ContemporaryMathematicsVolume62,1987NON-STABLEK.
THEORYANDNON-CON'IMUTATIVETORIDedicatedtoHansBorclters,NicoHrtgenholtz,Richardl/'Kadisort,andDanielKastler,incelebrationoltheirContpletingSixtycircumttat'igatiottsoftheSunMarcA.
Rieffcl*DuringthclastfiveyearsthcrehasbecnmuchprogrcssinunderstandingandcalculatingtheK-groupsofvariousCx-algcbras.
Butoncethishrsbccnaccomplishcdinan1'givcnsiturtion,thcrcremainmanyintercstingqucstionsconcerningfincrstructurc,orwhatIcallnon-stableK-thcory.
Ir{ypurposehercistolistsomcolthcscquestions,andthentodiscusstheprogrcsswhichhasbccnmadcinansweringthcmfornon-commutativctoriandforafcwothcrcxamplcs.
l.
THEQUESTIONSIr{ostofthequestionswhichwcwillconsiderarconlyofintcrestforC*-algebraswithidentityelcment,andsowcwillassumetheprescnccofanidentityelcmentthroughout.
Actua1ly,asfarastheKoBroupisconCerncd,wecanusuall-vworkwithanyalgebrawithidentityelcmcnt.
Wcrecall[],l9]thatthcrcarctwoequivalentdcfinitionsoftheKO(A),ofanalgcbraA.
Inthcmostnaturalofthesctwodcfinitions,oneconsidcrsthesct,S(A),of*ThisrcsearchwasFoundationgrantDMSinpartbyNationalScicncc@1987AmericanMathematicalSociety027r-4r32187$1.
00+$.
25perPagesupported85-4l393.
267268MARCA.
RIEFFELisomorphismclasscsoffinitelygeneratedprojective(sayright)A-modules.
Underformationofdirectsumsofmodules,S(A)becomesacommutativesemigroup,withthe(classofthe)zeromodulcservingasidcntityelement.
ThenKo(A)isdefinedtobethcenveloping(orGrothcndieck)groupofthesemigroupS(A).
TheimageofS(A)inK0(A)providesKo(A)witha"positivecone",whichcanbebadlybehavedifAisnotfiniteinsomesense[3].
Thestudyandcalculationofthispositiveconecanbevcryintercsting,butweconsiderittobestillpartofthestableK-theoryofA.
RatheritisthestudyofS(A)itself,andofthepassagefromS(A)toKo(A),whichweconsidertoconstitutethenon-stablepartofKo-theory.
ThusforagivenalgebraAthefundamcntalqucstionofnon-stableI(o-theoryis:QUESTIONl.
'lVhatisthestructureofthesentigrottpS(A)Thisqucstionisusuallytoohardtoanswer,andsoonefirstconsidersspccialaspcctsofit.
Forexample:QUESTION2.
DoesS(A)satisfycancellation,thatis,ifIJ.
Yand\Nat'efinitell,generatedprojectiveA-ntodulessuchtl.
tatUeW=VeW.
doesilfollott'thatU=Ylfcancellationholds,thenthcmapfromS(A)toKo(A)isinjcctive.
ThusifoneknowswhatisthepositiveconeofKo(A),thcnoneknowsS(A).
Howevercancellationusuallyfails,andsooneinstcadasksweakerquestions.
Recall,forcxample,thetmodulesuandvrepresentthesameelementofKo(A)exactlyifthercissomeintegernsuchthatUoA"=V@An,whcreA.
dcnotesthefrecA-modulconngenerators.
Onccanthenask,foragivenalgcbra,whcthcrthercisanupperboundonthencededn's.
Thatis:QUESTION3.
IsthereapositiveintegerNsucftthatwhenet,erIJandYrepresentthesameelenzento/Ko(A),thenlJeAN=VeANThisquestioncanbcviewedasaskingwhethcrcancellationholdsassoonasthemodulcsinvolvedare"1argccnough".
Hcrc"largeenough"meansthatthemodulescontainANasasummand.
ForC*-algebrasthereisaclosclyrelatcdwayofdcfiningthesizeofamodule,namelybymeansolatraceonthcalgebra.
WerecallNON-STABLEK-THEORY,NON-COMMUTATIVETORI269thatthesecondequivalentdefinition[19]oftheK0-groupisintermsofprojectionsinmatrixalgebras,M.
(A),overA.
IfpisaprojectioninMn(A),thenpA"willbeafinitelygcneratcdprojcctivcrightA-module.
Ifrbca(finitc,positivc)traceonA,thcnrextcndsinanevidcntweytoatracconcachN{,.
,(A),andthusifpisaprojectioninanyM"(A)thenthepositivenumberr(p)isdefined.
OnecanshoweasilythatthisnumberdependsonlyontheisomorphismclassofthemodulepA".
ThusTdefinesahomomorphism(againdenotedbyr)ofS(A)intothcgroupofrealnumbcrs,whichthenfactorsthroughK"(A).
InanalogywithQuestion3onecanask:QUESTION4.
ForagiventraceTonA,isthereanumberNsircftthat,ifU@W=VeWandi/r(tul))N(soa/sor([W])7N),thertU=VInaslightlydifferentdirection,onecanaskaboutcancellationforspecialclasscsofmodules.
Themostcommonlydiscussedclassconsistsofthestablyfreemodules.
Specifically:QUESTION5.
ArestablyfreentodulesfreeThatis,ifthenodttleUissucltthatUeAn=Am+nforsomemandn,doesitahvaysfollowtlntU:A*Ifnot,thenonecanask,asbefore,whetherthcreisaboundonthcn'sthatareneeded,thatis:QUESTION6.
1sthereanintegerllsucltthattvlterteverUlsastablyfreemodttlethenU@ANisfreeThenextquestionisbestphrasedintermsofprojections,andismostappropriatetoaskforC*-algebraswherecancellationholds.
HcreandlaterweletU"(A)denotethegroupofunitaryelemcntsofMr,(A),andweletUf(A)denotetheconnectedcomponentoftheidcntityclementinU"(A).
270MARCA.
RIEFFELQUESTION7.
IfAsatisfiescancellatiort,andifpandqare(self-adioittt)proiectionsinM"(A)whichrepresenttl'tesanteclassittK.
(A),thenarepandqinthesanleconnectedcontponentoftlzesetofprojectionsinM"(A)Equivalently,isthereaunitaryuirlU;(A)strchtltatupu*=qAquestionaboutKn(A)whichgoesinaratherdifferentdirectionis:QUESTION8.
l{hatisthesntallestnsucllthattheprojectiortsirtM"(A)generateKo(A)WeremarkthattheanswcrstoQuestionsIand2areinvariantunderMoritaequivalenceofalgebras[12],whereasmostoftheotherquestionsaboveinvolve,insomesense,thepositionofthefreemoduleofrankoneasanordcrunitinS(A).
Werecall[9]thatK.
,(A)isdefinedasthelimitofthegroupsu"(A)/u;(A)'U.
,+1(A)/uf+1(A).
Thcrearetwoquiteevidentquestionstoaskaboutthenon-stablebehaviorforK'namely:QUESTION9.
lVhatisthesmallestnsucltthatthehontomorphisntfrontUu(A)/Uf(A)roKr(A)isinjectivelorallk)nQUESTION10.
IVhatistltesmallestnsucltthatthehontomorphisntfrontUn(A)/U;(A)loKr(A)issuriectiveThcrcisasubstantialliteratureinalgebraicK-theoryconcerningtheselasttwoquestions.
Sec[20]andthereferenccsthcrcin.
2.
TECHNIQUESANDINTERRELATIONSForacommutativeC*-algebra,offormA=C(X)forXacompactspace,thefinitelygeneratedprojcctivemodulescorrespondexactlytothecomplcxvectorbundles,byatheoremofSwan[8,121.
Thusinthiscasethevastapparatusofalgebraictopology,especiallytopologicalK-theory,canbebroughttobcaronansweringtheabovequestions.
Butitisknownthattheanswersareusuallycomplicated.
ThereareasmallnumberofgeneralNON-STABLEK-THEORY,NON-COMMUTATIVETORI27Lresults.
Forexample,fromTheorem1.
5ofChapter8of[8]oneobtainsimmcdiatelythefollowinganswertoQucstion4(whereonemaytakeasthetrace,evaluationoffunctionsatsomefixedpoint):THEOREMl.
LetXbeaconxpactconnectedCWcontplexofclimensiortd.
IfYandwarecontplexvectorbwtdlesoverXwhicltrepresentthesanteelemento7t.
df2,tltenY=W.
Butusually,evenwhenonecancomputeforspecificexamples,itisdifficulttofindgeneralpatterns.
Onemustthenexpectthatthiswillbeallthemorethesituationfornon-commutativcC*-algebras.
InthecaseofC*-algebraswhicharepostliminal(i.
e.
GCR),andsoarefairlycloselyrelatedtocommutativeC*-algebras,onecanhopethatresultsintopologicalK-theorywillprovidesomeguidanceastowhattoexpect,aswellasresultsuponwhichonecanbuildbyinductivearguments.
Forexample,AlbertJ.
Sheu[17]hasstudiedtheunitizedC*-algebra,6*(C)whereGisasimplyconncctednilpotentLiegroupofformR"rR.
TheseareGCR,andcanbecOnsidcredtobe"non-commutativeSpheres".
HeobtainsagoodanswertoQucstion4,whereaStracehcuscsevaluationatthcadjoined"pointofinfinity".
HealsoshowsthatcancellationholdsforcertainoftheGofarbitrarilyhighdimension.
Buthehasanexampleofafour-dimensionalGforwhichcancellationfails,thoughhecanneverthelcssdescribethestructureofitsscmigroupofprojectivemodules.
TheoremIabovesuggeststhatsomenotionofdimensioninthenon-commutativecontextmightplayaroleinnon-stableK-theory.
Itisfarfromclearwhetherthereshouldbeauniquenotionofdimensioninthiscontext,butonenotionhasalreadyplayedanimportantroleinalgebraicK-theory,namelythenotionofBassstablerank.
Weomitthedefinition,sincefortopologicalalgebrasitismoreconvenienttousethenotionoftopologicalstablcrank(tsr)whichwasintroducedin[13]andshowntheretodominatctheBassstablerank.
Subsequently,itwasshownbyHermanandvasersteintllthatforc*-algebrasthetopologicalstablerank272MARC.
A.
RIEFFELcoincideswiththeBassstablerank.
Todefinethetopologicalstablerank,weletGenu(v),foranymodulevandpositiveintegerk,denotethecollectionofk-tuplesofelements,{tj},inVkwhichcollectivelygenerateValgebraically,thatis,suchthatEvrA=V.
NotenextthatifAisatopologicalalgebra,thenanyfinitelygcncratedprojectiveA-module,beingrealizableasasummandofsomeA',isatopologicalmodule(independentlyoftherealization).
DEFINITION.
LetAbeatopologicalalgebra,andletYbeafinitelygeneratedprojectiveA-module.
Thentsr(Y)isdefinedtobetheleastintegerk,ifitexists,suchthatGenn(V)isdenseinYk.
Ittparticular,tsr(A)isdefinedtobethetsrofAasariglttA-module.
Motivationfortheabovedefinitioncanbefoundin[13].
ThereisasubstantiallitcratureinalgebraicK-theory(see[],20])relatingtheBassstableranktothenon-stablebehaviorofK'especiallyQuestions9and10.
AppliedtoC*-algebras,theseresultsyield,forexample:THEOREM2(Theorem10.
12of[13]).
I.
fn>tsr(A)+2,thenthemapfrontU"(A)/U;(A)roKr(A)isanisontorphism.
Warfield[21]seemstohavebeenthefirsttonoticeadirectgcneralrclationshipbetweentheBassstablcrankandthecancellationpropertyforprojectivemodules.
AdistinctivefeatureofhisrcsultsisthatitisnottheBassstablerankofthealgebrawhichisimportant,butratherthatoftheendomorphismalgebraofthemodulebeingcancelled.
HisresultsareinthespiritofQuestions3and4totheeffectthatcancellationholdsfor"sufficicntlylarge"modules,butnowsizeismeasuredintermsofthesizeofthemodulebeingcancelled.
Forexample,fromhisresultsoneobtains:THEOREM3.
LetWbeaprojectiveA-ntoduleandletnbetheBassstablerankofEndo(W).
IfUandYareprojectivemodtilessucltthat(U@Wn)@w=V@W,NON-STABLEK-THEORY,NON-COMN{UTATIVETORI273thenUoWn:V.
Toapplysuchstableranktechniques,oneneedstobeabletoestimatestableranks,andthisisoftenverydifficult.
ButSheu'sworkmentionedabovedependsheavilyonsuccessfulestimatesofstableranks.
andthesameistruefortheresultsaboutnon-commutativetoritobediscussedinthenextsection.
Acrucialtoolisprovidedbyanestimateinthecaseofcrossedproductsbytheintegers,whichcanbeconsideredthemostimportantresultof[3](seeTheorem7.
1).
Specifically:THEOREM4.
LetA*c(ZdenotethecrossedproductofaC*-algebraAbyanactiortaoftheirilegers.
Tlterttsr(AxoZ)identityelcmentweletC-denotethealgebraobtainedbyadjoininganidcntitytoC.
THEOREM6(Theorema.
lloftlTl).
ForanyC*-algebraAandanyn)l,cancellationholdsfor(Aa8,,)-.
Notablymissingaretechniquesforobtainingalowerboundfortsrintheabsenceofeitheradirectlyrelevantcompactspaceorofproperisometries.
Inparticular,nofinitesimpleC*-algebrasareknownforwhichonecanprovethattsr(A))2,althoughtherearcmanypossiblecandidatcs.
ThisisrclatedtothelackofanyexampleofafinitesimpleC*-algebraforu'hichcancellationfails'274MARCA.
RIEFFELsincetsr(A)=Iisequivalenttotheinvertibleelementsbeingdense,andonehas(seeIIL2.
4of[4]and4.
5.
2of[3]):THEOREM7.
IfinvertibleelementsaredenseinA,thenAsatisfiescancellation.
Notice,forexample,thatthisimpliesthatAFC*-algebrashavecancellation.
Thereiscorrespondinglyalackofanyexampleofafinitesimplec*-algebraforwhichonecanshowthattheinvertibleelementsarenotdense.
LetusdiscussnextthefactthatthevariousquestionsstatedinSlaresomewhatinterrelated.
Wegivetwoexamples,whoseproofswillappearin[6].
ThefirstinvolvesQuestions8and10.
THEOREM8.
Letq.
beanautontorphisntoftheunitalC*-algebraAtvltichisintheconnectedconxponentoftheidentityautontorphisntofA,andletc.
alsodenotethecorrespondingactiortofZonA.
SupposethatLEveryelemento/Kr(A)isrepresentedbyaninvertibleelementinAitself.
2.
TlteprojectiortsittAgenerateKo(A).
TheneveryelententinKr(A"oz)isrepresentedbyaninvertibleelententinAxdZ.
ForthenextresultweletTAdenotetheC*-algebraofcontinuousfunctionsfromthecircle,T,toA.
weremarkthatthenTA=AxoZforcrthetrivialaction,anditisaninterestingquestionastowhetherthenexttheoremcanbegeneralizedtothecaseofnon-triviala.
Thistheoreminvolveseuestions2and9.
THEOREM9.
ForaunitalC*-algebraAthefollowingareeqLtivarent:l.
TAsatisfiescancellation.
2.
Botlta)Asatisfiescancellation.
andb)ForeveryprojectiveA-moduleYthenaturalmapfrontAuto(V)/Autf,(V)roKr(A)isinjective.
Theproofofthislasttheoremcomesfromexaminingthefamiliar"clutching"constructionwhichtoanyautomorphismofanA-moduleassociatesaTA-module.
NON-STABLEI(-THEORY,NON-COMMUTATIVETORI2753.
NON-COMMUTATIYETORIBydefinitionanon-commutativetorus,Ag,isaC*-algebradefinedasfollows.
Let0beaskewbilinearformonR',anddefineaskewcocycleoonZnbyo(x,Y)=exP(ni0(x,Y))forx,yZn.
LetAgbethegroupC*-algebraofZ"twistedbyo,i.
e.
,C*(2",o).
ThustoeachxeZnthereisaunitary,ux,inAg,andtheseunitariessatisfythcrelationuyu*=o(x,Y)u**,.
Forn=2oneobtainsthemorefamiliarirrational(andrational)rotationC*-algebras[4].
BytheworkofPimsnerandVoiculescu[11]concerningthecomputationoftheK-groupsofcrossedproductswiththeintegers,onefindsthattheK-groupsofanAgarethesameasthoseforanordinaryn-torusTn(whichistheAOforwhichQ=0)'Inparticular,Ko(Ag)=Zzn-tThisstillleavesquiteopentheproblemofdetcrminingwhatisthcpositiveconeofKo(Ag).
ByusingtechniquesfromtopologicalK-theory,onecanshowthattheanswerforTtbecomescomplicatedforn=4and5(see[16]),andIdonotknowiftheanswerisknownfordimensionsmuchabovethat.
(Also,cancellationalreadyfailsforT5.
)Itturnsouthoweverthatthereisaniceanswerwhen0isnotentirelyrational,inthesensethattherangeof0ontheintegerlatticeZnCR'isnotentirelycontainedintherationalnumbcrs.
Noticethatthereisacanonicaltrace,T,onAg,CorrspondingtoevaluatingattheidentityelementofZn,withitsassociatedhomomorphism,T,fromKo(Ag)intothegroupofrealnumbers.
276MARCA.
RIEFFELThelatterispositiveonthepositiveconeofKo(Ag).
In[16]itisshownthat:THEOREMA.
If0isnotrational,thenthepositiveconeofKo(A6)consistsofexactlytheelententsonwhichtispositive.
weshouldmentionthattherangeofronKo(Ag)hasbeenelucidatedbyElliott[6],whoseworkisanimportantingredientoftheproofsofmostofthetheoremsstatedinthissection.
Muchoftheproofoftheabovetheoreminvolvesaspecificconstruction.
sketchedinU5l,offinitelygeneratedprojectivemodulesoverAg,togetherwithaclassificationofthemodulessoconstructed,bymeansofconnes'cherncharacterintroducedin[5].
Infact,onefindsthateveryelementofKo(Ag)withpositivetraceisrepresentedbyamoduleobtainedbytheconstruction.
Ifoneexaminestheconstructionfurthersoastoobtain,amongothcrthings,informationaboutthetopologicalstablerankoftheendomorphismalgebrasoftheconstructedmodules,onefindsthatonecanapplywarfield'stheorem(Theorem2above)toanswcrQuestion2:THEOREMB.
If0isnotrational,thens(Ag)satisfiescancellatiott.
ThusforsuchIonecananswereuestionl,thatis,onecandescribes(A6).
Evenmore,onehasanexplicitconstructionofallfinitelygeneratedprojectiveA6-modulesuptoisomorphism.
Forthespecialcasen=2theseresultswereobtainedearlierin[14].
Wealsoobtainin!
61ananswertoeuestion8:THEOREMc-If0isnotrational,thentlzeprojectionsinAsgenerateKo(Ag).
ByusingTheorem8oftheprevioussectionwithTheoremCaboveinaninductionargument,wethenobtainthefollowineanswertoQuestionl0:THEOREMD.
IfAisnotrational,theneveryelententofKr(Ag)isrepresentedbyaninvertibleelementolAe.
ByusingTheorem9oftheprevioussectionwithTheoremBwealsoobtainthefollowinganswertoQuestion9:THEOREME.
If0isnotrational,thenthenaturalnlaDfrontU1(A0)/U(Ag)toKr(Ag)isanisontorphisnt.
NON-STABLEK.
THEORY,NON-COMMUTATIVETORI277Fromthistheoremtogetherwithsomeadditionalargumcnt,oncobtainsthefollowinganswertoQuestion7:THEOREMF.
rf0isnotrational,thenanytwoprojectiortsinM-(Ag)whichrepresentthesanteelemento/K6(Ag)areintltesameconnectedcomponentofthesetofprojectionsirrM-(Ag)'Inclosing,letmementionthatJ.
A.
Packer[9,l0]hasstudiedthealgebrasc*(G,o)whereGisthediscreteHeisenberggroupandoisacocycleonG.
Amongmanyotherresults,shehasshownthatformanyo's,thesealgebrassatisfycancellation'Forthissheuses,inpart,thetechniquesof[13,l4].
tllt)1L-lt3lREFERENCESBass,H.
,AlgebraicK-theory,(Benjamin,NewYork,1968)'Blackadar,8.
,uAstablecancellationtheoremforsimpleC+-algebras,"Proc.
LondonMath.
Soc.
47(1983)'303-305'"NotesonthestructureofprojcctionsCTIlgEbras,"SemesterberichtFunktionalanalysis,insimpleTubingen,Winter-semester,1982/83.
l,4landHandelman,D.
,"DimensionfunctionsandtracesonT*-atgebras,"J.
FunctionalAnal.
45(1982),297-340't5lConnes,A.
,"C*-algbbresetgdomdtriediff6rentielle,"C'R'Acad.
Sci.
Paris290(1980),599-604.
t6lElliott,G.
A.
,"OntheK-theoryofthec*-algebrageneratedbyaprojectiverepresentationofatorsion-freediscreteabeliangroup,"pp.
19l'250inOperatorAlgebrasandGrottpRepresentations,vol.
I(Pitman,London,1984)'t7lHerman,R.
H.
andVaserstein,L.
N.
,"ThestablerangeofC*-algebras,"Invent.
Math'77(1984),553-555't8lHusemoller,D.
,FiberBtmdles(Springer-Vcrlag,NewYork'HeidelbergandBerlin,1966).
tl0]_,"C*-algcbrasgeneratedofthediscreteHeisenberggroupappear.
27819lPacker,associatedMARCA.
RIEFFELJ.
A.
.
"K-thcoretictotransformationsandinvariantsforC*-algebrasinduccdflows,"preprint.
byprojcctiverepresentationsI,II,"J.
FunctionalAnal.
,toovcrthedoctoraI"Trans.
Fl]Pimsner,M.
Y.
andVoiculescu,D.
,"ExactsequencesforK-groupsandExt-groupsofcertaincrossedproductC*-algebras,"J.
OperatorTheory4(1980),93-llg.
il2]Rieffel,M.
A.
,"Moritaequivalenceforoperatoralgebras,"inOperatorAlgebrasandApplicatiorts,(R.
V.
Kadison,ed.
),proc.
Symp.
PureMath.
38,pp.
285-298,(AmericanMathematicalSociety,Providence,1982).
[l3]-,''DimenSionandstabierankintheK.
theoryofC*-algebras,"Proc.
LondonMath.
Soc.
47(19g3),295-302.
[4]--,"Thecancellationtheoremforprojectivemodulesoverirrationalrotationc*-algebras,"proc.
LondonMath.
Soc.
47(1983),285-302.
II5]_,"'Yectorbundles'overhigherdimensional'non-commutativetori',"proc.
conferenceonoperatorAlgebras,ConnectionswithTopologyandErgodicTheory,LectttreNotesinMath.
,1r32,pp.
456-467(Springer-verlag,BerlinandHeidelberg,1985).
tl6l"Projcctivemodulesoverhigherdimensionalnon-commutativetori,"preprint.
[l7]Shcu,A.
J.
-L.
,"ThecancellationpropertyformodulesgroupC*-algebrasofcertainnilpotentLiegroups,"dissertation,IJniversityofCalifornia,Berkeley,19g5.
II8]Swan,R.
,"Vectorbundlesandprojectivemodulcs,Amer.
Math.
Soc.
105(1962),264-277.
[19]Taylor,J.
L.
,"Banachalgebrasandtopology,"iDAlgebrasinAnalysis,pp.
Il8-186,(Academicpress,Newyork,Igl5).
I20)vaserstein,L.
N.
,"ThefoundationsofalgebraicK-theory,"UspekhiMat.
Nauk.
3l(1976),87-149.
NON-STABLEK-THEORY,NON-CON{MUTATIVEToRI2T9[21]Warficld,R.
8.
,"Cancellationofmodulesandgroupsandstablerangeofendomorphismrings,"PacificJ'Math'91(1980),457-485.
DEPARTMENTOFMATHEMATICSUNIVERSITYOFCALIFORNIABERKELEY.
CALIFORNIA94'720 
		  
		  
		      
			  
		  
			  			   
			      
			        
			          
			          iON Cloud怎么样?iON Cloud升级了新加坡CN2 VPS的带宽和流量最低配的原先带宽5M现在升级为10M,流量也从原先的150G升级为250G。注意,流量也仅计算出站方向。iON Cloud是Krypt旗下的云服务器品牌,成立于2019年,是美国老牌机房(1998~)krypt旗下的VPS云服务器品牌,主打国外VPS云服务器业务,均采用KVM架构,整体性能配置较高,云服务器产品质量靠...
			         
			       
				  
			     
							   
			      
			        
			          
			          使用此源码可以生成QQ自动跳转到浏览器的短链接,无视QQ报毒,任意网址均可生成。新版特色:全新界面,网站背景图采用Bing随机壁纸支持生成多种短链接兼容电脑和手机页面生成网址记录功能,域名黑名单功能网站后台可管理数据安装说明:由于此版本增加了记录和黑名单功能,所以用到了数据库。安装方法为修改config.php里面的数据库信息,导入install.sql到数据库。...
			         
			       
				  
			     
							   
			      
			        
			          
			          官方网站:点击访问酷番云官网活动方案:优惠方案一(限时秒杀专场)有需要海外的可以看看,比较划算29月,建议年付划算,月付续费不同价,这个专区。国内节点可以看看,性能高IO为主, 比较少见。平常一般就100IO 左右。优惠方案二(高防专场)高防专区主要以高防为主,节点有宿迁,绍兴,成都,宁波等,节点挺多,都支持防火墙自助控制。续费同价以下专场。  优惠方案三(精选物理机)西南地区节点比较划算,赠送5...
			         
			       
				  
			     
							
			   
			   
esetnod32id为你推荐
	courses163OPENCORE苹果引导配置说明第四版-基于支持ipad支持ipadnetbios端口如何组织netbios端口的外部通信用itunes备份如何用iTunes备份iPhone数据google中国地图求教谷歌中国地图~手机如何使用?如何用itunes备份如何使用iTunes最新版进行备份?急!!ipad上不了网ipad连上家里的无线却不能上网迅雷下载速度迅雷下载速度很慢怎么办
重庆虚拟主机 美国虚拟主机购买 动态域名解析软件 512av 国内加速器 嘉洲服务器 韩国网名大全 华为网络硬盘 cpanel空间 毫秒英文 北京双线机房 静态空间 泉州移动 流媒体加速 香港亚马逊 德隆中文网 畅行云 阿里云手机官网 789电视剧网 rewritecond 更多