快速傅里叶变换快速傅立叶变换的输入是什么,输出是什么,有什么物理意义?

快速傅里叶变换  时间:2021-06-02  阅读:()

什么是快速傅立叶计算机?

傅立叶变换分为: 连续傅立叶变换; 离散傅立叶变换; 这两种变换应用到计算机中都有一种近似的快速数值算法,叫做快速傅立叶变换。

具体的理论推导这里也说不清,我也有点忘了。

这个你可以在数学分析、信号与系统等学科的教材里找到。

你所谓的光学傅立叶变换应该就是一般的没有经过优化近似的傅立叶变换,而且应该是连续的,即“连续傅立叶变换”。

而计算机领域,尤其是信号处理领域,你因该知道计算机处理的数据都是离散的,如果你学过数值计算,就知道计算机都是用离散来逼近连续函数的。

所以计算机的信号处理领域多是用离散傅立叶变换,而且由于计算机要求实时处理,要快,所以又发明了一种快速算法。

所以就是“快速离散傅立叶变换”。

用C语言编写快速傅立叶变换源代码

// 函数名: 快速傅立叶变换(来源《C常用算法集》) // 本函数测试OK,可以在TC2.0,VC++6.0,Keil C51测试通过。

// 如果你的MCS51系统有足够的RAM时,可以验证一下用单片机处理FFT有多么的慢。

// // 入口参数: // l: l = 0, 傅立叶变换; l = 1, 逆傅立叶变换 // il: il = 0,不计算傅立叶变换或逆变换模和幅角;il = 1,计算模和幅角 // n: 输入的点数,为偶数,一般为32,64,128,...,1024等 // k: 满足n=2^k(k>0),实质上k是n个采样数据可以分解为偶次幂和奇次幂的次数 // pr[]: l="0时",存放N点采样数据的实部 // l="1时", 存放傅立叶变换的N个实部 // pi[]: l="0时",存放N点采样数据的虚部 // l="1时", 存放傅立叶变换的N个虚部 // // 出口参数: // fr[]: l="0", 返回傅立叶变换的实部 // l="1", 返回逆傅立叶变换的实部 // fi[]: l="0", 返回傅立叶变换的虚部 // l="1", 返回逆傅立叶变换的虚部 // pr[]: il = 1,i = 0 时,返回傅立叶变换的模 // il = 1,i = 1 时,返回逆傅立叶变换的模 // pi[]: il = 1,i = 0 时,返回傅立叶变换的辐角 // il = 1,i = 1 时,返回逆傅立叶变换的辐角 // data: 2005.8.15,Mend Xin Dong kkfft(double pr[], double pi[], int n, int k, double fr[], double fi[], int l, int il) { int it,m,is,i,j,nv,l0; double p,q,s,vr,vi,poddr,poddi; for (it=0; it<=n-1; it++) { m = it; is = 0; for(i=0; i<=k-1; i++) { j = m/2; is = 2*is+(m-2*j); m = j; } fr[it] = pr[is]; fi[it] = pi[is]; } //---------------------------- pr[0] = 1.0; pi[0] = 0.0; p = 6.283185306/(1.0*n); pr[1] = cos(p); pi[1] = -sin(p);

if (l!=0) pi[1]=-pi[1];

for (i=2; i<=n-1; i++) { p = pr[i-1]*pr[1]; q = pi[i-1]*pi[1]; s = (pr[i-1]+pi[i-1])*(pr[1]+pi[1]); pr[i] = p-q; pi[i] = s-p-q; }

for (it=0; it<=n-2; it="it"+2) { vr = fr[it]; vi = fi[it]; fr[it] = vr+fr[it+1]; fi[it] = vi+fi[it+1]; fr[it+1] = vr-fr[it+1]; fi[it+1] = vi-fi[it+1]; } m = n/2; nv = 2;

for (l0=k-2; l0>=0; l0--) { m = m/2; nv = 2*nv; for(it=0; it<=(m-1)*nv; it="it"+nv) for (j=0; j<=(nv/2)-1; j++) { p = pr[m*j]*fr[it+j+nv/2]; q = pi[m*j]*fi[it+j+nv/2]; s = pr[m*j]+pi[m*j]; s = s*(fr[it+j+nv/2]+fi[it+j+nv/2]); poddr = p-q; poddi = s-p-q; fr[it+j+nv/2] = fr[it+j]-poddr; fi[it+j+nv/2] = fi[it+j]-poddi; fr[it+j] = fr[it+j]+poddr; fi[it+j] = fi[it+j]+poddi; } }

if(l!=0) { for(i=0; i<=n-1; i++) { fr[i] = fr[i]/(1.0*n); fi[i] = fi[i]/(1.0*n); } } if(il!=0) { for(i=0; i<=n-1; i++) { pr[i] = sqrt(fr[i]*fr[i]+fi[i]*fi[i]); if(fabs(fr[i])<0.000001*fabs(fi[i])) { if ((fi[i]*fr[i])>0) pi[i] = 90.0; else pi[i] = -90.0; } else pi[i] = atan(fi[i]/fr[i])*360.0/6.283185306; } } return; }

快速傅立叶变换的输入是什么,输出是什么,有什么物理意义?

输入是一个非周期,长度为N点序列,输出同样是一个非周期,长度为N点序列,只是各点的值不一样。

它把时域信号转变到频域进行分析处理。

输入是在时间轴上的各个值,而输出则是输入序列各频率分量的值。

需要注意的是,输入是非周期的N点序列,但运算时我们却把它以N为周期做周期延拓,然后进行运算;而输出按理应该是周期的,但只需要取一个周期就可以表示出整个序列,所以我们只取一个周期的N点。

对快速傅立叶变换进行其他运算时,需要注意其隐含的周期性。

这个是数字信号处理领域里的一个具有划时代意义的发现,使得离散傅立叶变换的计算量减少了几个数量级,使计算机实现实时处理成为可能。

自从库利,图基两人的关于快速傅立叶变换计算方法的论文发表以来,数字信号处理从连续信号处理中独立出来,形成一个完整体系。

它是近代计算机技术飞速发展的基础。

关于复数序列,你可以把复数放到成自然常数e的指数上去,就是对这个函数的采样。

PacificRack:洛杉矶KVM月付1.5美元起,1G内存套餐年付12美元起

PacificRack在本月发布了几款特价产品,其中最低款支持月付仅1.5美元,基于KVM架构,洛杉矶机房,PR-M系列。PacificRack简称PR,QN机房旗下站点,主要提供低价VPS主机产品,基于KVM架构,数据中心为自营洛杉矶机房,现在只有PR-M一个系列,分为了2个类别:常规(Elastic Compute Service)和多IP产品(Multi IP Server)。下面列出几款秒...

hostio荷兰10Gbps带宽,10Gbps带宽,€5/月,最低配2G内存+2核+5T流量

成立于2006年的荷兰Access2.IT Group B.V.(可查:VAT: NL853006404B01,CoC: 58365400) 一直运作着主机周边的业务,当前正在对荷兰的高性能AMD平台的VPS进行5折优惠,所有VPS直接砍一半。自有AS208258,vps母鸡配置为Supermicro 1024US-TRT 1U,2*AMD Epyc 7452(64核128线程),16条32G D...

41云,服务器8折优惠券,200G TCP防御

41云怎么样?41云是国人主机品牌,目前经营产品有国内外云服务器、CDN(高防CDN)和物理机,其中国内外云服务器又细分小类有香港限流量VPS、香港大带宽VPS、香港弹性自选VPS、香港不限流VPS、香港BGP线路VPS、香港Cera+大带宽机器、美国超防VPS、韩国原生VPS、仁川原生VPS、日本CN2 VPS、枣庄高防VPS和金华高防VPS;物理机有美国Cera服务器、香港单程CN2服务器、香...

快速傅里叶变换为你推荐
performclickC#中 键盘entre执行确定命令的代码是什么水晶易表如何在win7环境和office2010环境下成功安装水晶易表搜索引擎的概念7 什么是搜索引擎?如何在Internet上搜索图片和文字资料的?国产操作系统下载国产操作系统要钱吗12种颜色水粉颜料调色过程十二种颜色js后退多级页面间的后退如何实现(js方法)网络电话永久免费打有没有永久免费打电话的网络电话啊?asp大马黑帽seo的webshell中,什么是大马和小马云盘网谁知道免费的网盘?kjava谁能告诉我KJAVA是什么意思和普通的JAVA程序有什么区别?
美国vps 国外免费vps 浙江vps 什么是域名解析 草根过期域名 westhost 新加坡服务器 gateone 12u机柜尺寸 合肥鹏博士 全站静态化 服务器维护方案 ntfs格式分区 上海服务器 秒杀品 德隆中文网 双线空间 阿里云邮箱登陆地址 江苏双线 hdsky 更多