Dueckrewrite规则

rewrite规则  时间:2021-01-12  阅读:()
Acompletealgorithmtosolvethegraph-coloringproblemHubertoAyaneguiandAlbertoChavez-AragonFacultaddeCienciasBasicas,IngenieriayTecnologia,UniversidadAutonomadeTlaxcala,CalzadadeApizaquitos/n,Apizaco,Tlaxcala,Mexico{hayanegui,albertochz}@gmail.
comAbstract.
TheGraphk-ColorabilityProblem(GCP)isawellknownNP-hardproblemwhichconsistinfindingthekminimumnumberofcolorstopainttheverticesofagraphinsuchawaythatanytwoverticesjoinedbyanedgehavealwaysdifferentcolors.
Manyyearsago,SimulatedAnnealing(SA)wasusedforgraphcoloringtaskobtaininggoodresults;howeverSAisnotacompletealgorithmanditnotalwaysgetstheoptimalsolution.
InthispaperGCPistransformedintotheSatisfiabilityProblemandthenitissolvedusingaalgorithmthatusestheThresholdAcceptingalgorithm(avariantofSA)andtheDavis&Putnamalgorithm.
Thenewalgorithmisacompleteoneandsoitgetsbetterqualitythattheclassicalsimulatedannealingalgorithm.
Keywords:graphcoloring,simulatedannealing,thresholdaccepting,davis&putnam.
1IntroductionLetG=(V,E)beagraphwhereVisasetofverticesandEisasetofedges.
Ak-coloringofGisapartitionofVintoksets{V1,…,Vk},suchthatnotwoverticesinthesamesetareadjacent,i.
e.
,ifv,wbelongtoVi,1ik,then(v,w)notbelongtoE.
Thesets{V1,…,Vk}arereferredtoascolors.
Thechromaticnumber,x(G),isdefinedastheminimumkforwhichGisk-colorable.
TheGraphk-ColorabilityProblem(GCP)canbestatedasfollows.
GivenagraphG,findx(G)andthecorrespondingcoloring.
GCPisaNP-hardproblem[1].
GCPisveryimportantbecauseithasmanyapplications;someofthemareplanningandschedulingproblems[2][3],timetabling[4],mapcoloring[5]andmanyothers.
SinceGCPisaNP-hardproblem,untilnowtherearenotknowndeterministicmethodsthatcansolveditinapolynomialtime[1].
Sonon-deterministicalgorithmshavebeenbuilttosolveit;oneofthemisSimulatedAnnealing(SA)[6]thathasbeenusedonGCPwithgoodresults[7][8].
However,SAisnotacompletealgorithmanditnotalwaysgetstheoptimalsolution.
TheapproachusedinthispaperistotransformGCPintoaSatisfiabilityProblem(orSATproblem)[12]andthenusethealgorithmproposedinthispaper.
WeproposetouseiterativelytheThresholdAccepting(TA)algorithm(avariantofSimulatedAnnealing)[9]andthenaDavisandPutnamalgorithm[10].
2SimulatedannealingandthresholdacceptingSimulatedannealing(SA)[6]isastochasticcomputationaltechniquederivedfromstatisticalmechanicstofindnearglobal-minimum-costsolutionstolargeoptimizationproblems.
Inmanyinstances,findingtheglobalminimumvalueofanobjectivefunctionwithmanydegreesoffreedomsubjecttoconflictingconstraintsisanNP-completeproblem,sincetheobjectivefunctionwilltendtohavemanylocalminimums.
Aprocedureforsolvingoptimizationproblemsofthistypeshouldsamplethesearchspaceinsuchawaythatithasahighprobabilityoffindingtheoptimaloranear-optimalsolutioninareasonabletime.
Overthepastdecade,SAhasproventobeapowerfultechniquethatmeetsthesecriteriaforawiderangeofproblems.
SAexploitsananalogybetweenthewayametalcoolandfreezesintoaminimumenergycrystallinestructure(theannealingprocess)andthesearchforaminimuminamoregeneralsystem.
SAmakesarandomsearchwhichnotonlyacceptschangesthatincreaseitscostfunctionf,butalsosomethatdecreaseit.
Forthisreason,SAusesacontrolparameterc,whichbyanalogywiththeoriginalapplicationisknownasthe"SystemTemperature",cstartsouthighandgraduallydecreases.
AdeterioratingrandommovefromsolutionSitoSjisacceptedwithaprobabilityexp-(f(Sj)-f(Si))/c.
Ifthismoveisnotdeteriorating(thenewsolutionSjisbetterthanthepreviousoneSi)thenitisacceptedandanewrandommoveisproposedagain.
Whenthetemperatureishigh,abadmovecanbeaccepted.
Asctendstozero,SAbecomesmoredemandingthroughacceptjustbettermoves.
Thealgorithmforminimizationisshownbelow:ProcedureSIMULATEDANNEALINGBeginINITIALIZE(Si=initial_solution,c=initial_temperature)k=0RepeatRepeatSj=PERTURBATION(Si)IfCOST(Sj)random[0,1)ThenSi=SjUntilstochasticequilibriumk=k+1c=COOLING(c)UntilthermalequilibriumEndTheINITIALIZEfunctionstartstheinitialsolutionSiandtheinitialtemperaturec.
ThePERTURBATIONfunctionmakesarandomperturbationfromSitogenerateaneighborhoodsolutionSj.
TheCOSTfunctiongetsthecostfromasolution.
TheINC_COSTfunctiongetsthedifferenceincostbetweenSjandSi.
Finally,theCOOLINGfunctiondecreasestheactualtemperatureparameterc.
AvariantofSimulatedAnnealing(SA)istheThresholdAcceptingmethod(TA).
ItwasdesignedbyDueck&Scheuer[9]inordertogetamoreefficientalgorithmthanSimulatedAnnealing.
Theprincipaldifference,betweenSAandTA,isthemechanismofacceptingthesolutionrandomlychosenfromthesetofneighborsofthecurrentsolution.
WhileSAusesaprobabilisticmodel(seeequation(1)),TAusesastaticmodel:ifthedifferencebetweenthecostvaluesofthechosensolutionSjandthecurrentoneSiissmallerthanathresholdT(ortemperature),TAacceptsmovingtothechosensolution.
Otherwiseitstaysatthecurrentsolution.
Again,thethresholdparameterTisapositivecontrolparameterwhichdecreaseswithincreasingnumberofiterationsandconvergestovaluenearto0.
Henceforth,ineveryiterationsomesolutiondeteriorationareallowed;thisdeteriorationdependsonthecurrentthresholdT(seeequation(2));inthiswayonlyimprovingsolutionswithalmostnonedeteriorationsolutionareacceptedattheendoftheprocess.
p(S1,S2)=exp(min{f(S1)-f(S2),0}/c)(1)COST(Sj)ThiscouldbebecauseTAdoesnotcomputetheprobabilisticfunction(1)anddoesnotexpendalotoftimemakingrandomdecisions.
TheThresholdAcceptingalgorithmforminimizationisthefollowing:ProcedureTHRESHOLDACCEPTINGBeginINITIALIZE(Si=initial_solution,T=initial_thresholdortemperature)k=0RepeatRepeatSj=PERTURBATION(Si)E=COST(Sj)–COST(Si)IfESALAusesSimulated-annealingapproachwithtwomainloops:internalloopnamedMetropolisCycleandexternalloopcalledTemperatureCycle.
Numberofiterationsininternalandexternalloopusuallyaretunedexperimentally[6],[9].
However,recentlyananalyticalmethodusingaMarkovmodelwasproposedtotuneTAsolvingSATproblems.
ExternalloopexecutedfromainitialtemperatureTiuntilafinaltemperatureTfandtheinternalloopbuildsaMarkovchainoflengthLkwhichdependsonthetemperaturevalueTk(krepresentsthesequenceindexinTemperaturecycle).
AstrongrelationexistsbetweenTkandLkinawaythat:IfTk,Lk0andifTk0,Lk.
(3)DuetoTAisappliedthroughaneighborhoodstructure,V,(PERTURBATIONfunctionmakesarandomperturbationfromSitogenerateaneighborhoodsolutionSj),themaximumnumberofdifferentsolutionsthatcanberejectedfromSiisthesizeofitsneighborhoods,|VSi|.
ThenthemaximumlengthofaMarkovchaininaTAalgorithmisthenumberofsamplesthatmustbetakeninordertoevaluateanexpectedfractionofdifferentsolutionsfromVSiatthefinaltemperatureTf,thisis:Lf=C|VSi|.
(4)whereCvariesfrom1C4.
6(explorationfrom63%until99%),LfisthelengthoftheMarkovchainatTf.
From(3),LkmustbeincrementedinasimilarbutinversewaythatTkisdecremented.
ThenforthegeometricreductioncoolingfunctionusedbyKirkpartick[6],andDueckandScheuer[9],Tk+1=Tk.
(5)theincrementalMarkovchainfunctionmustbe:Lk+1=Lk.
(6)where=exp((lnLf–lnLi)/n).
(7)Here,LiisthelengthoftheMarkovchainatTi,usuallyLi=1,andnisthenumberoftemperaturestepsfromTitoTfthrough(5).
Now,themaximumandminimumcostincrementproducedthroughtheneighborhoodstructureare:ZVmax=Max{COST(Sj)–COST(Si)}.
(8)ZVmin=Min{COST(Sj)–COST(Si)}.
(9)forallSjVSi,andforallSiSThenTiandTfmustbecalculatedas:Ti=ZVmax.
(10)TfZVmin.
(11)ThiswayofdeterminingtheinitialtemperatureenableTAtoacceptanypossibletransitionatthebeginningoftheprocess,sinceTiissetasthemaximumdeteriorationincostthatmaybeproducedthroughtheneighborhoodstructure.
Similarly,TfenablesTAtohavecontroloftheclimbingprobabilityuntilthealgorithmperformsagreedylocalsearch.
3Davis&PutnamMethodSatisfiablityProblem[12](orSAT)isveryimportantincomplexitytheory.
Letbeapropositionalformulalikeformula(12):F=F1&F2&…&Fn(12)whereeveryFiisadisjunction.
EveryFiisadisjunctionofpropositionalformulassuchasX1vX2v.
.
vXr.
EveryFiisaclauseandeveryXjisaliteral.
Everyliteralcantakeatruthvalue(0orfalse,1ortruth).
InSatisfiabilityproblemasetofvaluesfortheliteralsshouldbefound,insuchawaythattheevaluationof(12)betrue;otherwiseif(12)isnottrue,wesaythatFisunsatisfiable.
Besideswesaythat(12)isinConjunctiveNormalFormorCNF.
TheDavis&Putnammethodiswidelyregardedasoneofthebestdeterministicmethodsfordecidingthesatisfiability[12]ofasetofpropositionalclauses[10].
Itisalsoacompleteresolutionmethod.
Thisprocedurecallsitselfafterrewritingtheinputformulaaccordingtoanumberofrulesforgeneratingasmallerformulawiththesametruthvalue.
TherulesusedfortheDavis&Putnammethodare:Rule1:iftheinputformulahasnoclauses,thenitissatisfiableRule2:ifithasaclausewithnoliterals,itisunsatisfiableRule3:ifithasaclausewithexactlyoneliteral,thenmaketheliteraltrueandrewritetheformulaaccordinglyRule4:ifsomevariableappearonlypositivelyornegatively,thenpickonesuchvariableandassignavaluetoittomaketheliteraltrue,andrewritetheformulaaccordinglyIfnonerulecouldbeapplied,onepicksupanarbitraryvariableasabranchingpointandtwonewformulasarederivedbyassigning0and1tothisvariable.
Ifoneofthecallsreturnswiththepositiveanswertheinputissatisfiable;otherwise,itisunsatisfiable.
TheDavis&Putnamalgorithmisshownbelow:FunctionDAVIS-PUTNAM(Informula:clauseslist)BeginREDUCE(formula,vreduce)IfformulaisemptyThenReturnvreduceElseIfformulahasaclausewithnoliteralsThenReturnfailElseChoosealiteralVfromformulavaluation=DAVIS-PUTNAM(SUBSTITUTION(true,V,formula))Ifvaluation!
=failThenReturnADD(V=true,vreduce,valuation)valuation=DAVIS-PUTNAM(SUBSTITUTION(false,V,formula))Ifvaluation!
=failThenReturnADD(V=false,vreduce,valuation)ReturnfailEndifEndDAVIS-PUTNAMFunctionSUBSTITUTION(TF,V,formula)BeginForEachoneclauseCInformulaDoIf[CcontainVandTF=true]or[Ccontain~VandTF=false]ThendeleteCfromformulaElseIf[CcontainVandTF=false]or[Ccontain~VandTF=true]ThendeleteVfromCEndifEndforReturnformulaEnd_SUBSTITUTIONFunctionREDUCE(InOut:formula,vreduce)Beginvreduce=emptyWhileexistsclauseCInformulawithexactlyoneliteralLIfLispositivevariableVThenformula=SUBSTITUTION(true,V,formula)vreduce=CONS(V=true,vreduce)ElseIfLisnegativevariableVThenformula=SUBSTITUTION(false,V,formula)vreduce=CONS(V=false,vreduce)EndifEndwhileReturn(formula)End_REDUCETheDAVIS-PUTNAMfunctionisthemainfunctionanditselectsrandomlyaliteraltosetatrueagroupofvaluesinordertocreateunitaryclauses.
Ifthattruesetvaluesisnotthecorrectsolutionthecomplementsetoftruevaluesistried.
Ifthenewassignmentisneitherasatisfiablesolution,thentheformulaisunsatisfiable.
ThefunctionSUBTITUTIONmakesthepropagationofoneliteraloveralltheclausesinformula,deletingclauseswhereoccursthepositiveliteralLanditsvalueis1(true).
Thereforetheclauseswhere~Loccurscandeletethatliteral.
TheREDUCEfunctioncarriesoutthesearchofunitaryclauses,sothatitcanbepossiblepropagatethroughthefunctionSUBSTITUTION.
4GraphColoringthroughAcceptingandDavis&PutnamInformallycoloringagraphwithkcolorsorGraphk-ColorabilityProblem(GCP)isstatedasfollows:IsitpossibletoassignoneofkcolorstoeachnodeofagraphG=(V,E),suchthatnotwoadjacentnodesbeassignedthesamecolorIfanswerispositivewesaythatthegraphisk-colorableandkisthechromaticnumberx(G).
ItispossibletotransformGraphk-ColorabilityProblem(GCP)intoSatisfiabilityproblem(SAT);thatmeansthatforagivengraphG=(V,E)andanumberk,itispossibletoderiveaCNFformulaFsuchthatFissatisfiableonlyinthecasethatGisk-colorable.
TheformulationofGCPasSATismadeassigningXBooleanvariablesasfollow:1)TakeeverynodeandassignaBooleanvariableXijforeverynodeiandcolorj;thedisjunctionofallthesevariables.
Inthiswayeverynodewillhaveatleastonecolor.
Therefore,inthecaseoffigure1,wehavetheclauses:Node1:X11vX12vX13vX14Node2:X21vX22vX23vX24Node3:X31vX32vX33vX34Node4:X41vX42vX43vX442)Toavoidthefactthatanodehasmorethatonecolor,addtheformulaXij~Xik3)Inordertobesurethattwonodes(Vi,Vj)connectedwithanarchavedifferentcolors,addaclausesuchthatifVihascolork,Vjshouldnotbecolorwiththiscolor.
ThisclauseiswritingasXik~Xjk.
4)Inordertoknowwhichnodesareconnectedwithanedge,anadjacentmatrixAofthegraphisneeded;itselementsare:1ifiisconnectedwithjAij=0otherwiseFig.
1.
GraphcoloringexampleThereductionofagraphtotheConjunctiveNormalForm(CNF)generatessomanyclausesevenforsmallgraphs.
Forexample,forafullgraphwith7nodes(42edges),308clauseswith98literalscanbegenerated.
IfweuseDavis&Putnamalgorithmtocoloragraph,wecouldstartcoloringwithRcolors(thegraph'sdegreeorfromanumbergiven).
Ifitisnotpossibletocolorit,thenwecanincreaseRandtryagain.
Duetofindalargechromaticnumberx(G)isaveryhardtaskforacompletemethodasDavis&Putnam(itdemandsmanyresources),weneedanincompletemethodtohelpinthistask.
ForthisreasonwehavechosentheThresholdAcceptingmethod.
TAwillsearchthechromaticnumber,butasitisknownTAnotalwaysgettheoptimalsolution.
Bythisreason,thenumberfoundbyTAissendtoaDavis&Putnamprocedure,andthisonewillgettheoptimalsolution.
Thecompleteprocessisshowninthefigure2.
Fig.
2.
DescriptionofthecoloringprocessAnygraphcanbecoloredwithGmax+1colors,whereGmaxrepresentsthegraphdegree.
Forthisreason,TAwilltrycoloringwithGmaxcolors.
IfTAgetsasuccess,thenTAwilltrytocolorwithGmax-1,andsoon.
WhenTAfinishes,itsendstotheoutputtheminimumkofcolorsfounded.
Inothercase,whenTAcannotcolorwithGmaxcolors,thenitwillsendk=Gmax+1toDavis&Putnamprocedure.
Fig.
3.
BinarypartitionsDavis&Putnamwillattempttodecreasethevalueofkthroughbinarypartitions.
Thefirstattempt,Davis&Putnamwillchoosethenumberofcolorsgivenby(1+k)/2.
Ifthecoloringisright,itwillcolorwith(1+(1+k)/2)/2colors,i.
e.
,thelefthalf.
Otherwise,thealgorithmwillcolorwith((1+k)/2+k)/2colors,therighthalf.
ThisprocesscontinuesuntilDavis&Putnamcannotdecreasek.
So,thechromaticnumberwasfound.
Thissituationisshowninfigure2.
Thefigure3showsanexamplewhereTAfoundthenumbernineasitsbettersolutionanditissendtoDavis&Putnamprocedure.
WhenDavis&PutnamtakesthelastTAsolution,usingbinarypartitionsandotherrulestheoptimalsolutioniswaited.
Forexampleinthecaseofthefigure3,ifDavis&Putnamcannotcolorwithfivecolors,itmovestootheralternative,tryingwithsevencolors.
Finally,inthelastpartition,i.
e.
(7+9)/2,cannotcolorthegraphandsotheresultisachromaticnumberequaltonine.
5ConclusionInthispaperwepresentedanalgorithmbasedonThresholdAcceptingandDavis&Putnam,tosolvetheGraphk-ColorabilityProblem.
BecausethisproblemisanNP-hardproblemthereisnotaknowndeterministicefficient(polinomial)method.
Non-deterministicmethodsareingeneralmoreefficientbutanoptimalsolutionisnotguarantee.
Thismethodisanewalternativethatpromisestobemoreefficientthatthepreviousones.
Themaincontributionsofthispaperareenumeratedbelow.
1)Weproposedawaytotransformthegraphk-colorabilityproblemintoasatisfiabilityproblem.
2)InordertosolvetheformerproblemweproposedanewapproachwhichmakesuseofthethresholdacceptingandDavis&Putnamalgorithms.
3)Theresultingalgorithmiscompleteandusingitwecangetbetterresultsthatthewell-knownsimulatedannealingalgorithm.
References1.
Garey,M.
R.
andJohnson,D.
S.
,ComputersandInteractability:AGuidetotheTheoryofNP-Completeness,Freeman,SanFrancisco,1979.
2.
Stecke,K.
,DesignPlanning,SchedulingandControlProblemsofFlexibleManufacturing,AnnalsofOperationsResearch,Vol.
3,1985,pp.
3-12.
3.
Leighton,F.
T.
,AGraphColoringAlgorithmforLargeSchedulingProblems,J.
Res.
Nat.
Bur.
Standard,Vol.
84,No.
6,1979,pp.
489-506.
4.
Wood,D.
C.
,ATechniqueforColoringaGraphApplicabletoLargeScaleTimetableProblems,ComputerJournal,Vol.
12,1969,pp.
317-322.
5.
Brelez,D.
,NewMethodstoColorVerticesofaGraph,Comm.
ACM,Vol.
22,1979,pp.
251-256.
6.
Kirkpatrick,S,Gelatt,C.
D.
,Vecchi,M.
P.
,OptimizationbySimulatedAnnealing,Science,No.
220,1983,pp.
671-680.
7.
Chams,M.
,A.
HertzandD.
deWerra,SomeExperimentswithSimulatedAnnealingforColoringGraphs,EuropeanJournalofOperationalResearch,Vol.
32,1987,pp.
260-266.
8.
Johnson,D.
S.
,Aragon,C.
R.
,McGeoch,L.
A.
,Schevon,C.
,OptimizationbySimulatedAnnealing:AnExperimentalEvaluation;PartII:GraphColoringandNumberPartitioning,Oper.
Res.
,No.
39,1991,pp.
378-406.
9.
DueckGunter,ScheuerTobias,ThresholdAccepting:AGeneralPurposeOptimizationAlgorithmAppearingSuperiortoSimulatedAnnealing.
JournalofComputationalPhysics,No.
90,1990,pp.
161-175.
10.
M.
DavisandH.
Putnam,AComputingProcedureforQuantificationTheory.
JournaloftheAssociationforComputingMachinery,Vol.
7,No.
1,1960,pp.
201-215.
12.
ScienceandTechnologyCenterinDiscreteMathematicsandTheoreticalComputerScience,"SatisfiabilityProblem:TheoryandApplications",DimacsSeriesinDiscreteMathematicsandTheoreticalComputerScience,Editors:JunGu,PanosPardalos,Ding-Zhu.

PacificRack 下架旧款方案 续费涨价 谨慎自动续费

前几天看到网友反馈到PacificRack商家关于处理问题的工单速度慢,于是也有后台提交个工单问问,没有得到答复导致工单自动停止,不清楚商家最近在调整什么。而且看到有网友反馈到,PacificRack 商家的之前年付低价套餐全部下架,而且如果到期续费的话账单中的产品价格会涨价不少。所以,如果我们有需要续费产品的话,谨慎选择。1、特价产品下架我们看到他们的所有原来发布的特价方案均已下架。如果我们已有...

百纵科技,美国独立服务器 E52670*1 32G 50M 200G防御 899元/月

百纵科技:美国高防服务器,洛杉矶C3机房 独家接入zenlayer清洗 带金盾硬防,CPU全系列E52670、E52680v3 DDR4内存 三星固态盘阵列!带宽接入了cn2/bgp线路,速度快,无需备案,非常适合国内外用户群体的外贸、搭建网站等用途。C3机房,双程CN2线路,默认200G高防,3+1(高防IP),不限流量,季付送带宽美国洛杉矶C3机房套餐处理器内存硬盘IP数带宽线路防御价格/月套...

RAKsmart:美国洛杉矶独服,E3处理器/16G/1TB,$76.77/月;美国/香港/日本/韩国站群服务器,自带5+253个IPv4

RAKsmart怎么样?RAKsmart机房即日起开始针对洛杉矶机房的独立服务器进行特别促销活动:低至$76.77/月,最低100Mbps带宽,最高10Gbps带宽,优化线路,不限制流量,具体包括有:常规服务器、站群服务器、10G大带宽服务器、整机机柜托管。活动截止6月30日结束。RAKsmart,美国华人老牌机房,专注于圣何塞服务器,有VPS、独立服务器等。支持PayPal、支付宝付款。点击直达...

rewrite规则为你推荐
linux虚拟主机如何配置linux虚拟主机info域名注册百度还收录新注册的info域名吗?网站空间免备案免备案网站空间哪个好免备案虚拟主机免备案的虚拟主机在哪买好独立ip虚拟主机独立ip空间的虚拟主机一般多少钱下载虚拟主机怎么安装虚拟机美国虚拟主机推荐美国独立ip虚拟主机哪儿有,推荐下?备案域名网站备案是什么意思?备案域名还是备案空间?还是都需要备案?买域名在那里买域名 多少钱一年? 在线等 。。。!!!!!!!域名信息查询具体怎么查看一个网站的域名信息?
荷兰vps 新加坡服务器 海外服务器 debian源 毫秒英文 数字域名 河南移动邮件系统 789电视网 cn3 最好的qq空间 空间首页登陆 双线asp空间 lick ebay注册 广州虚拟主机 华为云建站 防cc攻击 免费个人主页 阵亡将士纪念日 网站防护 更多