快速傅里叶变换快速傅立叶变换的输入是什么,输出是什么,有什么物理意义?

快速傅里叶变换  时间:2021-06-02  阅读:()

什么是快速傅立叶计算机?

傅立叶变换分为: 连续傅立叶变换; 离散傅立叶变换; 这两种变换应用到计算机中都有一种近似的快速数值算法,叫做快速傅立叶变换。

具体的理论推导这里也说不清,我也有点忘了。

这个你可以在数学分析、信号与系统等学科的教材里找到。

你所谓的光学傅立叶变换应该就是一般的没有经过优化近似的傅立叶变换,而且应该是连续的,即“连续傅立叶变换”。

而计算机领域,尤其是信号处理领域,你因该知道计算机处理的数据都是离散的,如果你学过数值计算,就知道计算机都是用离散来逼近连续函数的。

所以计算机的信号处理领域多是用离散傅立叶变换,而且由于计算机要求实时处理,要快,所以又发明了一种快速算法。

所以就是“快速离散傅立叶变换”。

用C语言编写快速傅立叶变换源代码

// 函数名: 快速傅立叶变换(来源《C常用算法集》) // 本函数测试OK,可以在TC2.0,VC++6.0,Keil C51测试通过。

// 如果你的MCS51系统有足够的RAM时,可以验证一下用单片机处理FFT有多么的慢。

// // 入口参数: // l: l = 0, 傅立叶变换; l = 1, 逆傅立叶变换 // il: il = 0,不计算傅立叶变换或逆变换模和幅角;il = 1,计算模和幅角 // n: 输入的点数,为偶数,一般为32,64,128,...,1024等 // k: 满足n=2^k(k>0),实质上k是n个采样数据可以分解为偶次幂和奇次幂的次数 // pr[]: l="0时",存放N点采样数据的实部 // l="1时", 存放傅立叶变换的N个实部 // pi[]: l="0时",存放N点采样数据的虚部 // l="1时", 存放傅立叶变换的N个虚部 // // 出口参数: // fr[]: l="0", 返回傅立叶变换的实部 // l="1", 返回逆傅立叶变换的实部 // fi[]: l="0", 返回傅立叶变换的虚部 // l="1", 返回逆傅立叶变换的虚部 // pr[]: il = 1,i = 0 时,返回傅立叶变换的模 // il = 1,i = 1 时,返回逆傅立叶变换的模 // pi[]: il = 1,i = 0 时,返回傅立叶变换的辐角 // il = 1,i = 1 时,返回逆傅立叶变换的辐角 // data: 2005.8.15,Mend Xin Dong kkfft(double pr[], double pi[], int n, int k, double fr[], double fi[], int l, int il) { int it,m,is,i,j,nv,l0; double p,q,s,vr,vi,poddr,poddi; for (it=0; it<=n-1; it++) { m = it; is = 0; for(i=0; i<=k-1; i++) { j = m/2; is = 2*is+(m-2*j); m = j; } fr[it] = pr[is]; fi[it] = pi[is]; } //---------------------------- pr[0] = 1.0; pi[0] = 0.0; p = 6.283185306/(1.0*n); pr[1] = cos(p); pi[1] = -sin(p);

if (l!=0) pi[1]=-pi[1];

for (i=2; i<=n-1; i++) { p = pr[i-1]*pr[1]; q = pi[i-1]*pi[1]; s = (pr[i-1]+pi[i-1])*(pr[1]+pi[1]); pr[i] = p-q; pi[i] = s-p-q; }

for (it=0; it<=n-2; it="it"+2) { vr = fr[it]; vi = fi[it]; fr[it] = vr+fr[it+1]; fi[it] = vi+fi[it+1]; fr[it+1] = vr-fr[it+1]; fi[it+1] = vi-fi[it+1]; } m = n/2; nv = 2;

for (l0=k-2; l0>=0; l0--) { m = m/2; nv = 2*nv; for(it=0; it<=(m-1)*nv; it="it"+nv) for (j=0; j<=(nv/2)-1; j++) { p = pr[m*j]*fr[it+j+nv/2]; q = pi[m*j]*fi[it+j+nv/2]; s = pr[m*j]+pi[m*j]; s = s*(fr[it+j+nv/2]+fi[it+j+nv/2]); poddr = p-q; poddi = s-p-q; fr[it+j+nv/2] = fr[it+j]-poddr; fi[it+j+nv/2] = fi[it+j]-poddi; fr[it+j] = fr[it+j]+poddr; fi[it+j] = fi[it+j]+poddi; } }

if(l!=0) { for(i=0; i<=n-1; i++) { fr[i] = fr[i]/(1.0*n); fi[i] = fi[i]/(1.0*n); } } if(il!=0) { for(i=0; i<=n-1; i++) { pr[i] = sqrt(fr[i]*fr[i]+fi[i]*fi[i]); if(fabs(fr[i])<0.000001*fabs(fi[i])) { if ((fi[i]*fr[i])>0) pi[i] = 90.0; else pi[i] = -90.0; } else pi[i] = atan(fi[i]/fr[i])*360.0/6.283185306; } } return; }

快速傅立叶变换的输入是什么,输出是什么,有什么物理意义?

输入是一个非周期,长度为N点序列,输出同样是一个非周期,长度为N点序列,只是各点的值不一样。

它把时域信号转变到频域进行分析处理。

输入是在时间轴上的各个值,而输出则是输入序列各频率分量的值。

需要注意的是,输入是非周期的N点序列,但运算时我们却把它以N为周期做周期延拓,然后进行运算;而输出按理应该是周期的,但只需要取一个周期就可以表示出整个序列,所以我们只取一个周期的N点。

对快速傅立叶变换进行其他运算时,需要注意其隐含的周期性。

这个是数字信号处理领域里的一个具有划时代意义的发现,使得离散傅立叶变换的计算量减少了几个数量级,使计算机实现实时处理成为可能。

自从库利,图基两人的关于快速傅立叶变换计算方法的论文发表以来,数字信号处理从连续信号处理中独立出来,形成一个完整体系。

它是近代计算机技术飞速发展的基础。

关于复数序列,你可以把复数放到成自然常数e的指数上去,就是对这个函数的采样。

pigyun25元/月,香港云服务器仅起;韩国云服务器,美国CUVIP

pigyun怎么样?PIGYun成立于2019年,2021是PIGYun为用户提供稳定服务的第三年,期待我们携手共进、互利共赢。PIGYun为您提供:香港CN2线路、韩国CN2线路、美西CUVIP-9929线路优质IaaS服务。月付另有通用循环优惠码:PIGYun,获取8折循环优惠(永久有效)。目前,PIGYun提供的香港cn2云服务器仅29元/月起;韩国cn2云服务器仅22元/月起;美国CUVI...

1C2G5M轻量服务器48元/年,2C4G8M三年仅198元,COM域名首年1元起

腾讯云双十一活动已于今天正式开启了,多重优惠享不停,首购服务器低至0.4折,比如1C2G5M轻量应用服务器仅48元/年起,2C4G8M也仅70元/年起;个人及企业用户还可以一键领取3500-7000元满减券,用于支付新购、续费、升级等各项账单;企业用户还可以以首年1年的价格注册.COM域名。活动页面:https://cloud.tencent.com/act/double11我们分享的信息仍然以秒...

CloudCone(1.99美元),可以额外选择Voxility高防IP

CloudCone 商家也是比较有特点的,和我们熟悉的DO、Vultr、Linode商家均是可以随时删除机器开通的小时计费模式。这个对于有需要短租服务器的来说是比较有性价比的。但是,他们还有一个缺点就是机房比较少,不同于上面几个小时计费服务商可以有多机房可选,如果有这个多机房方案的话,应该更有特点。这次我们可以看到CloudCone闪购活动提供洛杉矶三个促销方案,低至月付1.99美元。商家也可以随...

快速傅里叶变换为你推荐
iso20000认证iso20000认证流程是怎样的oa办公系统下载OA在哪里下载?腾讯汽车网可以了解汽车知识的权威网站大概有哪些vga接口定义VGA接口的15针分别接什么?assemblyinfo求教如何修改AssemblyInfo.cs的版本号部署工具如何使用office2016部署软件数据挖掘项目什么是数据挖掘?从事相关的工作有什么要求?腾讯技术腾讯QQ是谁研发的?在那一年上市的?什么是生态系统什么是生态环境?kjava谁能告诉我KJAVA是什么意思和普通的JAVA程序有什么区别?
apache虚拟主机 域名系统 namecheap cve-2014-6271 秒解服务器 godaddy支付宝 网站保姆 商家促销 长沙服务器 商务主机 网站挂马检测工具 777te 有益网络 web服务器架设 有奖调查 老左正传 可外链网盘 美国网站服务器 微软服务器操作系统 申请网页 更多