descriptive网易轻博客
网易轻博客 时间:2021-01-13 阅读:(
)
TheExplorationofUserKnowledgeArchitectureBasedonMiningUserGeneratedContents–AnApplicationCaseofPhoto-SharingWebsiteNanLiang,JiamingZhong,DiWang,andLiqunZhang(&)InstituteofDesignManagement,S.
J.
T.
U.
,Shanghai,Chinazhanglq@sjtu.
edu.
cnAbstract.
Traditionalmethodstoobtainuserneeds,suchasinterview,haveexposedtheincreasinglyseriousproblemofbiasandinefciencywhenmeetingthebloomingofusers.
Thisresearchtriedtoamelioratethesituationbymininguser-generateddataandconstructingcorrespondinguserknowledgesystemswiththehelpofmoderntechnologies.
Withaphoto-sharingwebsiteasastudycase,severaltechniqueshavebeenimplemented,includingimagefeatureextraction,contentanalysisandstatisticalcalculation,toanalyzeusers'char-acteristicsandpreferences.
Theresultsindicatedthatmanyofthesetechniquesarepracticalandeffectiveforfutureresearchinuserexperiencedesign.
Itisforeseeablethatthedomainofthisresearchcanbeexpandedtotextandvoicetoconstructasynthesisapproachforultimatelyunderstandingusers.
Keywords:ImageContentanalysisUserknowledgeExperiencePhotosharingsite1IntroductionInviewoftheconsiderableimprovementofmateriallivingstandardinrecentyears,designersbegintopaymoreattentiontoemotionalandspiritualelementsintheirproductsandservices.
Themajorconsiderationofuserexperiencedesign,orUED,istocreatesatisfying,aestheticandinnovativeproductswhichconstantlymeetuser'sneedsandevenleadthetrendofmodernlifestyle.
Therefore,itisimportantfordesignerstounderstanduserneedsandfurthertranslatethemintoappropriateproducts.
IntheageoftheInternet,thepresenceofblogs,forums,wiki,SNSandRSScombiningwithnewlydevelopedtheoriessuchasSixDegreesofSeparationandtheLongTail,hasmadeuserknowledgeintoanopen,complexandadaptivesystem.
Inthecurrentwebenvironment,thereisanincreasingdiversityintherepresentingformsofuserknowledge,whileusersusuallyfeeleasytoaccommodatethissituation.
Theproblemislefttodesignersonbothacquiringuserknowledgeandconstructingcorrespondingsystems.
Thekeyofuserresearchisminingtheneedsburieddeeplyinusers'mindthroughtheirlanguageanddailybehavior.
Traditionalmethods,includingquestionnaire,interview,observation,focusgroupandpersona,achievethegoalthroughbehaviorSpringerInternationalPublishingSwitzerland2016A.
Marcus(Ed.
):DUXU2016,PartIII,LNCS9748,pp.
180–192,2016.
DOI:10.
1007/978-3-319-40406-6_17observationandcarefullydesignedconversation.
Designersarerequiredtohaveempathyandanopenmindthroughouttheprocess.
Otherwise,badexpressionsmayleadtodifferentorevenoppositeanswers,deviatingfromuser'sreality.
Tocertainextent,traditionalmethodsrevealuserneeds,butsufferfrompoorefciencyandnon-negligibleinuenceofmoodandenvironment.
Hence,theyarenotsuitableforresearchingonmassiveusers.
Ontheotherhand,theoriginalknowledgeproducedbyusersthemselvesbetterexpressestheirrealthought.
Bigdatatechnologyhasmadeitpossibleandcheapertostudylargegroupsofusers.
Tillnow,itisfre-quentlyusedinmanyeldslikenance,onlinebusiness,healthcare,socialsecurityandsmartcity,comparativelyrareinthatofdesign.
Dataminingcanbeanewaspectforextendingthestudyofuserexperienceanduserknowledge.
Thispaperdescribeshowtodigforuserknowledgeandunderstandtheirneedsbylarge-scaledatasearchingandimagecontentanalysistechnologiesandnallyconstructuserknowledgesystemwhichensuresexcellentuserexperience.
Themethodsdescribedinthispaperarealsogoodreferencestootherdesignresearch.
2MethodologyDescription2.
1OverviewThispapermainlyelucidatehowweapplyimagefeaturerecognitionandcontentanalysistechnologiestoobtainresearchvariables,whicharelaterestimatedbysta-tisticalcalculation,inordertoacquireuserknowledgeandconstructcorrespondingsystem.
Thedetailedresearchprocessisasfollows:HowtoacquireuserknowledgeWhenusingcertainproductsorservices,userswouldexchangeinformation(namelywords,imagesandvoice)andthisinforma-tioncouldberecognizedas"userknowledge"sincetheydirectlyreectusers'demands.
Forinstance,usersofphotosharingsocialwebsitesinteractwitheachotherbyuploadingimages,clicking"like",commentingandreposting.
Intheprocessofthistypeofinteractions,usersundoubtedlyleave"internetfootprints"asapartofuserknowledge,whichmanifesttheirattentionandpreference.
Howtoacquireusers'footprintsInshort,onecouldapplyrespectivetechniquestogureoutthefootprintsleftbyusers.
Forexample,equippedwithpublicpro-gramminginterfacesexposedbyrelevantwebsites(e.
g.
WeChatAPI)andwebcrawlerprograms,oneisabletogetusers'informationsuchasimages,texts,andvoice,undercertainagreementofprivacy.
Theemergingofnewtechnologiesfulllsthepurposeofimageanalysis,broadeningtheareaofinformationcaptureandanalysis.
Analysismethodologyandtools.
Threemainmethodshavebeenexploited,includingimagefeatureidentication,contentanalysisandstatisticalcalculation.
2.
2DetailsofThreeMethodsImageFeatureRecognition.
Threeparticulartoolsfallintothiscategory.
TheExplorationofUserKnowledgeArchitecture181Analyzingtoolsforcolorspatialdistribution.
BasedonpixelRGBvaluesofsampleimages,thistoolgeneratescolorspatialpointsandconductsclusteringanddimension-reductionprocessingthroughvectorcalculationandprincipalcomponentanalysis.
Theresultcanhelpresearchersanalyzevariationincolorcharacteristicsofsamplesfromdifferentusers.
Extractingtoolsforsampledominantcolortone.
Basedonthecalculationofpixelcolorfeatures,thistoolrespectivelygeneratestheentirecolorconstitution,bywhichthedominant80%colorsofrawsamplescanberepresented(Fig.
2).
Afterthat,itwillconductbatchprocessinganalysisandgenerateaformforeachsample,manifestingitsdominantcolortoneforfollowinganalysisofmulti-dimensionalcolordeviation(Fig.
1).
Analyzingtoolsforthesimilarityofsampledominantcolortone.
Dependingonsampledominantcolortonedata,thistoolcalculatesthedominantcolortonesimilaritybetweeneachpairamong574samplesandgeneratescsvformatlesastheinputofstatisticalcalculationsinMDSanalysis.
ContentAnalyzingTechnology.
Contentanalysisisatechnologywhichanalyzesthecontentofsamplesandgeneratesastructuredvariablesystemtodescribethesesamplesbymeansoftags.
Thetagsdemonstratethecategoryandorderdescriptionofthesamples,inordertosupportfuturestatisticalanalysisandsearchforsimilarityordifferences.
Fig.
1.
Extractingtoolsforsampledominantcolor(Colorgureonline)Fig.
2.
Analyzingtoolsforthesimilarityofsampledominantcolors(themeDistComputingTool_v1).
182N.
Liangetal.
Baseontheoverallanalysisofsamples,severaldescriptivevariableshavebeenproposedandlabeled.
Inthescopeofthisresearch,alllabelsfallintooneofthefollowingsixcategories:picturetype,picturetheme,composition,meansofexpres-sion,lightandshade,imagestyle.
Next,weintroducethenotionofmatrixofmetricaldatawhichisbydenitionatableformanagingsamplesandcorrespondingvariablelabels.
Allassignmentofvaluestovariablesresultsfromcombinationofimagefeatureandarticiallabeling.
Basedonthismatrix,alldataisimportedintoSPSSafternecessarynormalizationfornextdescriptivestatisticalanalysisandadvancedcalculation.
StatisticalCalculation.
Statisticalcalculationprovidesawaytodiscovertheinternalrelationbetweenobjectiveelementsshownbypicturesandsubjectiverecognitionofusers,bymeansofclustering,multi-dimensionalanalysisandsomeothertools.
Correspondenceanalysisisthemainstatisticalmethodusedinthisresearch.
Theconnectionsbetweenvariablesarerepresentedgraphicallybyinteractionsummarytable.
Thisanalysistechniqueissuitableforsituationswithmanyqualitativevariablesinwhichconnectionsbetweenthesevariablesofdifferentcategoriesistobeestab-lished.
SPSSisaprevalentsoftwareforthiskindofanalysis.
Nowadayscorrespondenceanalysisiswidelyusedinearly-stageconceptdesign-ing,inareasofdevelopingnewproduct,marketpositioningandadvertisement.
Ithasbecomeanimportanttoolfordesignersandmarketresearcherstosolvetheproblemofevaluatingproductproperty,competitorandtargetingmarket.
3CaseStudyofPhotoSharingWebsitesBenetedfrommassivedataminingtechnology,weselectedapopularusecasetolaunchourstudywhichconcentratedonconstructinguserknowledgeofphotosharingwebsitesandfurtheranalyzingtheneedsandpsychologicalfeaturesoftheiractiveusers.
Manyuseractionscanberegardedastheprocessofproducinguserknowledge,includinguploadingphotosandsocialoperationssuchasclickingalike,commentingandreposting.
Inthisscenario,userknowledgeliesintheimages,textanduseractions.
Althoughtextusuallyindicatestheexactthoughtofusers,understandingthemeaningbyprogrammingisveryhardandmostimportantlytextcannotreecttherelationbetweentheimageitselfandusers'judgementonit.
Aftercarefulconsideration,thepopularimagesinphoto-sharingwebsiteswerechosenasthemainobjectforstudying,fulllingthepurposeofmininginformationapropostoimagesitself,userpreferencesandtheirrelation.
3.
1SelectingTargetWebsiteTherearemanywell-knownphoto-sharingwebsitesincludingInstagram,LofterandFlickrbyYahoo.
WenallychoseFlickraftercomparingthefoundationdate,numberofusersandsomeotheraspects.
FlickrisanimagehostingandvideohostingwebsiteandthewebservicessuitewascreatedbyLudicorpin2004,acquiredbyYahooinTheExplorationofUserKnowledgeArchitecture1832005.
Itofferspreeminentservicesincludingpictureuploadingandstoring,classi-cation,taggingandsearching.
Usersneedtollintheirprolesafterregistrationandtheprolescanhelpusinfuturestudy.
Intheuploadingprocess,usersarerequiredtogivethepictureatitle,adescriptionandsometags.
Formanagingphotosmoreeffectively,userscancreate"set",whichissimilartoaphotoalbum.
UsersofFlickrhavevari-ousbackground,fromprofes-sionalphotographerstoPSamateur.
Allofthemenjoyuploadingtheirfavoritepho-tos,addingtagsanddescrip-tionsandcreatingsetsforthem.
Socialoperationsareevenmorepopularsinceeverybodylovesdiscoveringbeautifulpicturesandgrab-bingattentionofothersreectedbythenumberoflikeandcomments.
Thefeatureofaparticularusercanberevealedbythepicturess/helikesandhottestpicturesmanifesttheinclinationofmostusers.
Asaresult,thesehottestpicturesprovideusaneffectivewayofgettingthefeatureswearestudying,analyzinguserdispositionandnallyconstructuserknowledgesystemofthewebsite.
ThepurposeofthisstudyisexploringthetypeandfeaturesofpopularpicturessharedbyFlickrusersanddescribingtheirbehaviorsinFlickr(Fig.
3).
3.
2ProcessofResearchFlickrholdsanannualshownamed"bestshot",selectingthemostpopularpicturesofthatyear.
Weselectedpicturesfrom"2015bestshot"tonarrowdownthesampledomain.
Totally574pictureswerelteredoutthroughourcrawlerprogramsbecausetheyreceivemorethan99commentsorlikes.
Basedonpreviousstate-of-the-artstudies,wedividedalllabelsinto6categories.
Picturetype:daily;documentary;blackandwhite;art;portrait;landscape;abstract;report;Picturetheme:naturalscenery;animalsandinsects;owersandplants;still-lifeobjects;characterportrait;culturalconstruction;sceneofstories;lightrhythm;Composition:nine-squared;diagonal;symmetry;frame;guideline;dynamic;tri-angle;photographicsubtraction;specialangle;repetition;vertical;curve;slash;centripetal;change;S-shape;opentype;balance;Meansofexpression:simplication;choice;comparison;contrast;scenerydepth;background;lines;balance;motion;perspective;reection;Fig.
3.
Flickrwebsite184N.
Liangetal.
Lightandshade:backlight;softlight;capturelight;appropriateexposure;contrastofexposurelevel;lowanglelightsource;regionalexposure;multicolorcontrast;Imagestyle:traditionalnostalgic,romantic,solemnandelegant,deepandsolemn,easydial,decorativearts,comparisonofcool&warm,openmagic,scarceunique,novelandcreative,humansensations,rhythm,non-mainstreamInordertosynthesizetaginformation,thematrixshouldbetransformedintoquestionnaire.
Someexpertsinbothdesignandphotographyassignedthetagsshownabovetothe574samplesbasedoncertainprinciplesexploredinpreviousstudies.
Withthe574samplesandtheirtags,thematrixofmetricaldatawasestablished,ameasuremethodpreviouslymentioned.
ThematrixwasbeingimportedtoSPSSlatter(Fig.
4).
4Result4.
1ResultEvaluationofImageFeatureIdenticationAccordingtothedesignofresearchpreviouslydescribed,theresearchofimagefea-turesmainlyinvolvesfeatureextractionofthesamples.
Theextractionjobincludes:Makequantitativeanalysisbasedoncolorattributesofthesample(samplepixelRGBvalue).
Themainresearchstepsincludeextractingthedominantcolortone.
Accordingtothespecicfeaturesofsamples,thecompositionofthepictureusuallydiffersinmanyways.
Someofthempossessaconspicuousdominantcolortonewhileothersarecomposedofmanycolors.
Whatever,thenumberofdominantcolortonesofcertainsampleisabletorepresent80%ofitscolorinformation.
Therepresentativecolortoneofsamplesisevolvedfromalldominantcolortones,whichisusedtoanalyzesimilaritybetweensamples.
Fig.
4.
MatrixofmetricaldataTheExplorationofUserKnowledgeArchitecture185Thedistancebetweenthecolortones,whichoccupiesrelativelylargerproportionofdominantcolortones,iscalculatedbasedonthecompositionofeachsample.
Figure5illustratethesimilarityofthepositioningofcolorspace,basedonourcal-culationandanalysis.
Figure6illustratethesimilarityanalysisofdominantcolortones,bytheMDSmulti-dimensionalscalingfunctionofthemeDistComputingTool_v1.
InFig.
7,itisobviousthatallofthesam-plesshowsremarkablepatternsonpositioningdistributionofdominantcolortonesimilarity.
Basedonthedistributionofscatteredplots,atwoelementregressionequationisobtainedbytwoordercurvetting:y0:20:27x0:53x2Tomakethedistributionpatternoftheresultmoreeasilydetermined,researcherssupplementinformationforFig.
8and574dominantcolortonepalettewhicharealsopositionedtothecorrespondingscatteredpositions.
Wefoundthatdespitethedifferencesinpropertiesandcontentamongthe574samples,asignicantpatternexistsinthefeaturesofvisualcognitionofdominantcolortones.
Thepatternwasrepresentedbythemildgradientofbrightnessfromdarknessonthelefttobrightnessontheright.
However,noobviouspatternwasrecognizedinverticaldimension.
Inaddition,thesignicanceofsaturationincenterandcenter-rightareasintheU-shapecurveareaishigherthanthatinotherareas.
Fig.
5.
Thesimilarityofthepositioningofcolorspace.
(Colorgureonline)Fig.
6.
ThemeColorPosition-1.
Fig.
7.
ThemeColorPosition-2(Colorgureonline)186N.
Liangetal.
Tosumup,itisconvincingthatthe574samplesprimarilyreectsdifferencesinsaturationandcolortemperatureintermsofcolorproperties,basedontheresultofcolorspacepositioninganalysisanddominantcolortonesimilarityMDSanalysis.
4.
2ResultEvaluationofStatisticalCalculationRecallpreviousdiscussion,correspondenceanalysisisthemainmethodinthisresearch.
Thelocationmapanalysis,resultingfrom574samplesinalldimensions,isdiscussedbelow.
Amongallthedimensions,abundanceofcolortonesisparticularinterestingsothattherstpartofthissectionmakesacomparisonbetweenitandotherdimensionswhilethesecondpartdiscussesresultswithintheotherdimensions.
AbundanceofColorTonesComparetoOtherDimensionsPictureTheme.
PictureThemeThesigvalueis1.
000a,whichindicatesthatthere'snosignicantrelationbetweenpicturethemeandtoneabundance.
Notypicalpatternisrecognizedinthedistributionofthesamplefromdifferenttopics.
Inaddition,thethemeofstilllifeobjectsisrareinthesample.
Composition.
Thesigvalueis1.
000a,onecanseethatmosttypesofthecompo-sitionisinarelativelyconcentratedmannerwhilethediagonaltypeandcurvestypearerelativelyrare(Fig.
9).
MeansofExpression.
Inthisgure,exceptingthelinetype,theperformanceissimilarinthemajorityofthesample(Fig.
10).
LightandShade.
Thesigvalueis1.
000a.
Thereisnoobviouscorrelationbetweenlightingandtoneabundanceinthisdimension.
Meanwhile,lowanglelightsourceismoreuniqueduetothespecialangle(Fig.
11).
ImageStyle.
Thesigvalueis1.
000a.
Imagestyleandtoneabundancehavenosignicantcorrelation.
However,therhythmisrelativelyrare(Fig.
12).
ResultsWithinOtherDimensions.
Overall,threecommonfeatureswerefoundthroughall574samples.
Firstly,intermsofthetype,picturesaboutsceneryordailylivesrankedthehighest;thenfollowsart,documentaryandportrait;reportandabstracthadtheleastquantity.
Secondly,forthecomposition,mostsampleswereshowedinaFig.
8.
PicturethemeFig.
9.
CompositionTheExplorationofUserKnowledgeArchitecture187wayofnine-squaredorsymmetry,whichisassociatedwithhumanaestheticphysio-logicalcharacteristics.
Peoplelikepictureswhichareconciselycomposedwithacer-tainguidanceorrestriction,suchasradialline,leadingline,diagonal,orframe.
Thethirdcommonfeatureliesinimagestyle.
Themostpopularpicturesareusuallyuniqueandrelaxing.
Nostalgic,romantic,solemn,aestheticandnovelingredientsarewelcomeaswell.
Incontrast,popularpicturesarescarcelyinthemesofrhythm,contrastorhumanity.
Thefourresultsofspecicanalysisareshowninfollowinggures.
PictureTypeComparetoImageStyle.
Thecorrespondenceanalysisofpicturetypeandstyles,with574effectivesamplesandSigvaluezero,indicatingthatthereisasig-nicantcorrelationbetweenthetypeandthestyle.
Thecommonaesthetictasteofinclin-ingsceneryanddailytypeofpictureswasverylikelybeingdevelopedalongwiththeevolutionofhumanbeings.
Analysisofthistypeindicatesthatancientprairiescenery,composedbyfreshgrass,lowjunglesandwindingstreams,givescom-fortableandcongruentfeelingstopeoplelivinginnearlyallplaces.
Peopleoftenndsensesofidentityfromdocumentaryandportraitpaintings,makingitthesec-ondpopulartype.
Abstractpicturesareonlyappreciatedbyasmallgroupofpeople(Fig.
13).
Theresultalsoshowsthatthere'sacommonmappingbetweenimagecontenttypeandmeansofexpression.
Sceneriesarenormallyexpressedthroughromantic,solemn,elegantortemperaturecontrastingstyles,portraitsbynostalgicandblack-whitewaysandartisticpicturesbydecorating,novel,openmagicalones.
CompositionComparetoImageStyle.
Inthecorrespondenceanalysisofthiscom-parison,562effectivesamplesleadedtoasigvalueof0.
005,suggestingasignicantconnectionbetweenimagestyleandcomposition(Fig.
14).
Inthehistoryofhumanaesthetic,nine-squaredandsymmetrichaveoccupiedtheirplaceincomposition.
Famoushistoricalbuildings,fromGothictoChinesestyle,areFig.
10.
MeansofexpressionFig.
11.
LightsandshadeFig.
12.
ImagestyleFig.
13.
Picturetype&Imagestyle188N.
Liangetal.
designedtobestrictlysymmetric.
Cen-tripetal,guide-line,diagonalandframearealsoprevailingmetamorphismofsymmetric.
Theparingofromanticwithsymmetric,traditionalwithvertical,nine-squaredwithtemperaturecontrast,canserveasagoodreferenceforfuturecompositiondesigning.
LightandShadeComparetoImageStyle.
Scarceuniqueandeasydialarethetwomostwelcomestyles.
Thepessimisticnatureofdeepandsolemnandthedirectdenitionofnon-mainstreamcausesthelackofattractiontothemajority(Fig.
15).
Consideringbothdimensions,there'ssignicantrelationbetweenbacklightandsolemn,capturelightandtemperaturecon-trast,regionalexposureandelegant.
Appropriateexposureissuitableformanystyles,includingromantic,humansensations,traditionalnostalgicandeasydial.
CompositionComparetoLightandShade.
SoftlightpicturestypicallyadoptexpressionsofS-shape,triangle,opentypeandcentripetal.
Diagonalandguide-linesaremostlyusedinphotographicsubtraction,whileappropriateexposureinbalance.
Softlightandcontrastofexposurelevelaretotallyoppositeshowninthegure,indicatingthethoroughdifference(Fig.
16).
5ConclusionByextractingfeaturesofthesampleimages,analyzingthecontentsofsemantictags,lookingforcommonfeaturesinpopularimageswhichholdrelativelyhighdegreeofusers'attention,andstudyingthecorrespondingrelationshipbetweeneachlabel;thisessaytendstogureoutwhyusersarepayingmoreattentiontolandscapeimages.
InFig.
14.
Composition&ImagestyleFig.
15.
Lightandshade&ImagestyleFig.
16.
Composition&LightandshadeTheExplorationofUserKnowledgeArchitecture189addition,usersfavorcompositionbalance,nine-squaredformat,withproperexposure,backlightorthewayofcapturinglight.
Besides,usersalsopreferthetraditionalnos-talgia,deepdigniedblackandwhitephotosorportraits;Photostheylikerangefromlyricalromantic,lively,uniquelandscapetothedailytheme;Overandabove,usersarealsointerestedininnovativephotosaswellasopenmagicartphotos.
Thesendingsaresignicantfortheconstructionofphotosharingsiteuserknowledge.
Inthefuture,againstsuchuserswholikesharingphotosonthesephotossharingwebsites,youcanunderstandtherelationshipbetweenthekeythemesoftheirfavoritepictures,thecompositionandexpression,lightandshadow,styleandtone.
Designerscanlearnthepreferencesandneedsofsuchusersthroughrst-handdetailedandreliabledatatoapplytootherdesignsdesignedforthiskindofuser.
Inthisstudy,themethodusedisconstructionofuserknowledgesystembyana-lyzinguserbehavioramongthosewholikesharingpictures.
Thismethodcanalsobeusedinmanyotheraspectsofthebehaviorofkeywords.
Forexample,intheeldofadvertisingcommunication,productpackingdesignandallotherusersknowledgeminingareasrelatedtopictures.
Inthisstudy,theconstructionoftheuserknowledgeminingmethodisdifferentfromthetraditionalmethodofuserexperience.
Asaresult,itcanbeusedinmanyaspectsandeldstoestablishtheuserknowledgesystembasedongeneralcharac-teristicsofdifferentusers'needs,concerns,andthusfacilitatingdesigners'workingprocess.
Whenidentiedcertainfeatureofthekeywordbehavioroftheuser,designercanquicklydrawfromtheuserknowledgebanktondeffectiveandusableresearchdataforreferencetoaidtheirdesigndecisions.
MiningandConstructionofsuchauser'sknowledgesystemcanbetime-consumingintheearlystage.
However,oncetheuserknowledgebankhasbeensetup,itwillnotonlyfacilitatethedesignertoeffectivelyunderstandtheneedsofusersandhelpdecision-making,butalsomakesiteasierformultipledesignersinonesingledesignprojectstounderstandthecommongoal.
Inthisway,thedesignconsistencyamongseveraldesignerscanbeensuredanditsavesdesignerstimeinreducingcommunicationcostsandintheendlargelyimprovesthecommunicationquality.
Thisstudymainlyintroducestheuserknowledge,imageminingmethod.
Whatremainstobeanalyzedistheconstructionofotherpointsoftheuserknowledge,suchastextandsound.
Itisanareawhichstillworthfurtherstudyingandformsgeneralresearchmethodsandtheories.
Theseaspectscanbeusedassubsequentsupplementaryresearchforuser'sknowledgesystemconstruction.
Awell-establisheduserdatabaseisbuiltonboththetraditionalmethodandtheinnovativenewone.
Gettingtounderstandusers'needfrommulti-dimensionalper-spectiveofbigdatamethodaswellasthetraditionalwayofconductinginterview,surveyandfocusgroupseemstobethenewtrend.
However,thisessaydeemsthatthenewmethodofconstructionisfundamentaltothistrendwhilecombinedwiththetraditionalmethodwillmakeitbetter.
190N.
Liangetal.
References1.
McDonald,J.
E.
,Schvaneveldt,R.
W.
:Theapplicationofuserknowledgetointerfacedesign.
In:CognitiveScienceanditsApplicationsforHuman-ComputerInteraction,pp.
289–338(1988)2.
Blandford,A.
,Young,R.
M.
:Specifyinguserknowledgeforthedesignofinteractivesystems.
Softw.
Eng.
J.
11(6),323–333(1996)3.
DeRosis,F.
,Pizzutilo,S.
,Russo,A.
,etal.
:Modelingtheuserknowledgebybeliefnetworks.
UserModel.
User-Adap.
Inter.
2(4),367–388(1992)4.
Tesch,D.
,Sobol,M.
G.
,Klein,G.
,etal.
:Useranddevelopercommonknowledge:Effectonthesuccessofinformationsystemdevelopmentprojects.
Int.
J.
ProjectManage.
27(7),657–664(2009)5.
Bevan,N.
:Whatisthedifferencebetweenthepurposeofusabilityanduserexperienceevaluationmethods.
In:ProceedingsoftheWorkshopUXEM,9,pp.
1–4(2009)6.
Vermeeren,A.
P.
O.
S.
,Law,E.
L.
C.
,Roto,V.
,etal.
:Userexperienceevaluationmethods:currentstateanddevelopmentneeds.
In:Proceedingsofthe6thNordicConferenceonHuman-ComputerInteraction:ExtendingBoundaries,pp.
521–530.
ACM(2010)7.
Law,E.
L.
C.
,Roto,V.
,Hassenzahl,M.
,etal.
:Understanding,scopinganddeninguserexperience:asurveyapproach.
In:ProceedingsoftheSIGCHIConferenceonHumanFactorsinComputingSystems,pp.
719–728.
ACM(2009)8.
Hassenzahl,M.
,Tractinsky,N.
:Userexperience-aresearchagenda[J].
Behav.
Inf.
Technol.
25(2),91–97(2006)9.
Vnnen-Vainio-Mattila,K.
,Roto,V.
,Hassenzahl,M.
:Towardspracticaluserexperienceevaluationmethods.
In:Law,E.
L.
-C.
,Bevan,N.
,Christou,G.
,Springett,M.
,Lárusdóttir,M.
(eds.
)MeaningfulMeasures:ValidUsefulUserExperienceMeasurement,pp.
19–22(2008)10.
Obrist,M.
,Roto,V.
,Vnnen-Vainio-Mattila,K.
:Userexperienceevaluation:doyouknowwhichmethodtouseIn:CHI2009ExtendedAbstractsonHumanFactorsinComputingSystems,pp.
2763–2766.
ACM(2009)11.
Maguire,M.
:Methodstosupporthuman-centreddesign.
Int.
J.
Hum.
Comput.
Stud.
55(4),587–634(2001)12.
Fan,W.
,Bifet,A.
:Miningbigdata:currentstatus,andforecasttothefuture.
ACMsIGKDDExplor.
Newsl.
14(2),1–5(2013)13.
Fisher,D.
,DeLine,R.
,Czerwinski,M.
,etal.
:Interactionswithbigdataanalytics.
Interactions19(3),50–59(2012)14.
Sarmento,L.
,Carvalho,P.
,Silva,M.
J.
,etal.
:Automaticcreationofareferencecorpusforpoliticalopinionmininginuser-generatedcontent.
In:Proceedingsofthe1stInternationalCIKMWorkshoponTopic-SentimentAnalysisforMassOpinion,pp.
29–36.
ACM(2009)15.
Graham,J.
:Flickrofideaonagamingprojectledtophotowebsite.
USAToday,27(2006)16.
Miller,A.
D.
,Edwards,W.
K.
:Giveandtake:astudyofconsumerphoto-sharingcultureandpractice.
In:ProceedingsoftheSIGCHIConferenceonHumanFactorsinComputingSystems,pp.
347–356.
ACM(2007)17.
Liu,S.
B.
,Palen,L.
,Sutton,J.
,etal.
:Insearchofthebiggerpicture:Theemergentroleofon-linephotosharingintimesofdisaster.
In:ProceedingsoftheInformationSystemsforCrisisResponseandManagementConference(ISCRAM)(2008)18.
Sigurbjrnsson,B.
,VanZwol,R.
:Flickrtagrecommendationbasedoncollectiveknowledge.
In:Proceedingsofthe17thInternationalConferenceonWorldWideWeb,pp.
327–336.
ACM(2008)TheExplorationofUserKnowledgeArchitecture19119.
Mislove,A.
,Koppula,H.
S.
,Gummadi,K.
P.
,etal.
:Growthoftheickrsocialnetwork.
In:ProceedingsoftheFirstWorkshoponOnlineSocialNetworks,pp.
25–30.
ACM(2008)20.
Kennedy,L.
,Naaman,M.
,Ahern,S.
,etal.
:Howickrhelpsusmakesenseoftheworld:contextandcontentincommunity-contributedmediacollections.
In:Proceedingsofthe15thInternationalConferenceonMultimedia,pp.
631–640.
ACM(2007)21.
Yongchang,J.
:Knowledgearchitecturebasedonuserexperience:areviewofthebasicprinciplesforknowledgearchitectureinweb2.
0.
J.
ChinaSoc.
Sci.
Techn.
Inf.
5,018(2010)22.
McGinn,J.
,Kotamraju,N.
:Datadrivenpersonadevelopment.
In:ProceedingsoftheSIGCHIConferenceonHumanFactorsinComputingSystems,pp.
1521–1524.
ACM(2008)192N.
Liangetal.
WHloud Date(鲸云数据),原做大数据和软件开发的团队,现在转变成云计算服务,面对海内外用户提供中国大陆,韩国,日本,香港等多个地方节点服务。24*7小时的在线支持,较为全面的虚拟化构架以及全方面的技术支持!官方网站:https://www.whloud.com/WHloud Date 韩国BGP云主机少量补货随时可以开通,随时可以用,两小时内提交退款,可在工作日期间全额原路返回!支持pa...
BuyVM 商家算是有一些年头,从早年提供低价便宜VPS主机深受广大网友抢购且也遭到吐槽的是因为审核账户太过于严格。毕竟我们国内的个人注册账户喜欢账户资料乱写,毕竟我们看英文信息有些还是比较难以识别的,于是就注册信息的时候随便打一些字符,这些是不能通过的。前几天,我们可以看到BUYVM商家有新增加迈阿密机房,而且商家有提供大硬盘且不限制流量的VPS主机,深受有一些网友的喜欢。目前,BUYVM商家有...
licloud怎么样?licloud目前提供香港cmi服务器及香港CN2+BGP服务器/E3-1230v2/16GB内存/240GB SSD硬盘/不限流量/30Mbps带宽,$39.99/月。licloud 成立於2021年,是香港LiCloud Limited(CR No.3013909)旗下的品牌,主要提供香港kvm vps,分为精简网络和高级网络A、高级网络B,现在精简网络和高级网络A。现在...
网易轻博客为你推荐
国际域名注册如何在国外域名注册商注册国际域名哩电信主机租用请问放个服务器在电信机房一般要什么配置?租金多少?全能虚拟主机时代互联的全能云虚拟主机怎么样,稳不稳定,速度怎么样的?域名注册网网站域名申请,在那备案?vps虚拟主机请问VPS和虚拟主机有什么不一样,为什么VPS贵那么多。广告的别来!asp主机如何用ASP代码实现虚拟主机域名注册查询如何知道域名注册信息?免费vps服务器请推荐一个免费的云服务器?美国vps租用香港VPS:那里有租用香港VPS或者美国的VPS台湾vps香港vps和台湾vps哪个好用
免费美国主机 备案域名出售 精品网 特价空间 win8.1企业版升级win10 网站实时监控 网通服务器ip 论坛空间 免费smtp服务器 阿里云免费邮箱 中国电信宽带测速 博客域名 上海联通 蓝队云 alexa世界排名 海外加速 web是什么意思 认证机构 ping值 大硬盘补丁 更多