apriori如何实现apriori算法
apriori 时间:2021-06-22 阅读:(
)
Clementine关联规则Apriori算法事务模式怎么使用
算法: Apriori算法,使用逐层迭代找出频繁项集。
输入:事务数据库D;最小支持度阈值min_sup。
输出:D 中的频繁项集L。
1) L1 = find_frequent_1_itemsets(D);
2) for (k = 2; Lk-1 ≠ ; k++) {
3) Ck = aproiri_gen(Lk-1,min_sup);
4) for each transaction t D{ //scan D for count
5) Ct = subset(Ck,t); //get subsets of t that are candidates
6) for each candidate c Ct
7) c.count++;
8) }
9) Lk={c Ck | c.count ≥ min_sup}
10) }
11) return L = ∪kLk;问读音:null,Apriori,FP-Growth的读法
汉语标出可真不准确,不方便啊
servlet /s?:vlit/--/se wu li te/
HTML 就是一个一个字母的读,它是hyper text markup language简写
null /n?l/--/na ou/
apriori 英文发音为:/?pri?ri/--/e pe rui ao rui/
FP-Growth 英文发音为:/aif pi: gr?uθ/--/F P-ge rou si/
前面一个词一般读中文 普瑞奥瑞
后面的一个词 直接读英文如何实现apriori算法
import?java.util.HashMap;
import?java.util.HashSet;
import?java.util.Iterator;
import?java.util.Map;
import?java.util.Set;
import?java.util.TreeMap;
/**
*?<B>关联规则挖掘:Apriori算法</B>
*?
*?<P>按照Apriori算法的基本思想来实现
*?
*?@author?king
*?@since?2013/06/27
*?
*/
public?class?Apriori?{
private?Map<Integer,?Set<String>>?txDatabase;?//?事务数据库
private?Float?minSup;?//?最小支持度
private?Float?minConf;?//?最小置信度
private?Integer?txDatabaseCount;?//?事务数据库中的事务数
private?Map<Integer,?Set<Set<String>>>?freqItemSet;?//?频繁项集集合
private?Map<Set<String>,?Set<Set<String>>>?assiciationRules;?//?频繁关联规则集合
public?Apriori(
????Map<Integer,?Set<String>>?txDatabase,?
????Float?minSup,?
????Float?minConf)?{
???this.txDatabase?=?txDatabase;
???this.minSup?=?minSup;
???this.minConf?=?minConf;
???this.txDatabaseCount?=?this.txDatabase.size();
???freqItemSet?=?new?TreeMap<Integer,?Set<Set<String>>>();
???assiciationRules?=?new?HashMap<Set<String>,?Set<Set<String>>>();
}
/**
*?扫描事务数据库,计算频繁1-项集
*?@return
*/
public?Map<Set<String>,?Float>?getFreq1ItemSet()?{
???Map<Set<String>,?Float>?freq1ItemSetMap?=?new?HashMap<Set<String>,?Float>();
???Map<Set<String>,?Integer>?candFreq1ItemSet?=?this.getCandFreq1ItemSet();
???Iterator<Map.Entry<Set<String>,?Integer>>?it?=?candFreq1ItemSet.entrySet().iterator();
???while(it.hasNext())?{
????Map.Entry<Set<String>,?Integer>?entry?=?it.next();
????//?计算支持度
????Float?supported?=?new?Float(entry.getValue().toString())/new?Float(txDatabaseCount);
????if(supported>=minSup)?{
?????freq1ItemSetMap.put(entry.getKey(),?supported);
????}
???}
???return?freq1ItemSetMap;
}
/**
*?计算候选频繁1-项集
*?@return
*/
public?Map<Set<String>,?Integer>?getCandFreq1ItemSet()?{
???Map<Set<String>,?Integer>?candFreq1ItemSetMap?=?new?HashMap<Set<String>,?Integer>();
???Iterator<Map.Entry<Integer,?Set<String>>>?it?=?txDatabase.entrySet().iterator();
???//?统计支持数,生成候选频繁1-项集
???while(it.hasNext())?{
????Map.Entry<Integer,?Set<String>>?entry?=?it.next();
????Set<String>?itemSet?=?entry.getValue();
????for(String?item?:?itemSet)?{
?????Set<String>?key?=?new?HashSet<String>();
?????key.add(item.trim());
?????if(!candFreq1ItemSetMap.containsKey(key))?{
??????Integer?value?=?1;
??????candFreq1ItemSetMap.put(key,?value);
?????}
?????else?{
??????Integer?value?=?1+candFreq1ItemSetMap.get(key);
??????candFreq1ItemSetMap.put(key,?value);
?????}
????}
???}
???return?candFreq1ItemSetMap;
}
/**
*?根据频繁(k-1)-项集计算候选频繁k-项集
*?
*?@param?m?其中m=k-1
*?@param?freqMItemSet?频繁(k-1)-项集
*?@return
*/
public?Set<Set<String>>?aprioriGen(int?m,?Set<Set<String>>?freqMItemSet)?{
???Set<Set<String>>?candFreqKItemSet?=?new?HashSet<Set<String>>();
???Iterator<Set<String>>?it?=?freqMItemSet.iterator();
???Set<String>?originalItemSet?=?null;
???while(it.hasNext())?{
????originalItemSet?=?it.next();
????Iterator<Set<String>>?itr?=?this.getIterator(originalItemSet,?freqMItemSet);
????while(itr.hasNext())?{
?????Set<String>?identicalSet?=?new?HashSet<String>();?//?两个项集相同元素的集合(集合的交运算)????
?????identicalSet.addAll(originalItemSet);?
?????Set<String>?set?=?itr.next();?
?????identicalSet.retainAll(set);?//?identicalSet中剩下的元素是identicalSet与set集合中公有的元素
?????if(identicalSet.size()?==?m-1)?{?//?(k-1)-项集中k-2个相同
??????Set<String>?differentSet?=?new?HashSet<String>();?//?两个项集不同元素的集合(集合的差运算)
??????differentSet.addAll(originalItemSet);
??????differentSet.removeAll(set);?//?因为有k-2个相同,则differentSet中一定剩下一个元素,即differentSet大小为1
??????differentSet.addAll(set);?//?构造候选k-项集的一个元素(set大小为k-1,differentSet大小为k)
??????if(!this.has_infrequent_subset(differentSet,?freqMItemSet))
??????????candFreqKItemSet.add(differentSet);?//?加入候选k-项集集合
?????}
????}
???}
???return?candFreqKItemSet;
}
/**
?*?使用先验知识,剪枝。
若候选k项集中存在k-1项子集不是频繁k-1项集,则删除该候选k项集
?*?@param?candKItemSet
?*?@param?freqMItemSet
?*?@return
?*/
private?boolean?has_infrequent_subset(Set<String>?candKItemSet,?Set<Set<String>>?freqMItemSet)?{
Set<String>?tempSet?=?new?HashSet<String>();
tempSet.addAll(candKItemSet);
Iterator<String>?itItem?=?candKItemSet.iterator();
while(itItem.hasNext())?{
String?item?=?itItem.next();
tempSet.remove(item);//?该候选去掉一项后变为k-1项集
if(!freqMItemSet.contains(tempSet))//?判断k-1项集是否是频繁项集
return?true;
tempSet.add(item);//?恢复
}
return?false;
}
/**
*?根据一个频繁k-项集的元素(集合),获取到频繁k-项集的从该元素开始的迭代器实例
*?@param?itemSet
*?@param?freqKItemSet?频繁k-项集
*?@return
*/
private?Iterator<Set<String>>?getIterator(Set<String>?itemSet,?Set<Set<String>>?freqKItemSet)?{
???Iterator<Set<String>>?it?=?freqKItemSet.iterator();
???while(it.hasNext())?{
????if(itemSet.equals(it.next()))?{
?????break;
????}
???}
???return?it;
}
/**
*?根据频繁(k-1)-项集,调用aprioriGen方法,计算频繁k-项集
*?
*?@param?k?
*?@param?freqMItemSet?频繁(k-1)-项集
*?@return
*/
public?Map<Set<String>,?Float>?getFreqKItemSet(int?k,?Set<Set<String>>?freqMItemSet)?{
???Map<Set<String>,?Integer>?candFreqKItemSetMap?=?new?HashMap<Set<String>,?Integer>();
???//?调用aprioriGen方法,得到候选频繁k-项集
???Set<Set<String>>?candFreqKItemSet?=?this.aprioriGen(k-1,?freqMItemSet);
???//?扫描事务数据库
???Iterator<Map.Entry<Integer,?Set<String>>>?it?=?txDatabase.entrySet().iterator();
???//?统计支持数
???while(it.hasNext())?{
????Map.Entry<Integer,?Set<String>>?entry?=?it.next();
????Iterator<Set<String>>?kit?=?candFreqKItemSet.iterator();
????while(kit.hasNext())?{
?????Set<String>?kSet?=?kit.next();
?????Set<String>?set?=?new?HashSet<String>();
?????set.addAll(kSet);
?????set.removeAll(entry.getValue());?//?候选频繁k-项集与事务数据库中元素做差运算
?????if(set.isEmpty())?{?//?如果拷贝set为空,支持数加1
??????if(candFreqKItemSetMap.get(kSet)?==?null)?{
???????Integer?value?=?1;
???????candFreqKItemSetMap.put(kSet,?value);
??????}
??????else?{
???????Integer?value?=?1+candFreqKItemSetMap.get(kSet);
???????candFreqKItemSetMap.put(kSet,?value);
??????}
?????}
????}
???}
Webhosting24是一家始于2001年的意大利商家,提供的产品包括虚拟主机、VPS、独立服务器等,可选数机房包括美国洛杉矶、迈阿密、纽约、德国慕尼黑、日本、新加坡、澳大利亚悉尼等。商家VPS主机采用AMD Ryzen 9 5950X CPU,NVMe磁盘,基于KVM架构,德国机房不限制流量,网站采用欧元计费,最低年付15欧元起。这里以美国机房为例,分享几款套餐配置信息。CPU:1core内存...
bluehost怎么样?bluehost推出新一代VPS美国云主机!前几天,BlueHost也推出了对应的周年庆活动,全场海外虚拟主机月付2.95美元起,年付送免费的域名和SSL证书,通过活动进入BlueHost中文官网,购买虚拟主机、云虚拟主机和独立服务器参与限时促销。今天,云服务器网(yuntue.com)小编给大家介绍的是新一代VPS美国云主机,美国SSD云主机,2核2G/20GB空间,独立...
阿里云(aliyun)在这个月又推出了一个金秋上云季活动,到9月30日前,每天两场秒杀活动,包括轻量应用服务器、云服务器、云数据库、短信包、存储包、CDN流量包等等产品,其中Aliyun轻量云服务器最低60元/年起,还可以99元续费3次!活动针对新用户和没有购买过他们的产品的老用户均可参与,每人限购1件。关于阿里云不用多说了,国内首屈一指的云服务器商家,无论建站还是学习都是相当靠谱的。活动地址:h...
apriori为你推荐
snake模型急求 设计贪吃蛇实验报告最好的翻译网站求最好的翻译网站和软件公众号付费阅读如何申请微信付费阅读功能netbios协议tcp/ip、ipx/spx、netbios这三个通信协议的区别java程序员招聘为什么Java程序员工资都很高网站客服代码在线客服系统的代码添加到网站中,要怎么做?防火墙技术应用防火墙的应用与研究论文gbk内码Gbk内码查询彩信平台目前国内有哪些短信平台服务商,怎么排名?cc防火墙服务器里安全狗里的WEB防火墙是什么意思
虚拟主机控制面板 域名大全 php空间租用 韩国vps俄罗斯美女 域名服务器的作用 中国域名交易中心 mediafire下载工具 win8.1企业版升级win10 debian源 e蜗牛 坐公交投2700元 有益网络 七夕快乐英文 工信部icp备案号 免费申请网站 无限流量 西安主机 深圳主机托管 广州服务器托管 wordpress空间 更多