe,"Transversepolarisationofquarksinhadrons",PhysicsReports-ReviewSectionOfPhysicsLetters359:1–168(2002).
[51]G.
Bunceetal.
,"Λ0HyperonPolarizationinInclusiveProductionby300-GeVProtonsonBeryllium",PhysicalReviewLetters36:1113–1116(1976).
[52]G.
L.
Kane,J.
PumplinandW.
Repko,"TransverseQuarkPolarizationinLarge-pTRe-actions,e+eJets,andLeptoproduction:ATestofQuantumChromodynamics",PhysicalReviewLetters41:1689–1692(1978).
[53]R.
D.
Klemetal.
,"MeasurementOfAsymmetriesofInclusivePion-ProductioninProton-ProtonInteractionsat6and11.
8GeV/c",PhysicalReviewLetters36:929–931(1976).
[54]W.
H.
Dragosetetal.
,"Asymmetriesininclusiveproton-nucleonscatteringat11.
75GeV/c",PhysicalReviewD18:3939–3954(1978).
[55]J.
Antilleetal.
,"Spindependenceoftheinclusivereactionp+p(polarized)→π0+Xat24GeV/cforhigh-pTπ0producedinthecentralregion",PhysicsLettersB94:523–526(1980).
[56]B.
E.
Bonneretal.
,"SpinTransferinHyperonProduction",PhysicalReviewLetters58:447–450(1987).
[57]B.
E.
Bonneretal.
,"Spin-parametermeasurementsinΛandKSproduction",PhysicalReviewD38:729–741(1988).
[58]B.
E.
Bonneretal.
,"Analyzingpowerofinclusiveproductionofπ+,π,andK0Sbypo-larizedprotonsat13.
3and18.
5GeV/c",PhysicalReviewD41:13–16(1990).
[59]S.
Saroffetal.
,"Single-SpinAsymmetryinInclusiveReactionsp↑+p→π++X,π+X,andp+Xat13.
3and18.
5GeV/c",PhysicalReviewLetters64:995–998(1990).
[60]B.
E.
Bonneretal.
,"Analyzing-PowerMeasurementInInclusiveπ0ProductionAtHighxF",PhysicalReviewLetters61:1918–1921(1988).
[61]D.
L.
Adams,"ComparisonOfSpinAsymmetriesAndCross-SectionsInπ0ProductionBy200GeVPolarizedAntiprotonsAndProtons",PhysicsLettersB261:201–206(1991).
[62]D.
L.
Adams,"AnalyzingPowerInInclusiveπ+AndπProductionAtHighxFWithA200GeVPolarizedProton-Beam",PhysicsLettersB264:462–466(1991).
105[63]D.
L.
Adamsetal.
,"Large-xFSpinAsymmetryInπ0ProductionBy200-GeVPolarizedProtons",ZeitschriftFurPhysikC-ParticlesAndFields56:181–184(1992).
[64]D.
L.
Adamsetal.
,"High-xTSingle-SpinAsymmetryInπ0AndηProductionAtxF=0By200-GeVPolarizedAntiprotonsAndProtons",PhysicsLettersB276:531–535(1992).
[65]A.
Bravaretal.
,"AnalyzingPowerMeasurementInInclusiveΛ0ProductionWithA200GeV/cPolarizedProton-Beam",PhysicalReviewLetters75:3073–3077(1995).
[66]D.
L.
Adamsetal.
,"Single-spinasymmetriesandinvariantcrosssectionsofthehightransverse-momentuminclusiveπ0productionin200GeV/cppandppinteractions",Phys-icalReviewD53:4747–4755(1996).
[67]A.
Bravaretal.
,"Single-spinasymmetriesininclusivechargedpionproductionbytrans-verselypolarizedantiprotons",PhysicalReviewLetters77:2626–2629(1996).
[68]D.
L.
Adamsetal.
,"Measurementofsinglespinasymmetryinη-mesonproductioninp↑pandp↑pinteractionsinthebeamfragmentationregionat200GeV/c",NuclearPhysicsB510:3–11(1998).
[69]S.
S.
Adleretal.
,"Measurementoftransversesingle-spinasymmetriesformidrapidityproductionofneutralpionsandchargedhadronsinpolarizedp+pcollisionsat√s=200GeV",PhysicalReviewLetters95:202001(2005).
[70]J.
Adamsetal.
,"Crosssectionsandtransversesingle-spinasymmetriesinforwardneutral-pionproductionfromprotoncollisionsat√s=200GeV",PhysicalReviewLetters92:171801(2004).
[71]B.
I.
Abelevetal.
,"ForwardNeutral-PionTransverseSingle-SpinAsymmetriesinp+pCollisionsat√s=200GeV",PhysicalReviewLetters101:222001(2008).
[72]I.
Arseneetal.
,"Single-transverse-spinasymmetriesofidentiedchargedhadronsinpo-larizedppcollisionsat√s=62.
4GeV",PhysicalReviewLetters101:042001(2008).
[73]J.
Collins,"FragmentationOfTransverselyPolarizedQuarksProbedInTransverse-MomentumDistributions",NuclearPhysicsB396:161–182(1993).
[74]A.
Bacchettaetal.
,"Single-spinasymmetries:TheTrentoconventions",PhysicalReviewD70:117504(2004).
[75]A.
Airapetianetal.
,"Single-spinasymmetriesinsemi-inclusivedeep-inelasticscatteringonatransverselypolarizedhydrogentarget",PhysicalReviewLetters94:012002(2005).
[76]E.
S.
Ageevetal.
,"AnewmeasurementoftheCollinsandSiversasymmetriesonatrans-verselypolariseddeuterontarget",NuclearPhysicsB765:31–70(2007).
[77]R.
Seidletal.
,"Measurementofazimuthalasymmetriesininclusiveproductionofhadronpairsine+eannihilationatBelle",PhysicalReviewLetters96:232002(2006).
[78]R.
Seidletal.
,"Measurementofazimuthalasymmetriesininclusiveproductionofhadronpairsine+eannihilationat√s=10.
58GeV",PhysicalReviewD78:032011(2008).
106[79]D.
Sivers,"Single-spinproductionasymmetriesfromthehardscatteringofpointlikecon-stituents",PhysicalReviewD41:83–90(1990).
[80]S.
J.
Brodsky,D.
S.
HwangandI.
Schmidt,"Final-stateinteractionsandsingle-spinasym-metriesinsemi-inclusivedeepinelasticscattering",PhysicsLettersB530:99–107(2002).
[81]J.
C.
Collins,"Leading-twistsingle-transverse-spinasymmetries:Drell-Yananddeep-inelasticscattering",PhysicsLettersB536:43–48(2002).
[82]A.
V.
Belitsky,X.
JiandF.
Yuan,"Finalstateinteractionsandgaugeinvariantpartondistributions",NuclearPhysicsB656:165–198(2003).
[83]X.
D.
JiandF.
Yuan,"Partondistributionsinlight-conegauge:wherearethenal-stateinteractions",PhysicsLettersB543:66–72(2002).
[84]M.
Alekseev,"CollinsandSiversTransverseSpinAsymmetriesforPionsandKaonsonDeuterons",arXiv.
org:hep-ex/0802.
2160.
[85]B.
I.
Abelevetal.
,"Measurementoftransversesingle-spinasymmetriesfordijetproduc-tioninproton-protoncollisionsat√s=200GeV",PhysicalReviewLetters99:142003(2007).
[86]C.
J.
Bomhofetal.
,"Single-transversespinasymmetryindijetcorrelationsathadroncolliders",PhysicalReviewD75:074019(2007).
[87]A.
Bacchettaetal.
,"Singlespinasymmetriesinhadron-hadroncollisions",PhysicalRe-viewD72:034030(2005).
[88]M.
Anselminoetal.
,"TransversityandCollinsfunctionsfromSIDISande+edata",PhysicalReviewD75:054032(2007).
[89]M.
Harrison,T.
LudlamandS.
Ozaki,"RHICprojectoverview",NuclearInstrumentsandMethodsinPhysicsResearchSectionA:Accelerators,Spectrometers,DetectorsandAssociatedEquipment499:235–244(2003).
[90]H.
Hahnetal.
,"TheRHICdesignoverview",NuclearInstruments&MethodsInPhysicsResearchSectionA-AcceleratorsSpectrometersDetectorsAndAssociatedEquipment499:245–263(2003).
[91]A.
Zelenskietal.
,"OpticallypumpedpolarizedHionsourceforRHICspinphysics",ReviewOfScienticInstruments73:888–891(2002).
[92]A.
Zelenskietal.
,"TheRHICoptically-pumpedpolarizedHionsource",PSTP2007980:221–230(2007).
[93]C.
D.
P.
Levyetal.
,"StatusOfTheTriumfOpticallyPumpedPolarizedHIon-Source",PolarizedIonSourcesAndPolarizedGasTargets:179–185(1994).
[94]I.
Alekseevetal.
,"PolarizedprotoncollideratRHIC",NuclearInstruments&MethodsInPhysicsResearchSectionA-AcceleratorsSpectrometersDetectorsAndAssociatedEquip-ment499:392–414(2003).
107[95]Y.
S.
DerbenevandA.
M.
Kondratenko,SovietPhysicsDoklady20:562(1976).
[96]K.
Ackermannetal.
,"STARdetectoroverview",NuclearInstrumentsandMethodsinPhysicsResearchSectionA:Accelerators,Spectrometers,DetectorsandAssociatedEquip-ment499:624–632(2003).
[97]"TheRelativisticHeavyIonColliderProject:RHICanditsDetectors",NuclearInstru-mentsandMethodsinPhysicsResearchSectionA:Accelerators,Spectrometers,DetectorsandAssociatedEquipment499:235–880(2003).
[98]M.
Beddoetal.
,"TheSTARbarrelelectromagneticcalorimeter",NuclearInstruments&MethodsInPhysicsResearchSectionA-AcceleratorsSpectrometersDetectorsAndAssoci-atedEquipment499:725–739(2003).
[99]M.
Andersonetal.
,"TheSTARTimeProjectionChamber:AUniqueToolforStudyingHighMultiplicityEventsatRHIC",NuclearInstrumentsandMethodsinPhysicsResearchSectionA:Accelerators,Spectrometers,DetectorsandAssociatedEquipment499:659–678(2003).
[100]J.
Abeleetal.
,"ThelasersystemfortheSTARtimeprojectionchamber",NuclearInstru-ments&MethodsInPhysicsResearchSectionA-AcceleratorsSpectrometersDetectorsAndAssociatedEquipment499:692–702(2003).
[101]F.
Bergsmaetal.
,"TheSTARdetectormagnetsubsystem",NuclearInstruments&Meth-odsInPhysicsResearchSectionA-AcceleratorsSpectrometersDetectorsAndAssociatedEquipment499:633–639(2003).
[102]R.
BrunandF.
Rademakers,"ROOT-Anobjectorienteddataanalysisframework",NuclearInstruments&MethodsInPhysicsResearchSectionA-AcceleratorsSpectrometersDetectorsAndAssociatedEquipment389:81–86(1997).
[103]H.
Bichsel,"StragglingInThinSiliconDetectors",ReviewsOfModernPhysics60:663–699(1988).
[104]H.
Bichel,"ComparisonofBethe-BlochandBichselfunctions",STARNoteSN0439(2002).
[105]H.
Bichsel,"CalculatedandexperimentalLandauspectrainaTPC",STARNoteSN0440(2002).
[106]H.
Bichsel,"AmethodtoimprovetrackingandparticleidenticationinTPCsandsilicondetectors",NuclearInstruments&MethodsInPhysicsResearchSectionA-AcceleratorsSpectrometersDetectorsAndAssociatedEquipment562:154–197(2006).
[107]C.
Amsleretal.
,"Reviewofparticlephysics",PhysicsLettersB667:1(2008).
[108]J.
Balewski,"MidrapidityspinasymmetriesatSTAR",Spin2002AIPConferencePro-ceedings675675:418–423(2003).
[109]R.
L.
JaffeandN.
Saito,"QCDselectionrulesinpolarizedhadroncollisions",PhysicsLettersB382:165–172(1996).
108[110]J.
L.
Cortes,B.
PireandJ.
P.
Ralston,"MeasuringTheTransversePolarizationOfQuarksInTheProton",ZeitschriftFurPhysikC-ParticlesAndFields55:409–416(1992).
[111]B.
I.
Abelevetal.
,"Strangeparticleproductioninp+pcollisionsat√s=200GeV",PhysicalReviewC75:064901(2007).
[112]M.
Anselminoetal.
,"ConstraintsonthegluonSiversdistributionviatransversesinglespinasymmetriesatmidrapidityinp↑p→π0+XprocessesatBNLRHIC",PhysicalReviewD74:094011(2006).
[113]C.
JP,"HighlightsandperspectivesoftheJLabspinphysicsprogram",TheEuropeanPhysicalJournal-SpecialTopics162:103–116(2008).
[114]J.
Chenetal.
,JLabE06-010.
[115]A.
Afanasevetal.
,"TransversityandTransverseSpininNucleonStructurethroughSIDISatJeffersonLab",hep-ph/0703288.
[116]X.
D.
Ji,"Gauge-invariantdecompositionofnucleonspin",PhysicalReviewLetters78:610–613(1997).
[117]F.
Aaronetal.
,"MeasurementofdeeplyvirtualComptonscatteringanditst-dependenceatHERA",PhysicsLettersB659:796-806(2008).
[118]S.
Chekanovetal.
,"MeasurementofdeeplyvirtualComptonscatteringatHERA",PhysicsLettersB573:46-62(2003).
[119]A.
Airapetianetal.
,"Beam-chargeazimuthalasymmetryanddeeplyvirtualComptonscattering",PhysicalReviewD75:011103(2007).
[120]C.
M.
Camachoetal.
,"ScalingtestsofthecrosssectionfordeeplyvirtualComptonscattering",PhysicalReviewLetters97:262002(2006).
[121]F.
X.
Girodetal.
,"Measurementofdeeplyvirtualcomptonscatteringbeam-spinasym-metries",PhysicalReviewLetters100:162002(2008).
109

乐凝网络支持24小时无理由退款,香港HKBN/美国CERA云服务器,低至9.88元/月起

乐凝网络怎么样?乐凝网络是一家新兴的云服务器商家,目前主要提供香港CN2 GIA、美国CUVIP、美国CERA、日本东京CN2等云服务器及云挂机宝等服务。乐凝网络提供比同行更多的售后服务,让您在使用过程中更加省心,使用零云服务器,可免费享受超过50项运维服务,1分钟内极速响应,平均20分钟内解决运维问题,助您无忧上云。目前,香港HKBN/美国cera云服务器,低至9.88元/月起,支持24小时无理...

Vultr新注册赠送100美元活动截止月底 需要可免费享30天福利

昨天晚上有收到VULTR服务商的邮件,如果我们有清楚的朋友应该知道VULTR对于新注册用户已经这两年的促销活动是有赠送100美元最高余额,不过这个余额有效期是30天,如果我们到期未使用完的话也会失效的。但是对于我们一般用户来说,这个活动还是不错的,只需要注册新账户充值10美金激活账户就可以。而且我们自己充值的余额还是可以继续使用且无有效期的。如果我们有需要申请的话可以参考"2021年最新可用Vul...

火数云-618限时活动,国内云服务器大连3折,限量50台,九江7折 限量30台!

官方网站:点击访问火数云活动官网活动方案:CPU内存硬盘带宽流量架构IP机房价格购买地址4核4G50G 高效云盘20Mbps独享不限openstack1个九江287元/月立即抢购4核8G50G 高效云盘20Mbps独享不限openstack1个九江329元/月立即抢购2核2G50G 高效云盘5Mbps独享不限openstack1个大连15.9元/月立即抢购2核4G50G 高效云盘5Mbps独享不限...

69uuu.com为你推荐
易烊千玺弟弟创魔方世界纪录王俊凯.易烊千玺编舞吉尼斯记录brandoff淘宝上的代购奢侈品都是真品吗?特朗普取消访问丹麦特朗普首次出访为什么选择梵蒂冈陈嘉垣反黑阿欣是谁演的 扮演者介绍www.vtigu.com如图所示的RT三角形ABC中,角B=90°(初三二次根式)30 如图所示的RT三角形ABC中,角B=90°,点p从点B开始沿BA边以1厘米每秒的速度向A移动;同时,点Q也从点B开始沿BC边以2厘米每秒的速度向点C移动。问:几秒后三角形PBQ的面积为35平方厘米?PQ的距离是多少avtt4.comwww.5c5c.com怎么进入ip查询器查看自己IP的指令javlibrary.com大家有没有在线图书馆WWW。QUESTIA。COM的免费帐号月风随笔关于中秋作文蜘蛛机器人汤姆克鲁斯主演,有巴掌大小的蜘蛛机器人,很厉害的,科幻片吧,是什么电影
服务器租用托管 香港vps主机 免费注册网站域名 老鹰主机 国外服务器 rackspace 表单样式 双11抢红包攻略 青果网 typecho 秒杀预告 gspeed 刀片服务器的优势 已备案删除域名 免费防火墙 百度云1t ftp免费空间 跟踪路由命令 web服务器是什么 便宜空间 更多