differencedrewrite规则

rewrite规则  时间:2021-01-12  阅读:()
Titlestata.
comarimapostestimation—PostestimationtoolsforarimaDescriptionSyntaxforpredictMenuforpredictOptionsforpredictRemarksandexamplesReferenceAlsoseeDescriptionThefollowingpostestimationcommandsareofspecialinterestafterarima:CommandDescriptionestatacplotestimateautocorrelationsandautocovariancesestatarootscheckstabilityconditionofestimatesirfcreateandanalyzeIRFspsdensityestimatethespectraldensityThefollowingstandardpostestimationcommandsarealsoavailable:CommandDescriptionestaticAkaike'sandSchwarz'sBayesianinformationcriteria(AICandBIC)estatsummarizesummarystatisticsfortheestimationsampleestatvcevariance–covariancematrixoftheestimators(VCE)estimatescatalogingestimationresultsforecastdynamicforecastsandsimulationslincompointestimates,standarderrors,testing,andinferenceforlinearcombinationsofcoefcientslrtestlikelihood-ratiotestmarginsmarginalmeans,predictivemargins,marginaleffects,andaveragemarginaleffectsmarginsplotgraphtheresultsfrommargins(proleplots,interactionplots,etc.
)nlcompointestimates,standarderrors,testing,andinferencefornonlinearcombinationsofcoefcientspredictpredictions,residuals,inuencestatistics,andotherdiagnosticmeasurespredictnlpointestimates,standarderrors,testing,andinferenceforgeneralizedpredictionstestWaldtestsofsimpleandcompositelinearhypothesestestnlWaldtestsofnonlinearhypotheses12arimapostestimation—PostestimationtoolsforarimaSyntaxforpredictpredicttypenewvarifin,statisticoptionsstatisticDescriptionMainxbpredictedvaluesformeanequation—thedifferencedseries;thedefaultstdpstandarderrorofthelinearpredictionypredictedvaluesforthemeanequationiny—theundifferencedseriesmsemeansquarederrorofthepredictedvaluesresidualsresidualsorpredictedinnovationsyresidualsresidualsorpredictedinnovationsiny,reversinganytime-seriesoperatorsThesestatisticsareavailablebothinandoutofsample;typepredict.
.
.
ife(sample).
.
.
ifwantedonlyfortheestimationsample.
PredictionsarenotavailableforconditionalARIMAmodelsttopaneldata.
optionsDescriptionOptionsdynamic(timeconstant)howtohandlethelagsofytt0(timeconstant)setstartingpointfortherecursionstotimeconstantstructuralcalculateconsideringthestructuralcomponentonlytimeconstantisa#oratimeliteral,suchastd(1jan1995)ortq(1995q1);seeConvenientlytypingSIFvaluesin[D]datetime.
MenuforpredictStatistics>Postestimation>Predictions,residuals,etc.
OptionsforpredictFivestatisticscanbecomputedusingpredictafterarima:thepredictionsfromthemodel(thedefaultalsogivenbyxb),thepredictionsafterreversinganytime-seriesoperatorsappliedtothedependentvariable(y),theMSEofxb(mse),thepredictionsofresidualsorinnovations(residual),andthepredictedresidualsorinnovationsintermsofy(yresiduals).
GiventhedynamicnatureoftheARMAcomponentandbecausethedependentvariablemightbedifferenced,thereareotherwaysofcomputingeach.
Wecanuseallthedataonthedependentvariablethatisavailablerightuptothetimeofeachprediction(thedefault,whichisoftencalledaone-stepprediction),orwecanusethedatauptoaparticulartime,afterwhichthepredictedvalueofthedependentvariableisusedrecursivelytomakelaterpredictions(dynamic()).
Eitherway,wecanconsiderorignoretheARMAdisturbancecomponent(thecomponentisconsideredbydefaultandisignoredifyouspecifystructural).
Allcalculationscanbemadeinoroutofsample.
arimapostestimation—Postestimationtoolsforarima3Mainxb,thedefault,calculatesthepredictionsfromthemodel.
IfD.
depvaristhedependentvariable,thesepredictionsareofD.
depvarandnotofdepvaritself.
stdpcalculatesthestandarderrorofthelinearpredictionxb.
stdpdoesnotincludethevariationarisingfromthedisturbanceequation;usemsetocalculatestandarderrorsandcondencebandsaroundthepredictedvalues.
yspeciesthatpredictionsofdepvarbemade,evenifthemodelwasspeciedintermsof,say,D.
depvar.
msecalculatestheMSEofthepredictions.
residualscalculatestheresiduals.
Ifnootheroptionsarespecied,thesearethepredictedinnovationst;thatis,theyincludetheARMAcomponent.
Ifstructuralisspecied,thesearetheresidualstfromthestructuralequation;seestructuralbelow.
yresidualscalculatestheresidualsintermsofdepvar,evenifthemodelwasspeciedintermsof,say,D.
depvar.
Aswithresiduals,theyresidualsarecomputedfromthemodel,includinganyARMAcomponent.
Ifstructuralisspecied,anyARMAcomponentisignored,andyresidualsaretheresidualsfromthestructuralequation;seestructuralbelow.
Optionsdynamic(timeconstant)specieshowlagsofytinthemodelaretobehandled.
Ifdynamic()isnotspecied,actualvaluesareusedeverywherethatlaggedvaluesofytappearinthemodeltoproduceone-step-aheadforecasts.
dynamic(timeconstant)producesdynamic(alsoknownasrecursive)forecasts.
timeconstantspecieswhentheforecastistoswitchfromonestepaheadtodynamic.
Indynamicforecasts,referencestoytevaluatetothepredictionofytforallperiodsatoraftertimeconstant;theyevaluatetotheactualvalueofytforallpriorperiods.
Forexample,dynamic(10)wouldcalculatepredictionsinwhichanyreferencetoytwitht00otherwisemeaningthatpredictnewvar,xbcalculatespredictionsbyusingthemetricofthedependentvariable.
Inthisexample,thedependentvariablerepresentedchangesinln(wpit),andsothepredictionsarelikewiseforchangesinthatvariable.
Ifweinsteaduse.
predicty,yStatacomputesytasyt=xbt+ln(wpit1)sothatytrepresentsthepredictedlevelsofln(wpit).
Ingeneral,predictnewvar,ywillreverseanytime-seriesoperatorsappliedtothedependentvariableduringestimation.
IfwewanttoignoretheARMAerrorcomponentswhenmakingpredictions,weusethestructuraloption,.
predictxbs,xbstructuralwhichgeneratesxbst=β0becausetherearenoregressorsinthismodel,and.
predictys,ystructuralgeneratesyst=β0+ln(wpit1)arimapostestimation—Postestimationtoolsforarima5Example1:DynamicforecastsAnattractivefeatureofthearimacommandistheabilitytomakedynamicforecasts.
Inexample4of[TS]arima,wetthemodelconsumpt=β0+β1m2t+tt=ρt1+θt1+tFirst,weretthemodelbyusingdataupthroughtherstquarterof1978,andthenwewillevaluatetheone-step-aheadanddynamicforecasts.
.
usehttp://www.
stata-press.
com/data/r13/friedman2.
keepiftimechi2=0.
0000OPGDS4.
lnm1Coef.
Std.
Err.
zP>|z|[95%Conf.
Interval]ARMAarL1.
.
3551862.
05030117.
060.
000.
2565979.
4537745L4.
-.
3275808.
0594953-5.
510.
000-.
4441895-.
210972/sigma.
0112678.
000488223.
080.
000.
0103109.
0122246Note:Thetestofthevarianceagainstzeroisonesided,andthetwo-sidedconfidenceintervalistruncatedatzero.
.
irfcreatenonseasonal,set(myirf)step(30)(filemyirf.
irfcreated)(filemyirf.
irfnowactive)(filemyirf.
irfupdated)WetthefollowingseasonalARIMAmodel(1ρ1L)(1ρ4,1L4)4lnm1t=tThecodebelowtsthisnonseasonalARIMAmodelandsavesasetofIRFresultstotheactiveIRFle,whichismyirf.
irf.
.
arimaDS4.
lnm1,ar(1)mar(1,4)noconstantnologARIMAregressionSample:1961q2-2008q2Numberofobs=189Waldchi2(2)=119.
78Loglikelihood=588.
6689Prob>chi2=0.
0000OPGDS4.
lnm1Coef.
Std.
Err.
zP>|z|[95%Conf.
Interval]ARMAarL1.
.
489277.
05380339.
090.
000.
3838245.
5947296ARMA4arL1.
-.
4688653.
0601248-7.
800.
000-.
5867076-.
3510229/sigma.
0107075.
000474722.
560.
000.
0097771.
0116379Note:Thetestofthevarianceagainstzeroisonesided,andthetwo-sidedconfidenceintervalistruncatedatzero.
.
irfcreateseasonal,step(30)(filemyirf.
irfupdated)8arimapostestimation—PostestimationtoolsforarimaWenowhavetwosetsofIRFresultsinthelemyirf.
irf.
WecangraphbothIRFfunctionssidebysidebycallingirfgraph.
.
irfgraphirfThetrajectoriesoftheIRFfunctionsaresimilar:eachgureshowsthatashocktolnm1causesatemporaryoscillationinlnm1thatdiesoutafterabout15timeperiods.
Thisbehaviorischaracteristicofshort-memoryprocesses.
See[TS]psdensityforanintroductiontoestimatingspectraldensitiesusingtheparametersestimatedbyarima.
ReferenceEnders,W.
2004.
AppliedEconometricTimeSeries.
2nded.
NewYork:Wiley.
Alsosee[TS]arima—ARIMA,ARMAX,andotherdynamicregressionmodels[TS]estatacplot—Plotparametricautocorrelationandautocovariancefunctions[TS]estataroots—CheckthestabilityconditionofARIMAestimates[TS]irf—CreateandanalyzeIRFs,dynamic-multiplierfunctions,andFEVDs[TS]psdensity—Parametricspectraldensityestimationafterarima,arma,anducm[U]20Estimationandpostestimationcommands

火数云 55元/月BGP限时三折,独立服务器及站群限时8折,新乡、安徽、香港、美国

火数云怎么样?火数云主要提供数据中心基础服务、互联网业务解决方案,及专属服务器租用、云服务器、专属服务器托管、带宽租用等产品和服务。火数云提供洛阳、新乡、安徽、香港、美国等地骨干级机房优质资源,包括BGP国际多线网络,CN2点对点直连带宽以及国际顶尖品牌硬件。专注为个人开发者用户,中小型,大型企业用户提供一站式核心网络云端服务部署,促使用户云端部署化简为零,轻松快捷运用云计算!多年云计算领域服务经...

两款半月湾 HMBcloud 春节88折日本和美国CN2 VPS主机套餐

春节期间我们很多朋友都在忙着吃好喝好,当然有时候也会偶然的上网看看。对于我们站长用户来说,基本上需要等到初八之后才会开工,现在有空就看看是否有商家的促销。这里看到来自HMBcloud半月湾服务商有提供两款春节机房方案的VPS主机88折促销活动,分别是来自洛杉矶CN2 GIA和日本CN2的方案。八八折优惠码:CNY-GIA第一、洛杉矶CN2 GIA美国原生IP地址、72小时退款保障、三网回程CN2 ...

digital-vm:VPS低至$4/月,服务器$80/月,10Gbps超大带宽,不限流量,机房可选:日本新加坡美国英国西班牙荷兰挪威丹麦

digital-vm,这家注册在罗马尼亚的公司在国内应该有不少人比较熟悉了,主要提供VPS业务,最高10Gbps带宽,还不限制流量,而且还有日本、新加坡、美国洛杉矶、英国、西班牙、荷兰、挪威、丹麦这些可选数据中心。2020年,digital-vm新增了“独立服务器”业务,暂时只限“日本”、“新加坡”机房,最高也是支持10Gbps带宽... 官方网站:https://digital-vm.co...

rewrite规则为你推荐
买虚拟主机在淘宝购买虚拟主机要注意什么?美国vps服务器美国VPS服务器哪家的速度快asp主机ASP环境是不是所有的主机都默认支持?英文域名中文域名与英文域名有什么区别,中文域名为什么贵?在搜索时哪个更有优势域名服务商最好的域名服务商是哪一家代理主机如何将我工作的电脑设置为代理主机 让我回家以后可以用家里的电脑连接店里的主机访问网络免费网站空间免费个人网站 空间免费网站空间申请申请免费空间的网站网站空间免备案哪有不用备案的网站空间?什么是虚拟主机虚拟主机是什么
免备案虚拟空间 论坛虚拟主机 联通c套餐 t牌 gitcafe 美国php空间 最好的空间 微信收钱 什么是刀片服务器 789电视网 老左来了 me空间社区 域名接入 cdn加速原理 in域名 免费稳定空间 腾讯网盘 ssl加速 cdn服务 广州服务器托管 更多