apriori如何实现apriori算法
apriori 时间:2021-06-22 阅读:(
)
Clementine关联规则Apriori算法事务模式怎么使用
算法: Apriori算法,使用逐层迭代找出频繁项集。
输入:事务数据库D;最小支持度阈值min_sup。
输出:D 中的频繁项集L。
1) L1 = find_frequent_1_itemsets(D);
2) for (k = 2; Lk-1 ≠ ; k++) {
3) Ck = aproiri_gen(Lk-1,min_sup);
4) for each transaction t D{ //scan D for count
5) Ct = subset(Ck,t); //get subsets of t that are candidates
6) for each candidate c Ct
7) c.count++;
8) }
9) Lk={c Ck | c.count ≥ min_sup}
10) }
11) return L = ∪kLk;问读音:null,Apriori,FP-Growth的读法
汉语标出可真不准确,不方便啊
servlet /s?:vlit/--/se wu li te/
HTML 就是一个一个字母的读,它是hyper text markup language简写
null /n?l/--/na ou/
apriori 英文发音为:/?pri?ri/--/e pe rui ao rui/
FP-Growth 英文发音为:/aif pi: gr?uθ/--/F P-ge rou si/
前面一个词一般读中文 普瑞奥瑞
后面的一个词 直接读英文如何实现apriori算法
import?java.util.HashMap;
import?java.util.HashSet;
import?java.util.Iterator;
import?java.util.Map;
import?java.util.Set;
import?java.util.TreeMap;
/**
*?<B>关联规则挖掘:Apriori算法</B>
*?
*?<P>按照Apriori算法的基本思想来实现
*?
*?@author?king
*?@since?2013/06/27
*?
*/
public?class?Apriori?{
private?Map<Integer,?Set<String>>?txDatabase;?//?事务数据库
private?Float?minSup;?//?最小支持度
private?Float?minConf;?//?最小置信度
private?Integer?txDatabaseCount;?//?事务数据库中的事务数
private?Map<Integer,?Set<Set<String>>>?freqItemSet;?//?频繁项集集合
private?Map<Set<String>,?Set<Set<String>>>?assiciationRules;?//?频繁关联规则集合
public?Apriori(
????Map<Integer,?Set<String>>?txDatabase,?
????Float?minSup,?
????Float?minConf)?{
???this.txDatabase?=?txDatabase;
???this.minSup?=?minSup;
???this.minConf?=?minConf;
???this.txDatabaseCount?=?this.txDatabase.size();
???freqItemSet?=?new?TreeMap<Integer,?Set<Set<String>>>();
???assiciationRules?=?new?HashMap<Set<String>,?Set<Set<String>>>();
}
/**
*?扫描事务数据库,计算频繁1-项集
*?@return
*/
public?Map<Set<String>,?Float>?getFreq1ItemSet()?{
???Map<Set<String>,?Float>?freq1ItemSetMap?=?new?HashMap<Set<String>,?Float>();
???Map<Set<String>,?Integer>?candFreq1ItemSet?=?this.getCandFreq1ItemSet();
???Iterator<Map.Entry<Set<String>,?Integer>>?it?=?candFreq1ItemSet.entrySet().iterator();
???while(it.hasNext())?{
????Map.Entry<Set<String>,?Integer>?entry?=?it.next();
????//?计算支持度
????Float?supported?=?new?Float(entry.getValue().toString())/new?Float(txDatabaseCount);
????if(supported>=minSup)?{
?????freq1ItemSetMap.put(entry.getKey(),?supported);
????}
???}
???return?freq1ItemSetMap;
}
/**
*?计算候选频繁1-项集
*?@return
*/
public?Map<Set<String>,?Integer>?getCandFreq1ItemSet()?{
???Map<Set<String>,?Integer>?candFreq1ItemSetMap?=?new?HashMap<Set<String>,?Integer>();
???Iterator<Map.Entry<Integer,?Set<String>>>?it?=?txDatabase.entrySet().iterator();
???//?统计支持数,生成候选频繁1-项集
???while(it.hasNext())?{
????Map.Entry<Integer,?Set<String>>?entry?=?it.next();
????Set<String>?itemSet?=?entry.getValue();
????for(String?item?:?itemSet)?{
?????Set<String>?key?=?new?HashSet<String>();
?????key.add(item.trim());
?????if(!candFreq1ItemSetMap.containsKey(key))?{
??????Integer?value?=?1;
??????candFreq1ItemSetMap.put(key,?value);
?????}
?????else?{
??????Integer?value?=?1+candFreq1ItemSetMap.get(key);
??????candFreq1ItemSetMap.put(key,?value);
?????}
????}
???}
???return?candFreq1ItemSetMap;
}
/**
*?根据频繁(k-1)-项集计算候选频繁k-项集
*?
*?@param?m?其中m=k-1
*?@param?freqMItemSet?频繁(k-1)-项集
*?@return
*/
public?Set<Set<String>>?aprioriGen(int?m,?Set<Set<String>>?freqMItemSet)?{
???Set<Set<String>>?candFreqKItemSet?=?new?HashSet<Set<String>>();
???Iterator<Set<String>>?it?=?freqMItemSet.iterator();
???Set<String>?originalItemSet?=?null;
???while(it.hasNext())?{
????originalItemSet?=?it.next();
????Iterator<Set<String>>?itr?=?this.getIterator(originalItemSet,?freqMItemSet);
????while(itr.hasNext())?{
?????Set<String>?identicalSet?=?new?HashSet<String>();?//?两个项集相同元素的集合(集合的交运算)????
?????identicalSet.addAll(originalItemSet);?
?????Set<String>?set?=?itr.next();?
?????identicalSet.retainAll(set);?//?identicalSet中剩下的元素是identicalSet与set集合中公有的元素
?????if(identicalSet.size()?==?m-1)?{?//?(k-1)-项集中k-2个相同
??????Set<String>?differentSet?=?new?HashSet<String>();?//?两个项集不同元素的集合(集合的差运算)
??????differentSet.addAll(originalItemSet);
??????differentSet.removeAll(set);?//?因为有k-2个相同,则differentSet中一定剩下一个元素,即differentSet大小为1
??????differentSet.addAll(set);?//?构造候选k-项集的一个元素(set大小为k-1,differentSet大小为k)
??????if(!this.has_infrequent_subset(differentSet,?freqMItemSet))
??????????candFreqKItemSet.add(differentSet);?//?加入候选k-项集集合
?????}
????}
???}
???return?candFreqKItemSet;
}
/**
?*?使用先验知识,剪枝。
若候选k项集中存在k-1项子集不是频繁k-1项集,则删除该候选k项集
?*?@param?candKItemSet
?*?@param?freqMItemSet
?*?@return
?*/
private?boolean?has_infrequent_subset(Set<String>?candKItemSet,?Set<Set<String>>?freqMItemSet)?{
Set<String>?tempSet?=?new?HashSet<String>();
tempSet.addAll(candKItemSet);
Iterator<String>?itItem?=?candKItemSet.iterator();
while(itItem.hasNext())?{
String?item?=?itItem.next();
tempSet.remove(item);//?该候选去掉一项后变为k-1项集
if(!freqMItemSet.contains(tempSet))//?判断k-1项集是否是频繁项集
return?true;
tempSet.add(item);//?恢复
}
return?false;
}
/**
*?根据一个频繁k-项集的元素(集合),获取到频繁k-项集的从该元素开始的迭代器实例
*?@param?itemSet
*?@param?freqKItemSet?频繁k-项集
*?@return
*/
private?Iterator<Set<String>>?getIterator(Set<String>?itemSet,?Set<Set<String>>?freqKItemSet)?{
???Iterator<Set<String>>?it?=?freqKItemSet.iterator();
???while(it.hasNext())?{
????if(itemSet.equals(it.next()))?{
?????break;
????}
???}
???return?it;
}
/**
*?根据频繁(k-1)-项集,调用aprioriGen方法,计算频繁k-项集
*?
*?@param?k?
*?@param?freqMItemSet?频繁(k-1)-项集
*?@return
*/
public?Map<Set<String>,?Float>?getFreqKItemSet(int?k,?Set<Set<String>>?freqMItemSet)?{
???Map<Set<String>,?Integer>?candFreqKItemSetMap?=?new?HashMap<Set<String>,?Integer>();
???//?调用aprioriGen方法,得到候选频繁k-项集
???Set<Set<String>>?candFreqKItemSet?=?this.aprioriGen(k-1,?freqMItemSet);
???//?扫描事务数据库
???Iterator<Map.Entry<Integer,?Set<String>>>?it?=?txDatabase.entrySet().iterator();
???//?统计支持数
???while(it.hasNext())?{
????Map.Entry<Integer,?Set<String>>?entry?=?it.next();
????Iterator<Set<String>>?kit?=?candFreqKItemSet.iterator();
????while(kit.hasNext())?{
?????Set<String>?kSet?=?kit.next();
?????Set<String>?set?=?new?HashSet<String>();
?????set.addAll(kSet);
?????set.removeAll(entry.getValue());?//?候选频繁k-项集与事务数据库中元素做差运算
?????if(set.isEmpty())?{?//?如果拷贝set为空,支持数加1
??????if(candFreqKItemSetMap.get(kSet)?==?null)?{
???????Integer?value?=?1;
???????candFreqKItemSetMap.put(kSet,?value);
??????}
??????else?{
???????Integer?value?=?1+candFreqKItemSetMap.get(kSet);
???????candFreqKItemSetMap.put(kSet,?value);
??????}
?????}
????}
???}
欧路云(oulucloud) 商家在前面的文章中也有陆续介绍过几次,这不今天有看到商家新增加美国Cera线路的VPS主机,而且有提供全场八折优惠。按照最低套餐最低配置的折扣,月付VPS主机低至22元,还是比较便宜的。不过我们需要注意的是,欧路云是一家2021年新成立的国人主机商,据说是由深圳和香港的几名大佬创建。如果我们有介意新商家的话,选择的时候谨慎且月付即可,注意数据备份。商家目前主营高防VP...
HostKvm,我们很多人都算是比较熟悉的国人服务商,旗下也有多个品牌,差异化多占位策略营销的,商家是一个创建于2013年的品牌,有提供中国香港、美国、日本、新加坡区域虚拟化服务器业务,所有业务均对中国大陆地区线路优化,已经如果做海外线路的话,竞争力不够。今天有看到HostKvm夏季优惠发布,主要针对香港国际和韩国VPS提供7折优惠,折后最低月付5.95美元,其他机房VPS依然是全场8折。第一、夏...
hostround怎么样?大硬盘服务器,高防服务器。hostround,美国商家,2017年成立,正规注册公司(Company File #6180543),提供虚拟主机、VPS云主机、美国服务器、荷兰服务器租用等。现在有1款特价大硬盘独服,位于达拉斯,配置还不错,本月订购时包括免费 500Gbps DDoS 保护,有兴趣的可以关注一下。点击直达:hostround官方网站地址美国\荷兰独立服务器...
apriori为你推荐
旺旺群发阿里旺旺如何群发信息?windowsmediaWindows Media Player什么意思4k超高清视频下载4k电视有什么视频软件可以看4k片源比如乐视…excel大写金额怎么在excel中设置大写金额pps官网pps官方网站下载pps官方正式版下载网站暴力破解rar暴力破解rar,一个15位左右的密码,得用多长时间。(双核。2g内存)国家法规数据库哪一数据库包含中国国家标准,涉及科学研究,社会管理以及工农业生产的各个领刷ip流量一天可以刷一万IP流量的软件5e5e5e计算器里5.55556e-5是什么意思shoujiao求【叫兽】的简介
免备案虚拟主机 电信服务器租赁 域名服务器上存放着internet主机的 购买域名和空间 星星海 cpanel主机 java主机 精品网 英文站群 警告本网站美国保护 网站cdn加速 1g内存 流量计费 佛山高防服务器 申请免费空间和域名 外贸空间 英国伦敦 华为云建站 阿里云手机官网 测速电信 更多