expreswww.gegeshe.com

www.gegeshe.com  时间:2021-03-19  阅读:()
REVIEWARTICLEpublished:22August2014doi:10.
3389/fmicb.
2014.
00439TheinuenceofdeliveryvectorsonHIVvaccineefcacyBeatriceO.
Ondondo*NufeldDepartmentofMedicine,TheJennerInstitute,UniversityofOxford,Oxford,UKEditedby:ShuoLi,TheUniversityofMelbourne,AustraliaReviewedby:AndrewLucas,MurdochUniversity,AustraliaCodyCharlesAllison,WalterandElizaHallInstitute,Australia*Correspondence:BeatriceO.
Ondondo,NufeldDepartmentofMedicine,TheJennerInstitute,UniversityofOxford,ORCRB,RooseveltDrive,Oxford,OX37DQ,UKe-mail:beatrice.
ondondo@ndm.
ox.
ac.
ukDevelopmentofaneffectiveHIV/AIDSvaccineremainsabigchallenge,largelyduetotheenormousHIVdiversitywhichpropelsimmuneescape.
ThusnovelvaccinestrategiesaretargetingmultiplevariantsofconservedantibodyandTcellepitopicregionswhichwouldincurahugetnesscosttothevirusintheeventofmutationalescape.
Besidesimmunogendesign,thedeliverymodalityiscriticalforvaccinepotencyandefcacy,andshouldbecarefullyselectedinordertonotonlymaximizetransgeneexpression,buttoalsoenhancetheimmuno-stimulatorypotentialtoactivateinnateandadaptiveimmunesystems.
Todate,veHIVvaccinecandidateshavebeenevaluatedforefcacyandprotectionfromacquisitionwasonlyachievedinasmallproportionofvaccineesintheRV144studywhichusedacanarypoxvectorfordelivery.
Conversely,intheSTEPstudy(HVTN502)wherehumanadenovirusserotype5(Ad5)wasused,strongimmuneresponseswereinducedbutvaccinationwasmoreassociatedwithincreasedriskofHIVacquisitionthanprotectioninvaccineeswithpre-existingAd5immunity.
Thepossibilitythatpre-existingimmunitytoahighlypromisingdeliveryvectormayalterthenaturalcourseofHIVtoincreaseacquisitionriskisquiteworrisomeandahugesetbackforHIVvaccinedevelopment.
Thus,HIVvaccinedevelopmenteffortsarenowgearedtowarddeliveryplatformswhichattainsuperiorimmunogenicitywhileconcurrentlylimitingpotentialcatastrophiceffectslikelytoarisefrompre-existingimmunityorvector-relatedimmuno-modulation.
However,itstillremainsunclearwhetheritispoorimmunogenicityofHIVantigensorsubstandardimmunologicalpotencyofthesaferdeliveryvectorsthathaslimitedthesuccessofHIVvaccines.
ThisarticlediscussessomeofthepromisingdeliveryvectorstobeharnessedforimprovedHIVvaccineefcacy.
Keywords:HIV-1,vaccines,deliveryvectors,MVA,NYVAC,adenovirus,ALVAC,DNAINTRODUCTIONThirtyyearsafterthediscoveryofHIV/AIDS,thesearchforasafeandeffectivevaccinehasintensied,asanumberofpromis-ingcandidatevaccinesprogressingtophaseIIb/IIIclinicaltrialshavefailedtoshowefcacy.
OneofthegreatestbarrierstoHIVvaccinedevelopmentistheenormousviriondiversity(depictedbytheexistenceofnumerouscladesandsubtypesindistinctgeographicdemarcations)andthecontinuousevolutionwhichgeneratesnumerousquasi-specieswithinaninfectedindividual(Hemelaaretal.
,2011).
Thisnotonlymakesitchallengingtocreateimmunogenswhichareeffectivelymatchedtothecirculat-ingtargetviruses,butalsoprovidesroomforimmuneescapeofHIVfrompotentvaccine-inducedimmuneresponses.
Therefore,ithasemergedthatimmunogensderivedfromthemostcon-servedregionsofHIVandcoveringmultiplevariants(conservedmosaics)standoutasthemostsuitablecandidatesforT-cellbasedvaccines,whileimmunogenscoveringthemostpotentandbroadlyneutralizingandnon-neutralizingantibodyepitopesarebetterforantibody-basedvaccines(EminiandKoff,2004;RobinsonandAmara,2005;McMichael,2006;Letourneauetal.
,2007;ThornerandBarouch,2007;Sekaly,2008;Korberetal.
,2009;Barouchetal.
,2010;Santraetal.
,2010;Borthwicketal.
,2014).
However,thedevelopmentofavaccinebasedonconservedantibodyepitopestoprovideprotectiveglobalcoverageandtominimizeimmuneescapeishamperedbyinaccessibilityofthehighlyshieldedconservedenvelopedomains.
Furthermore,theobservationthatdevelopmentofbroadlyneutralizingantibod-iesrequiresprolongedstimulationwithhigherantigenicloadsfromdivergentvirusspecies(vanGilsandSanders,2013)impliesthatHIVvaccinestrategiesmustprovideacontinuoushighlevelexpressionofacocktailofimmunogens.
AlthoughtheuseofpolyvalentT-cellandB-cellmosaicconstructsorthecon-servedconsensussequencesmayeffectivelyovercomethechal-lengesofHIVdiversityandsignicantlyimprovevaccineefcacy(Santraetal.
,2010,2012),thelackofclearlydenedcorre-latesofefcacymeansthatitremainsunclearwhatimmuneresponsesanHIVvaccineshouldaimtoinduce.
Recently,anon-humanprimate(NHP)studybasedontheRhCMVvectorinducedexceptionallybroadandpersistentatypicalCD8+TcellswhicheffectivelyclearedSIVandmaintaineddurablesuppressionofvirusreplication(Hansenetal.
,2009,2011,2013),suggest-ingthatHIVvaccinedevelopmentresearchmayhavetoadaptimmunogendesignanddeliverystrategiesthatstimulatesimilarresponses.
Deliveryvectorsarevitalandintegralcomponentsofasuc-cessfulvaccineastheyplayanimportantroleinmodulatingbothinnateandadaptiveimmunity.
Therefore,vaccinevectorscansignicantlyinuencethemagnitudeandbreadth,aswellwww.
frontiersin.
orgAugust2014|Volume5|Article439|1OndondoChallengesofHIVvaccinedeliveryasthephenotypicandfunctionalqualitiesofvaccine-inducedimmuneresponses.
Moreover,asthetypeofdeliveryvector,inconjunctionwiththerouteofvaccineadministrationoftendeter-minewhetherornotvaccine-specicimmuneresponsespersistwithinthesystemicand/ormucosalcompartments(Masopustetal.
,2001;KiyonoandFukuyama,2004;Ranasingheetal.
,2007;CzerkinskyandHolmgren,2012),vectorchoiceremainsacrit-icaldeterminantoftheoverallefcacyofanygivenvaccine.
Apartfromtheimmunostimulatorypotentialtoinducestrongandpersistentimmunity,severalotherfactorssuchasstabilityandeaseoflargescalemanufacturing,safety,capacityfortransgeneinsertionandpre-existingimmunityalsoinuencevectorchoice.
Itisnowwell-documentedthatpre-existinganti-vectorimmu-nity(especiallyneutralizingantibodies)canpreventtransductionand/orexpressionofvaccinetransgenesthusreducingvaccine-specicimmuneinduction(Xiangetal.
,2002;Fitzgeraldetal.
,2003;LasaroandErtl,2009).
Thisisacommonphenomenon,clearlydemonstratedwithcertainvectorswhichshowsupe-riorimmunogenicityinanimalmodelsyetinduceonlymodestimmuneresponsesduetoneutralizationbypre-existingantibod-iesinhumans(McCoyetal.
,2007).
Additionally,pre-existingimmunitycanalterthenaturalcourseofinfectionleadingtocatastrophicconsequencessuchasenhancedHIVacquisitionandpossiblyaccelerateddiseaseprogression(Buchbinderetal.
,2008;McElrathetal.
,2008).
Thusstrategiesthatconcurrentlymaxi-mizevaccineimmunogenicitywhileminimizingsafetyconcernsremainanurgentpriorityinthedevelopmentofasafeandefcaciousvaccineforHIV/AIDS.
AgoodnumberofHIVvaccinecandidates(bothprophylac-ticandtherapeutic)employingabroadrangeofvaccinedeliveryvectorshavebeentestedandsomehaveprogressedtoevalua-tionofpotentialefcacyinphaseIIb/IIItrials.
OfsignicantrelevanceasfarassafetyistheSTEPtrialthatusedhumanadenovirusserotype5(Ad5)todeliverawell-designedHIVimmunogenexpressingGag/Pol/Nef,whichwasassociatedwithincreasedriskofHIVacquisitioninuncircumcisedmalevac-cineeswithpre-existingimmunitytoAd5(Buchbinderetal.
,2008;McElrathetal.
,2008).
Thisunexpectedandratherwor-risomendingpromptedtheprematurehaltingoftworelatedefcacytrialsduetofutility(Grayetal.
,2011;Hammeretal.
,2013).
Asdisappointingasthismighthavebeenatthetime,invaluablelessonshavebeenlearnedandthereisstillgreatopti-mismastheselessonsarenowtakenonboard.
FocussingonsomeofthepromisingHIVvaccinecandidatesinpreclinicalandclinicaldevelopment,thisreviewdiscussespertinentissuesrelatingtosafetyandimmunogenicityofreplicatingandnon-replicatingviralvectors,pre-existinganti-vectorimmunityandhowthesecanpotentiallyinuencethenaturalhistoryofHIVinfectionandprogression.
Inparticular,thisarticlehighlightsthesafetyproles,immuno-stimulatorypotentialandpossiblelimi-tationsofplasmidDNA,MVA(modiedvacciniavirusAnkara),ALVAC(canarypoxvirus),NYVAC(NewYorkattenuatedvac-ciniavirus),inuenzavirusandadenovirusvectoredvaccinesinpreclinicalandclinicalstudiesforHIVvaccines.
SomeofthedeliveryvectorsevaluatedinclinicalstudiesaresummarizedinTable1,whilethoseinpreclinicaldevelopmentaresummarizedinTable2.
RECOMBINANTDNAVACCINEVECTORSDNAplasmidvaccinescaninducebothTandBcellimmuneresponses,andarepopularfortheirsafety,stability,versatilityandeaseoflargescaleproduction.
Mostimportantlyisthefactthattheycanbeusedrepetitivelytoboostimmunity(Valentinetal.
,2010)withouttheriskofimmuneinterferenceasisthecasewithviralvectorswithhighprevalenceofpre-existingimmu-nity.
However,ontheirownDNAplasmidvaccineshaveexhibitedverylimitedimmunostimulatorycapacityandofteninducedsub-optimalimmuneresponses.
RecentadvancesinDNAdeliverysuchasintramuscular,skinorintradermalelectroporation(Selbyetal.
,2000;Wideraetal.
,2000;Braveetal.
,2010;Vasanetal.
,2011;Kopycinskietal.
,2012)oruseofotherphysicaldeliv-erymethodssuchasgenegunandbiojectordevices(Drapeetal.
,2006;Wangetal.
,2008a;Grahametal.
,2013),togetherwithconcurrentuseofcytokineadjuvantsincludingIL-2,IL-12,andIL-15(Winstoneetal.
,2011;Kalamsetal.
,2012,2013)havegreatlyimprovedtheimmunogenicpotentialofDNAvac-cines.
Inparticular,IL-12wasshowntosignicantlyaugmentthefrequency,magnitudeandbreadthofGag-specicimmuneresponsesinhealthyvolunteersimmunizedwitharecombinantDNAvaccineexpressingHIV-1Gag(Kalamsetal.
,2012,2013).
Similarly,whenmacaqueswereco-immunizedwithaplasmidencodingIL-12andaDNAplasmidexpressingSIV-Gag,strongantibodyandcellularresponseswhichcorrelatedwithabetterclinicaloutcomewereinduced(Boyeretal.
,2005;Chongetal.
,2007).
Moreimpressively,co-deliveryofaplasmidencodingGM-CSFwithaDNAvaccineexpressingSIVgenesinducedstrongneutralizingantibodyresponsesandADCC,whichprotectedagainstinfectionwithSIVsmE660(Laietal.
,2011).
TheuseofstrongadjuvantssuchasglucopyranosyllipidA(aTLR4agonist)inaDNA/MVA/proteinimmunizationregimenwasshowntoenhancebothantibodyandTcellresponses(McKayetal.
,2014),whileplasmidsencodingtheTLR5agonist,agellin,enhancedbothantibodyandTcellimmunitytoinuenzavirus(Applequistetal.
,2005)OthersignicantimprovementsinDNAvaccinetechnologyincludecodonoptimization,useofstrongerpromoters/enhancersandsignalpeptidessuchasthetissueplasminogenactivator(tPA)andlysosomeassociatedmembraneprotein(LAMP1),allofwhichsignicantlyenhancetransgeneexpressionandtrafck-ing,thusleadingtoincreasedvaccineimmunogenicity(Wangetal.
,2006a;Yanetal.
,2007;Wallaceetal.
,2013).
Furthermore,easeofDNAmanipulationprovidesaplatformtodeliverpoly-valentormulti-genevaccinecomponentswhichcanincreasethebreadthanddepthofvaccine-inducedimmunitytoreduceimmuneescape.
Thisstrategyshowedremarkablesuccessinrabbitexperimentswhereapolyvalentgp120vaccineinducedbroadlyneutralizingantibodyresponsesasopposedtothemono-valentvaccine(Wangetal.
,2006b).
Similarly,polyvalentmosaicplasmidDNAvaccineshavedemonstratedenhancedimmuno-genicityinmice(Kongetal.
,2009)andrhesusmonkeys(Santraetal.
,2010).
SeveralstudiesindicatethatdeliveryofDNAvaccinesbyelectroporationinducesbothcellularandhumoralimmuneresponseswhicharelong-livedandcanpersistforseveralyearswithorwithoutsubsequentheterologousboosting(Cristilloetal.
,FrontiersinMicrobiology|MicrobialImmunologyAugust2014|Volume5|Article439|2OndondoChallengesofHIVvaccinedeliveryTable1|Representativeclinicalstudies.
StudynameandImmunogenVectors,regimenandrouteImmuneresponsesReferencesphaseofimmunizationgenerated(I)HETEROLOGOUSPRIME-BOOSTSTUDIESHIVCORE002(PhaseIstudy)HIVconsv(Tcellimmunogenbasedonconservedregions)ChAdV63/MVA(i.
m.
)DNA/ChAdV63/MVA(i.
m.
)DNA/MVA/ChAdV63(i.
m.
)-CD4+andCD8+Tcells-InvitrovirusinhibitionBorthwicketal.
,2014HVTN505(PhaseIIbstudy)VRC-HIVDNA016-00-VP/VRC-HIVADV014-00-VPDNA-prime(i.
m.
biojectordevice)/rAd5boost(i.
m.
needleandsyringe)-Tcellsandgp140bindingIgGantibodiesHammeretal.
,2013HVTN503/Phambili(PhaseIIbstudy)MRKAd5HIV-1Gag/Pol/NefDNA-prime(i.
m.
)/Ad5boost(i.
m.
)-CD8+andCD4+TcellsGrayetal.
,2011Phase1studyGagandEnvDNAandrecombinanttrimericEnvglycoproteinDNA-prime(i.
m.
)/ProteinboostwithMF59adjuvant-RobustBandTcells-StrongNAbstoSF162-ADCCandneutralizationoftier2strainsSpearmanetal.
,2011PhaseI/IIstudyMulti-clade,multigene:DNA/HIV-1gp160,p17/p24GagandMVA/HIV-1Gag/PolLowdose(i.
d.
)DNA-prime(x3)/MVA-boost(i.
m.
x2)(DDDMM)-HighmagnitudeandbroadCD4+andCD8+Tcellresponses-EnvantibodiesBakarietal.
,2011PhaseIstudyDP6-001Multigenepolyvalentgp120andGagDNAandpolyvalentgp120proteini.
m.
ori.
d.
PolyvalentDNA-prime/i.
m.
protein-boost(withQS21adjuvant)-HightiterbindingandBNAbs,ADCCandmultifunctionalTcellsBansaletal.
,2008;Vaineetal.
,2010RV144(PhaseIIIstudy)ALVAC-HIVvCP1521/AIDSVAXgp120B/EALVAC-prime(i.
m.
)/gp120protein-boost-Tcellsandnon-neutralizingantibodiestoV1/V2loopRerks-Ngarmetal.
,2009PhaseIstudyMultigenicHIVDNA(gp160-A/B/C;RevB,GagA/BandRT-BandHIV-MVAEnv/Gag/Pol)DNA-prime(i.
d.
withBiojector)/MVA-boost(i.
d.
/i.
m.
);withorwithoutGM-CSFadjuvant-BroadandpotentcellularimmuneresponsesSandstrometal.
,2008;Gudmundsdotteretal.
,2009HVTN502/STEPStudy(PhaseIIb)MRKAd5HIV-1Gag/Pol/NefDNA-prime(i.
m.
)/Ad5boost(i.
m.
)-StrongCD8+TcellresponsesBuchbinderetal.
,2008;McElrathetal.
,2008Phase1studyHIVA(HIV-1cladeAandaCTLepitopestring)DNA-prime(i.
m.
)/MVA-boost(i.
m.
)-MultifunctionalCD4+andCD8+TcellsMwauetal.
,2004;Goonetillekeetal.
,2006PhaseIstudy(EuroVacc:EV02)HIV-1cladeC-Env/Gag/Pol/Nef(DNA-CandNYVAC-C)DNA-prime(i.
m.
)/NYVAC-boost(i.
m.
)-Durable,broadandpoly-functionalCD4+andCD8+TcellsHararietal.
,2008;McCormacketal.
,2008PhaseIstudyALVAC-HIV(vCP300)gp120/gp41,Gag,Pro,Nef,PolandSF-2rgp120ALVAC-prime(i.
m.
)/i.
m.
Protein-boost(withMF59adjuvant)-DurableCTLs-AntibodyresponsesEvansetal.
,1999PhaseIstudyALVAC-HIV(vCP205)gp120/gp41,Gag,PolandSF-2rgp120ALVAC-prime(i.
m.
)/i.
m.
Protein-boost(withMF59adjuvant)-StrongCD8+TcellresponsesandNAbsBelsheetal.
,1998(Continued)www.
frontiersin.
orgAugust2014|Volume5|Article439|3OndondoChallengesofHIVvaccinedeliveryTable1|ContinuedStudynameandImmunogenVectors,regimenandrouteImmuneresponsesReferencesphaseofimmunizationgenerated(II)HOMOLOGOUSPRIME-BOOSTORSINGLEDOSESTUDIESHVTN-070and-080PhaseIstudiesPV(PENNVAX(R)-BDNAexpressingGag,Pol,EnvandDNA/IL-12DNA+IL-12(i.
m.
orbyelectroporation)-CD4+andCD8+TcellresponsesKalamsetal.
,2013IPCAVD-001Ad26.
ENVA.
01IntramusculardeliveryofrAd26-Bindingantibodies-MultipleCD8+andCD4+Tcellresponses-ADCCandvirusinhibitionBadenetal.
,2013;Barouchetal.
,2013HVTN090PhaseIastudyVSVINN4CT1Gag1(recombinantVSVexpressingHIV-1Gag)Dose-escalatingi.
m.
deliveryLowlevelTcellresponsesdetectedfollowinginitialdosingFuchsetal.
,2012,2013PhaseIstudyAd35-GRIN(Gag,RT,Integrase,Nef)andAd35-GRIN/ENVIntramusculardeliveryofAd35-GRIN/EnvorAd35-GRIN-Robust,broadandpolyfunctionalCD4andCD8+TcellsKeeferetal.
,2012PhaseI/IIstudy(RISVAC02)MVA-B(monomericgp120andcladeBGag/Pol/Nefpoly-protein)ThreedosesofMVA(i.
m.
)-DurableantibodyandcellularimmuneresponsesGarciaetal.
,2011;Gomezetal.
,2011PhaseIstudyADVAX(multigenicHIV-1DNAvaccine)DNAbyi.
m.
electroporation-CD4andCD8+TcellswithmultiplecytokinesVasanetal.
,2011VAX003(PhaseIIIstudy)Bivalentrecombinantgp120vaccine:AIDSVAXB/ESeveni.
m.
injections;withAlumadjuvant-Bindingandneutralizingantibodiestogp120Pitisuttithumetal.
,2006VAX004(MulticentrePhaseIIIstudy)Bivalentrecombinantgp120vaccine:AIDSVAXB/BSeveni.
m.
injections;withAlumadjuvant-Bindingandneutralizingantibodiestogp120Flynnetal.
,2005;Gilbertetal.
,2005i.
m.
,intramuscular;i.
n.
,intranasal;i.
d.
,intradermal;s.
c.
,subcutaneous;i.
p.
,intraperitoneal;ADCC,antibodydependentcytotoxicity;NAbs,neutralizingantibodies;BNAbs,broadlyneutralizingantibodies.
2008;Pateletal.
,2010;Jalahetal.
,2014).
Inparticular,thelevelofHIV-specicimmuneresponsestothemultigenicADVAXvac-cinewasincreasedbyupto70-foldwhenelectroporationwasusedfordelivery(Vasanetal.
,2011).
Nonetheless,DNAvac-cinesconsistentlyshowmuchbetterimmunogenicitywhenusedasprimingcomponentsinconjunctionwithviralvectorssuchasadenoviruses(Shiveretal.
,2002;Hammeretal.
,2013;Borthwicketal.
,2014),MVA(Sandstrometal.
,2008;Gudmundsdotteretal.
,2009;Bakarietal.
,2011;Borthwicketal.
,2014),fowlpox(Kentetal.
,1998),andNYVAC(Heletal.
,2001)inheterologousprimeboostregimensdeliveringthesamevaccineinserts,orinco-immunizationstrategiesthatcombineDNA-primewithproteinboosting(Kennedyetal.
,2008;Wangetal.
,2008b).
Asamat-teroffact,prime-boostregimensstillremainthemostsuccessfulstrategiesthatemphasizethepotentialofDNAvaccines.
ItwasrecentlyshownthataDNA-prime/protein-boostregimenwassig-nicantlybetterthaneitherDNA/DNAorprotein/proteinaloneregimensforgeneratinglong-termprotectionofmiceagainstLeishmaniadonovani(Mazumderetal.
,2011).
TheDNAandpro-teinco-immunizationmodalitiesareparticularlydesirableastheymaximizeinductionoflong-livedhumoralandcellularimmuneresponseswhichcandisseminatetomucosalsites,includingthegenito-rectalmucosae(Pateletal.
,2013;Jalahetal.
,2014).
Arecentstudyhasdemonstratedinsmallanimalmodelsthatconcurrent,multiple-routeDNAvaccinationscomprisingDNAprimebyelectroporation,followedwithintranasal,intramuscu-lar,subcutaneousortranscutaneoushomologousproteinboostinducedstrongHIV-specicBandTcellresponses(Mannetal.
,2014).
Independently,anotherstudyshowedenhancementofHIVgp120-specicIgAresponsesinserumandmucosalsecre-tionsfollowingaDNAenv-primeandgp120protein-boostdeliv-eredwithnovelcarbohydrate-basedadjuvants(Advax-MandAdvax-P)whichwerespecicallydesignedformucosalandsys-temicimmuneenhancement(Cristilloetal.
,2011).
Thetremen-douseffectofaDNAprimeinenhancingantibodyresponsestoproteinvaccineswasalsodocumentedinaPhase1clinicalstudy,whereintramusculardeliveryofaDNAprimingvac-cinefollowedwithrecombinantproteinbooststimulatedhigherfrequenciesofBandTcells,aswellashigherneutralizinganti-bodytitresandADCCincontrasttoimmunizationwithproteinalone(Spearmanetal.
,2011).
PerhapsthemostexcitingoftheDNA-prime/protein-booststudiesisthe6-plasmidpolyvalentFrontiersinMicrobiology|MicrobialImmunologyAugust2014|Volume5|Article439|4OndondoChallengesofHIVvaccinedeliveryTable2|Representativepreclinicalstudies.
AnimalsImmunogenVectors,regimenandImmuneresponsesOutcomesReferencesrouteofimmunizationgenerated(I)HETEROLOGOUSPRIME-BOOSTSTUDIESMiceandrabbitsHIVEnv/Gag-Pol-NefDNA,MVA-C(HIVEnv/Gag-Pol-NefandCN54gp140protein)IntramusculardeliveryofDNA/MVA/ProteinwithTLR4(GLA-AFadjuvant)forproteinboostAntibodyandTcellresponses–McKayetal.
,2014RhesusmacaquesSIVmac239Env/GagDNA,rmIL-12DNAandSIVmac239proteinvaccinesDNA-prime(byelectroporation)/i.
m.
ori.
d.
Protein-boost,orDNAandproteinco-immunizationPersistentmucosalEnvelope-specicantibodyresponsesEnhancedimmunitybytheco-immunizationmodalityJalahetal.
,2014RhesusmacaquesSIV-GagmosaicSIV-EnvmosaicSIVmac239EnvDNA-prime(x3,i.
m.
)Ad5-boost(i.
m.
)-NAbs-ADCC-CellularresponsesProtectionagainstSIVsmE660challengeRoedereretal.
,2014RhesusmonkeysDNAexpressingSIVmac239antigens+rmIL-12andinactivatedSIVmac239virusparticlesasproteinDNAprime(i.
m.
followedbyinvivoelectroporation)/protein-boost-SIV-specicCTLs-CD4+andCD8+memoryTcells-Bindingantibodies-ProtectionfromSIVSME660acquisition-ReducedpeakandchronicphaseviremiaPateletal.
,2013MicepCCMp24rddVTT-CCMp24DNAprime/Tiantanboost(i.
m.
)AntibodyandTcells–Excleretal.
,2010;Liuetal.
,2013RhesusmacaquesSIVSME543-Gag/Pol/EnvPrime-boost(i.
m.
)with:Ad26/MVA,Ad35/Ad26,DNA/MVA,MVA/Ad26-NAbs-Bindingantibodies-CellularresponsesProtectionfromSIVmac251acquisitionordiseaseprogressionBarouchetal.
,2012MiceAd35-GRIN/ENVandMVA-C(Gag/Env/Pol)Ad35-GRIN/ENV-prime(i.
m.
)/MVA-boost(i.
m.
)PolyfunctionalCD8+Tcells–Ratto-Kimetal.
,2012MacaquesSIVDNA/GM-CSF(SIV239Gag/PR/RT/Env/Tat/Rev)andMVA-SIVgpeDNA/GM-CSF-prime(i.
m.
)/MVA-boost(i.
m.
)-Neutralizingantibodyresponses-ADCCSterileprotectionafterSIVsmE660challengeLaietal.
,2011MurineDNA-Envandgp120proteinvaccinesDNAEnv-prime/gp120protein-boost(i.
m.
andi.
n.
)(Advax-MandAdvax-Padjuvants)-PersistentmucosalandsystemicAbs-Tcellresponses–Cristilloetal.
,2011New-bornandadultmiceBCG-HIVA,MVA-HIVAandHAdV5.
HIVABCG-prime(i.
p.
/i.
d.
/s.
c.
)followedwithi.
m.
MVA-orHAdV5-boost-Strong,cytotoxicCD8+Tcellresponses–Hopkinsetal.
,2011a;Saubietal.
,2011RhesusmacaquesVSVandSFVrepliconexpressingSIV-Gag/EnvVSV-prime(i.
m.
andi.
n.
)/SFVG-boost(i.
m.
)-HightiterNAbstoEnvproteinsandweakcellularresponses-SterilizingimmunityControlofSIVsmE660breakthroughinfectionsSchelletal.
,2011New-bornmacaquesVSV-SIVgpe(rVSV-Gag/Pol/Env)andMVA-SIVgpeVSV-prime(oral)/MVA-boost(i.
m.
)-SystemicAbs,bothsystemicandlocalcellularresponses–VanRompayetal.
,2010(Continued)www.
frontiersin.
orgAugust2014|Volume5|Article439|5OndondoChallengesofHIVvaccinedeliveryTable2|ContinuedAnimalsImmunogenVectors,regimenandImmuneresponsesOutcomesReferencesrouteofimmunizationgeneratedMice,rabbitsandmacaquesConsensusorPolyvalentmosaicDNAandprotein(gp120)vaccinesDNA-prime(i.
m.
)/i.
m.
andi.
d.
rVaccinia-boost.
DNA-prime(genegun)/Protein-boost(i.
d.
)+IFA-BroadlyneutralizingantibodiesandCD8+TcellresponsesEnhancedimmunogenicityWangetal.
,2006b;Santraetal.
,2010RhesusmacaquesVSV-SHIVGag/Pol/EnvMVA-SHIVGag/Pol/EnvVSV-prime(i.
m.
)/MVA-boost(i.
m.
)-Persistentmulti-functionalCD8+TcellsandNAbsDurable(over5years)controlofSHIV89.
6PreplicationRoseetal.
,2001Schelletal.
,2009RabbitsmacaquesHIV-1Envgp120DNA(electroporation)/gp120proteinboost-PersistentTh1,CTLandEnvresponsesNeutralizationofsensitiveSHIVisolatesCristilloetal.
,2008RhesusmacaquesCMV-SHIVdENandSeV-GagDNAprime(i.
m.
)/SendaiVirusboost(i.
n.
)-CD8+TcellsDurablecontrolofSIVmac239andSHIV89.
6PDMatanoetal.
,2001;Takedaetal.
,2003;Kawadaetal.
,2007RhesusMacaquesreplication-defectiveSHIVparticlesandMVA-SHIV(SIVGag,SIVPolandHIVEnv)IntrarectalDNAprime/MVAboost-Antibodiesinplasma-Cellularresponses-PreservedCD4Tcells-ReduceddiseaseprogressionafterSHIV89.
6PchallengeWangetal.
,2004RhesusmacaquesSHIV-DNAplusIL-2andrMVADNA+IL-12-prime(i.
n.
)/MVA-boost(i.
n.
)-MucosalandsystemicantibodyandcellularresponsesProtectionfromSHIV89.
6PchallengeBertleyetal.
,2004MiceandmonkeysE1/E3-deletedAdHu5andE1-deletedAdC7orAdC6,expressingGag37i.
m.
prime-boostwith:AdC7/AdC6/AdHu5orAdHu5/AdC6/AdC7-RobustCD8+CD4+Tcells-Antibodyresponses–Reyes-Sandovaletal.
,2004CynomolgusmacaquesDNA-HIV-1IIIBEnv/Gag/RT/Rev/Tat/Nef,MVA-HIV-1IIIBNef-Tat-Rev,SIVmacJ5Gag/PolandVacciniaHIV-1EnvDNAprime/MVAboost(i.
m.
ormucosally)-AntibodyandcellularresponsesProtectionfrominfectionMakitaloetal.
,2004MiceHIV-1EnvIIIBAg(DNA-EnvandMVA-Env)DNA-Env-prime/MVA-Env-boost(i.
n.
withCholeratoxinadjuvant)-MucosalCD8+Tcells,mucosalandsystemicantibodies-Beta-chemokines–Gherardietal.
,2004RhesusmonkeysDNA,MVAandAd5vectorsexpressingSIVmac239GagDNAPrime(i.
m.
)/MVA-orAd5-boost(i.
m.
)-RobustCD8+TcellswithcytotoxicactivityPronouncedattenuationofSHIVinfectionandmitigateddiseaseprogressionShiveretal.
,2002MacaquesDNAandNYVACSIV-gpe(Gag/Pol/Env)DNA-prime(i.
m.
)/NYVAC-boost(i.
m.
)-DurableCD8+Tcellresponses–Heletal.
,2001(II)HOMOLOGOUSPRIME-BOOSTORSINGLEDOSESTUDIESMiceandrabbitsAd4Env160Ad4Env140Ad4Env120i.
m.
,i.
n.
,ors.
c.
deliveryofrAd4-TcellandantibodyresponsesNeutralizationoftier-1andtier-2pseudovirusesAlexanderetal.
,2013(Continued)FrontiersinMicrobiology|MicrobialImmunologyAugust2014|Volume5|Article439|6OndondoChallengesofHIVvaccinedeliveryTable2|ContinuedAnimalsImmunogenVectors,regimenandImmuneresponsesOutcomesReferencesrouteofimmunizationgeneratedMiceAd35-GRIN/ENVandMVA-Gag/Env/PolAd35-prime(i.
m.
)/Ad35-boosti.
m.
):MVA-prime(i.
m.
)/MVA-boost(i.
m.
)-PolyfunctionalCD8+Tcells–Ratto-Kimetal.
,2012RhesusmacaquesSIVSME543-Gag/Pol/EnvMVA-prime(i.
m.
)/MVA-boost(i.
m.
)-NeutralizingAbs,bindingantibodiesandcellularresponsesProtectionfromSIVmac251acquisitionordiseaseprogressionBarouchetal.
,2012RhesusmacaquesRhCMV-SIV/Gag,Rev/Nef/Tat,Pol,EnvRhCMVvectorsdeliveredbys.
c.
injection-Strongandpersisting,polyfunctionaleffectormemoryCD8+andCD4+cellsViralclearanceanddurableprotectionfromSIVmac239diseaseprogressionHansenetal.
,2009,2011RhesusmonkeysSIV-Gag,SIV-EnvandSIVRev-Tat-NeffusionproteinIntravenousdeliveryofrecombinantRhadinovirus-PersistenteffectormemoryCD8+TcellsControlofSIVmac239replicationBilelloetal.
,2011RhesusmacaquesRabiesvirus(RV)expressingSIVmac239Gag/PolorEnvIntramusculardeliveryofrRVconstructs-PolyfunctionalCD8+Tcellsinthemucosa-NAbsControlofSIVmac251-CXchallengeFauletal.
,2009RhesusandCynomolgusmacaquesSIV-GagDNA+rIL-12DNAvaccinesIntramuscularDNAdeliveryTcellandAntibodyresponsesImprovedclinicaloutcomeafterSHIV[89.
6P]challengeBoyeretal.
,2005;Chongetal.
,2007JuvenileandInfantRhesusmacaquesALVAC-SIVandMVA-SIVbothexpressingSIV-Gag/Pol/EnvMultipleimmunizationswithALVAC-SIV(i.
m.
)orMVA-SIV(i.
m.
)-Hightitresofbindingantibodies,low-levelTcellresponsesProtectionfromoralSIVmac251challenge,andreducedviremiainbreakthroughinfectionsVanRompayetal.
,2005MiceHIV-1EnvIIIBAg(DNA-EnvandMVA-Env)MVA-Env/MVA-EnvDNA-Env/DNA-Env(i.
n.
withCholeratoxinadjuvant)-MucosalCD8+Tcells,mucosalandsystemicantibodies-Beta-chemokines–Gherardietal.
,2004MiceInuenzavirusexpressingHIV-1ELDKWAepitopei.
n.
prime/boostwithchimericinuenzavirus,followedwithi.
p.
boostwithlivevirus-NeutralizingantibodiesNeutralizationofdistantlyrelatedHIV-1isolatesMusteretal.
,1994i.
m.
,intramuscular;i.
n.
,intranasal;i.
d.
,intradermal;s.
c.
,subcutaneous;i.
p.
,intraperitoneal;ADCC,antibodydependentcytotoxicity;NAbs,neutralizingantibodies;BNAbs,broadlyneutralizingantibodies.
DNAvaccineexpressinggp120andGag,followedbyQS21-adjuvantedpolyvalentgp120proteinboost(DP6-001study)inwhichmultifunctionalTcellsandhigh-titregp120-specicbind-ingandbroadly-neutralizingantibodiesaswellasADCCwereinduced(Grahametal.
,2006;Bansaletal.
,2008;Wangetal.
,2008b;Vaineetal.
,2010).
Apartfromeffectivedeliverystrategiesandroutesofimmu-nization,thereisevidenceshowingthatexpressionofDNAvaccinesandsubsequentimmunogenicityinhumansandotherprimatescanbelimitedbyserumamyloidPcomponent(SAP),aproteinfoundinbloodandknowntobindstronglytoDNA(Wangetal.
,2011,2012).
Insmallanimalsthisproteineitherbindsweaklyordoesnotexistatall.
Thus,depletionofSAPproteinpriortoadministrationofDNAvaccinesisanothernewstrategybeingtestedtoimproveDNAvaccineimmunogenic-ity.
Thisconcepthasbeenproveninmice,wheredepletionofSAPusingthebis-d-prolinecompoundCPHPC(Bodinetal.
,2010;Gillmoreetal.
,2010)wasshowntoaugmentantibodyandcellularimmuneresponsestoaDNAvaccineexpressingHepatitisBsurfaceantigens(Wangetal.
,2012).
Theconceptiscurrentlywww.
frontiersin.
orgAugust2014|Volume5|Article439|7OndondoChallengesofHIVvaccinedeliverybeingtestedinaPhase1clinicaltrial(HIVCORE003)ofhealthyadultsusingtheT-cellbasedHIVcandidatevaccine,HIVconsv.
AlthoughtheefcacyofanHIVDNAvaccineisyettobedemonstratedinhumans,variousstudies(prophylacticandther-apeutic)inthemacaquemodelhavereportedprotectiveimmuneresponseswhichcontrolledSIV/SHIVreplicationorprotectedfrominfection(Rosatietal.
,2005,2009;vonGegerfeltetal.
,2007;Valentinetal.
,2010;Pateletal.
,2013).
Inparticular,astudycombiningaDNA/MVAmucosaldeliveryofaDNAconstructexpressingreplication-defectiveSHIVparticlesandMVAexpress-ingSIV-Gag/PolandHIVEnv(MVA-SHIV)demonstratedsig-nicantprotectionfromdiseaseprogressionafteraSHIV89.
6Pchallenge(Wangetal.
,2004).
Furthermore,mucosalco-deliveryofaDNAprimingvaccinetogetherwithanIL-2encodingvec-tor,followedbyMVAboostalsoinducedprotectiveimmunityagainstSHIV89.
6Pchallenge(Bertleyetal.
,2004).
Theresultsinthesemacaquemodels,togetherwiththedocumentedefcacyofDNAvaccinesagainstanimaldiseases[e.
g.
,equineWestNileVirus(WNV)(Davisetal.
,2001),melanomaindogs(Bergmanetal.
,2003)andinfectioushematopoieticnecrosisvirus(IHNV)insalmon(Garveretal.
,2005;Kurathetal.
,2006)]raisehopesthatwiththerightimmunogenandeffectivedeliverystrate-gies(includingadjuvants),plasmidDNAvaccinesforHIV/AIDScouldachieveefcacyinclinicaltrials,whenusedalone,butmorerealisticallyinprime-boostcombinationswithliveviral-vectoredorproteinvaccines.
NON-REPLICATINGRECOMBINANTVIRALVECTORSADENOVIRUSVACCINEVECTORSAdenovirusesarethemostpowerfulvectorsforinducingbothantibodyandcell-mediatedimmunitytoinsertedtransgenesandareknowntoelicitbetween5-and10-foldstrongerTcellresponsescomparedtoconventionalnakedDNAorMVA/pox-likevirusvectors(Xiangetal.
,1996;Heetal.
,2000;Fitzgeraldetal.
,2003;Casimiroetal.
,2003a,2004;TatsisandErtl,2004;Catanzaroetal.
,2006).
TheAdenovirusvectorsuseeithertheCoxsackieandAdenovirusReceptor(CAR)orCD46receptors(Bergelsonetal.
,1997;Gaggaretal.
,2003)andcaninfectawidevarietyofcells,includingdendriticcells.
Inparticular,groupBadenovirusessuchasAd35recognizeCD46surfaceproteinandinfectDCsmoreefcientlythangroupCisolates.
Thesevectorsachievehigherlevelsoftransgeneexpressionwhichinturnresultsinstrongerandpersistentimmuneeffectorfunctions(Zhangetal.
,2001;Hutnicketal.
,2010;Sulemanetal.
,2011).
Severalstudiesindicatethatadenovirusespredominantlystimulateper-sistenteffectormemoryCD8+Tcellresponses(Yangetal.
,2003a,2007a;Tatsisetal.
,2007a)whicharemoresuitableforimmediatecontrolofinvadingpathogensatperipheralentrysitessuchasthegenitalmucosa(Cerwenkaetal.
,1999;Sallustoetal.
,2004;Husteretal.
,2006),andhaveshowntremendoussuccessinanimalstudies(Liuetal.
,2009).
Inadditiontotheeffectormem-oryTcells,stablecentralmemoryCD8+Tcellpopulationsarealsogenerated,thusprovidingsurveillanceinbothperipheralandlymphoidsites.
Althoughpersistingadenovirus-drivenimmuneresponsescouldalsobeduetothelong-termpresentationofantigensbynon-haematopoieticcellsservingasunlimitedanti-gendepot(Finnetal.
,2009;Kimetal.
,2010;Bassettetal.
,2011),long-livedimmunityislargelyattributedtopersistinglow-levelexpressionofinsertedimmunogens.
Adenovirusgenomesareknowntopersistforprolongedperiodsinvariouscelltypes(includingthoseatinoculationsites)wheretheyremaintran-scriptionallyactiveandcontinuouslyproducelow-levelsofanti-gentoprimenaveTcellswhilealsomaintainingtheeffectormemoryTcells(Yangetal.
,2006,2007b;Tatsisetal.
,2007a).
Furthermore,thearisingeffectormemoryTcellsexpresstheIL-7receptor(CD127)whichallowstheirprolongedsurvivalintheabsenceofantigen.
Besidesinductionofpotentadaptiveimmuneresponses,adenovirusesalsostimulateinnateimmunityviahighlyinammatoryresponseswhichinvolveTLR2,TLR9,NOD-likereceptorsandthetype1interferonpathwaysthatresultinabundantcytokineandchemokinesecretion(Hensleyetal.
,2005;NazirandMetcalf,2005;Appledornetal.
,2008;Muruveetal.
,2008).
Anotherattractivefeatureofadenovirusvectorsistheirabilitytoinducebothsystemicandmucosalimmuneresponsesfollowingparenteraldelivery,aswellastheirsuitabil-ityformucosalimmunization(Sharpeetal.
,2002;Xiangetal.
,2003;BangariandMittal,2006;Hautetal.
,2010).
Themostwell-characterizedoftheadenovirusvectorsishumanAd5,successfullyusedasadeliveryvectorforarabiesvaccineandfoundtobeverygoodatinducingprotectivevirusneutralizingantibodiesconcurrentlywithCD8+andCD4+Tcells(Xiangetal.
,1995,1996).
IntheHIVeld,Ad5wasusedasaboosterimmunizationfollowingDNAprimingandinducedstrongCD8+TcellresponsesinalargeproportionoftheSTEPstudyvaccinees(Buchbinderetal.
,2008;McElrathetal.
,2008).
However,clinicalefcacymayhavebeensignicantlycompro-misedbypre-existingneutralizingantibodies(rangingfrom40to70%indevelopedcountriesandgreaterthan90%indevel-opingcountries)andcellularimmunity(Fitzgeraldetal.
,2003;Holtermanetal.
,2004;BangariandMittal,2006;Xiangetal.
,2006;LasaroandErtl,2009;Erschingetal.
,2010;Mastetal.
,2010;Barouchetal.
,2011).
Theseresultswererecapitulatedinanon-humanprimatestudyusinglow-dosepenileexposuretoSIVmac251inAd5seropositiveanimalsimmunizedwithSIV-Gag/Pol/Nef(Qureshietal.
,2012).
Possibly,adenovirusvacci-nationboostedthenumbersofactivatedCD4+TcellswhicharetargetsforHIV-1(Benlahrechetal.
,2009).
Whilethismightseemaplausibleexplanation,especiallywhenconsideringthepotentialofsuchactivatedtargetstotrafctothegenito-rectalmucosae(Tatsisetal.
,2007a;Benlahrechetal.
,2009),thisargu-mentisstronglycontestedbyobservationsthatothervaccinecarrierssuchasDNAandMVAdostimulateCD4+Tcellactiva-tionbuthavenotbeenassociatedwithincreasedHIVacquisition.
However,itisworthnotingthatDNA/MVAvaccinesareyettobetestedforefcacyinlargeclinicaltrialsandassuchtheirpoten-tialtoenhanceHIVacquisitionhasneverassessed.
Furthermore,DNA/MVAvaccinescombinationshavenotbeenassociatedwithlong-termpersistenceofactivatedTcellsormucosalhoming.
Anotherpostulatedtheoryistheformationofadenovirus-specicantibodyimmunecomplexesthatactivatebothdendriticandCD4+Tcellshencefuellinginfection(Perreauetal.
,2008).
Inthisstudy,Ad5immunecomplexeswerestronglycorrelatedwithhigherHIVinfectionintheinvitrocultures,thussupportingastrongerlikelihoodofenhancedHIVacquisition.
ShouldeitherFrontiersinMicrobiology|MicrobialImmunologyAugust2014|Volume5|Article439|8OndondoChallengesofHIVvaccinedeliveryorbothofthesetheoriesbetrue,thiswouldhavedireconse-quencesforotherclinicaltrialsusingAd5todelivernon-HIVimmunogenssuchasmalaria(Sedegahetal.
,2011;Tammingaetal.
,2011;Chuangetal.
,2013)andTB(Smailletal.
,2013)vac-cineswhichwillinducesimilarphenotypesandpre-disposethevaccineestoincreasedHIVacquisitionrisk,althoughthismaynotbeapparentlydetectableasthesestudiesmaynotmonitorHIVacquisition.
Apartfromtheissueofpre-existingimmunity,immunizationwithAd5caninduceneutralizingantibodiesinnaveindivid-ualswhichcanbeahindranceforsuccessiveimmunizationswiththesameorcross-reactiveadenoviralvectors(Casimiroetal.
,2003b;BangariandMittal,2006).
Thusnewrareaden-ovirusvectorswithlowerpre-existingimmunitysuchasAd26andAd35arebecomingmoreattractive(Holtermanetal.
,2004;Abbinketal.
,2007;Barouchetal.
,2012;Zhangetal.
,2013),althoughthesearerelativelylessimmunogeniccomparedtoAd5(Collocaetal.
,2012).
Besidesthelowersero-prevalence,Ad26neutralizingantibodytitresareusuallyverylowcomparedtoAd5(Abbinketal.
,2007;Chenetal.
,2010;Mastetal.
,2010).
AsanHIVvaccinedeliveryvector,Ad26wasshowntoinducebroadlyfunctionalcellularandantibodyresponseswithviralinhibitorycapacityinarst-in-human(IPCAVD-001)clinicaltrialofanHIVenvelopeimmunogen(Ad26.
ENVA.
01)(Badenetal.
,2013;Barouchetal.
,2013).
Inthisstudy,adose-dependentexpan-sionofthemagnitude,breadth,andepitopicdiversityofEnv-specicbindingantibodyresponseswereobserved.
TheresponsescomprisedmultipleCD8+andCD4+Tcellmemorysubpopu-lationsandcytokinesecretionphenotypes.
Antibody-dependentcell-mediatedphagocytosisanddegranulationfunctionalactivitywerealsoobserved.
Ad35hasalsoshownhighimmunogenicityinhealthyvolunteers,elicitingrobustandpolyfunctionalCD8+andCD4+TcellsinamajorityofvolunteersimmunizedwithAd35-GRIN(animmunogenbasedonGag,RT,integraseandnef)orAd35-GRIN/ENV(premixedAd35-GRINandAd35-ENVvaccines)(Keeferetal.
,2012).
Similarly,inBALB/cmice,anAd35-GRIN/ENV-primefollowedbyaboostwithrMVAcon-tainingGag/Env/PolgenesfromvariousHIV-1cladesinducedpolyfunctionalCD8+Gag-speciccentralandeffectormem-oryTcellswhichweresuperiortothoseelicitedinhomologousAd35/Ad35orMVA/MVAprimeboosts(Ratto-Kimetal.
,2012).
OtherrareadenovirusvectorsincludehumanAd6,chim-panzeeAd3,Ad63,andAd68(Barnesetal.
,2012;Collocaetal.
,2012;Dicksetal.
,2012;O'Haraetal.
,2012;Roshormetal.
,2012).
Thechimpanzeeadenovirusesremainattractiveinparticularduetotheirhighimmunologicalpotencyandlowsero-prevalence,aswellasextremelyloworvirtuallyabsentcross-reactivitywithhumanadenoviruses(Xiangetal.
,2006;Chenetal.
,2010;Collocaetal.
,2012).
Furthermore,chimpanzeeadenovirusesinducestrongerTandBcellresponsesinheterologousprime-boostregimenseveninthepresenceofpre-existingimmunitytoAd5(Tatsisetal.
,2009).
Apartfromusingthesenaturallyoccur-ringhumanandchimpanzeeadenoviruses,newderivativesofadenovirusvectorsthathaveequivalentimmunogenicitybutwithsignicantlylowerpre-existingantibodiesarecurrentlybeingdeveloped(Dicksetal.
,2012;Lopez-Gordoetal.
,2014).
However,itisworthnotingthatpre-existingcellularimmunity(CD8+andCD4+Tcells)maybeamajordeterrentasunlikeantibodies,thesecellsarehighlycross-reactiveacrossadenovirusserotypesbecausetheyaredirectedtoconservedsequencesofadenovirus(Oliveetal.
,2002;Fitzgeraldetal.
,2003;Frahmetal.
,2012).
Nevertheless,somestudiesindicatethatAd5andAd26vectorscanstillelicitsignicantsystemicandmucosalresponseseveninpeoplewithpre-existingimmunity(Barouchetal.
,2013;Smailletal.
,2013).
Immunogenicadenovirusesfacedwithsignicantpre-existingimmunityproblemscanbeimprovedbymodica-tionoftheantibody-bindingsites,especiallywithinthevariablehexonloopsinordertoreduceNAbbindingwhilstmaintainingimmunogenicity(Bruderetal.
,2012).
Thiscanbeachievedviapointmutationsorcompletereplacement(Robertsetal.
,2006;Abeetal.
,2009;Pichla-Gollonetal.
,2009;Bruderetal.
,2013).
Besidestheirimmunogenicitywhenusedalone,adenovirusvaccinesarealsoveryimmunogenicwhenusedtoprimeresponseswhicharethenboostedbyothervaccinevectors(Tatsisetal.
,2007b;Ratto-Kimetal.
,2012).
Inparticular,adenovirus-primefollowedwithMVA-boostcaninducehighfrequenciesofmuchmorelong-lived,potentTcells(Reyes-Sandovaletal.
,2008,2010;Caponeetal.
,2010;Hilletal.
,2010).
APhaseIclinicaltrialofaT-cellHIVvaccinebasedontheconservedregionswasrecentlyshowntoelicitexceptionallyhighmag-nitudeandpolyfunctionalTcellresponses(circa5000IFN-γELISPOTSFU/millioncells)inHIV-negativehealthyvolun-teerswhenprimedwithchimpanzeeAd63(ChAdV63-HIVconsv)followedwithMVA-HIVconsvboost(Borthwicketal.
,2014).
Thevaccine-inducedCD8+Tcellsexhibitedpotentinvitroantiviralactivity.
Thisstudyalsodemonstratedthatthemag-nitudeandfunctionalcapacityofTcellsinducedinaregi-mencomprisingthreeprimingdosesofDNAfollowedwithChAdV63andMVA(DDDCM)didnotdiffersignicantlyfromthoseinasimpliedChAdV63-primeandMVA-boost(CM)regimen.
ThesuperiorimmunogenicityofthisregimenisnotuniquetoHIVimmunogens,asithasalsobeendemon-stratedinpreclinicalandclinicalstudiesofexperimentalmalariavaccines(Dunachieetal.
,2006;Draperetal.
,2010).
Suchrepeatedheterologousimmunizationswiththesametransgeneareknowntoincreaseboththemagnitudeandfunctionalqualityofvaccine-specicTcellsandtoallowmoreefcientmigra-tiontomucosal-associatedtissues(Tatsisetal.
,2007b).
ThisisimportantinHIVinfection,aseffectorimmunecellsinmucosalsitescouldblockHIVtransmission.
IthasalsobeenshownthatDNAprimingfollowedwithadenovirusboost-ingcanreducethelevelofanti-vectorantibodiesandincreasetransgene-specicimmuneresponses(Xiangetal.
,1999;Yangetal.
,2003b),althoughthisisquestionablewhenconsideringtheSTEPstudywhichemployedaDNA-prime/Ad5-boostregi-men.
However,itispossiblethatthisregimeneffectivelyreducedtheanti-vectorantibodyeffect,thuscurtailingapotentiallyworseoutcomeintheabsenceofDNApriming.
Furthermore,prime-boostregimenswithvariouscombinationsofadenovirusvectorswereshowntoinducerobustfrequenciesofHIV-1Gag-specicCD8+Tcellsinnonhumanprimates(Reyes-Sandovaletal.
,2004),althoughithastobeappreciatedthatthelevelofpre-existingAd5immunityinNHPswouldbelowerorabsent.
www.
frontiersin.
orgAugust2014|Volume5|Article439|9OndondoChallengesofHIVvaccinedeliveryAdenovirusesareonlyassociatedwithbenignhumanpatholo-gies,buttheirgreatestlimitationispre-existingimmunitywhichdampensvaccine-specicimmunitybylimitingtransgeneexpres-sion,whilepotentiallyexacerbatingHIVacquisition.
However,allelseconsidered,Adenovirusesremainbyfarthemostpromis-ingvaccinecarriersforHIV-1,becauseunlikeothervectors,theyinduceexceptionallyhighandpersistentfrequenciesofvaccinespecicTcells,whichisarequirementforsustainedHIVcon-trol.
Althoughtheirefcacyhasprobablybeenhamperedbyhighsero-prevalence,thisnolongerseemsaninsurmountablehur-dleinlightoftheenormousamountofresearcheffortsdirectedatndingstrategiestocircumventtheproblemsofpre-existingimmunity(Gabitzschetal.
,2009).
Additionally,replicatingade-novirusessuchasAdH4andAdHu7whichcanbedeliveredorallyintheformofediblecapsulesmighthelptoovercomepre-existingimmunity(Xiangetal.
,2003).
Moreover,intranasalororaldeliveryofadenoviruseshasbeenshowntoprovidesupe-riorprotectioninanimalmodels,andmighttriggermucosalimmuneresponseswell-situatedforpreventingHIVacquisition.
PerhapsadenovirusvectorsengineerednottoinduceCD4+TcellscouldbeanalternativetoovercomeincreasedHIV-1acqui-sitionrisk,althoughlackingCD4+TcellhelpfortheCD8+TcellsmightcompromisethedifferentiationandstabilityandthusefcacyofbothCD8+Tcellsandantibodyresponses(Yangetal.
,2007b).
RECOMBINANTMVA(rMVA)VECTORSApartfromtheirexcellentsafetyprole,inherentadjuvantprop-ertiesandeaseoflargescaleproduction,recombinantvacciniavirusvectorsarealsopopularfortheirlargegenomeswhichfacilitateinsertionoflargerimmunogens(SmithandMoss,1983).
MVAdoesnotreplicateinhumans(CarrollandMoss,1997)duetoserialpassaginginchickembryobroblastswhichresultedinlossofmorethan10%ofitsgenome(Meyeretal.
,1991),anditssafetywaswell-documentedduringthesmallpoxeradicationcampaign(MahnelandMayr,1994).
MVA'spotentimmunostimulatorypropertiesareachievedinacascadeofeventsinvolvinginductionoftype1interferons,variouschemokinesforcellmigrationandactivationofseveralcellularsignalingpathways(Priceetal.
,2013).
TheimmunostimulatorypotencyofMVAislargelyattributedtotheabsenceofgenesinvolvedinimmuneevasion(suchasthosethatinterferewithIFN-α,IFN-β,andTNF-α),thusallowingforstrongerinnateimmu-nitytobegenerated(Antoineetal.
,1998).
MVAvectorsareparticularlyimportantforgeneratingstrongTcellimmunityagainstintracellularpathogensandcancers,buthavealsobeenshowntoinducepotent,hightitreantibodiesinavarietyofdis-easemodelsincludingSIVandmalaria(Gherardietal.
,2003;Draperetal.
,2008,2013;Barouchetal.
,2012).
However,itisnowwellestablishedthatMVAvectorsaremoresuitedforboostingratherthanpriming,anddependingontheprimingvector(e.
g.
,DNAorlivevectorssuchasfowlpoxandaden-oviruses),MVAcaninducevariousphenotypesofTcells,eitherpredominatedbyCD4+orCD8+subsetsoracombinationofboth.
Inpre-clinicalandclinicalstudiesofmalaria,recombinantMVAwasshowntobehighlyimmunogenicasitinducedstrong(andprotective)cellularandantibodyresponsestomalariaanti-gens,eitheronitsownorwhenusedtoboostresponsesprimedbyvectorssuchasDNA,fowlpoxorAdHu5(Schneideretal.
,1998,1999;Gilbertetal.
,1999,2002;McConkeyetal.
,2003;Andersonetal.
,2004;Websteretal.
,2005;Bejonetal.
,2007;Sheehyetal.
,2011).
RecombinantMVA85A(expressingthemycobacterialanti-genAg85A)wasalsoshowntoinducestronganddurableTcellresponsesinvariousclinicalstudies(Scribaetal.
,2012;Tamerisetal.
,2013,2014).
Furthermore,itwasdemonstratedthatMVAexpressinginuenzaAvirusantigens(MVA-NP+M1)efcientlyboostedCD8+Tcellresponsestoachieveclinicalefcacyinhumans(Berthoudetal.
,2011;Lillieetal.
,2012).
Asatherapeu-ticvaccineforcancer,recombinantMVAexpressingthehumanpapillomavirusantigensE2,E6,orE7,withorwithoutIL-12wasshowntoinduceTandBcellimmunityresultingincontrolledHPVloadandsubsequentregressionorcompleteeliminationofprecancerouslesionsinamajorityofvaccinees(CoronaGutierrezetal.
,2004;Garcia-Hernandezetal.
,2006;Albarranetal.
,2007).
Additionally,MVAexpressing5T4antigen(TroVax)induced5T4-specicantibodyandcellularresponseswhichcorrelatedwithtumorregressioninaclinicaltrialofpatientswithadvancedcolorectalcancer(Harropetal.
,2006).
AlthoughthereiscleardemonstrationoftheclinicalefcacyofprophylacticandtherapeuticMVA-vectoredvaccinesformalaria,TB,inuenzavirusandcancer,MVAvaccinesforHIVareyettobeevaluatedforclinicalefcacy.
However,PhaseIandIIstud-iesofMVAexpressingHIVantigens,eitheraloneorinvariousprime-boostcombinationsindicatemodesttostrongimmuno-genicity(Guimaraes-Walkeretal.
,2008;Howlesetal.
,2010;Bakarietal.
,2011;Garciaetal.
,2011;Goepfertetal.
,2011;Gomezetal.
,2011).
Inparticular,theMVA-BcandidateHIVvaccineexpressingmonomericgp120andGag-Pol-Nefpoly-proteinofcladeBwhereMVAwasadministeredwithoutpriorpriming,inducedlong-lastingrobustandpolyfunctionaleffectormem-oryTcellandantibodyresponsesinPhaseI/IIstudies(Garciaetal.
,2011;Gomezetal.
,2011).
Furthermore,MVAhasshownmuchhigherimmunogenicitywhencombinedinprime-boostregimenswithotherprimingvectorssuchasDNA,fowlpoxoradenovirus(Goepfertetal.
,2011;Keeferetal.
,2011;Borthwicketal.
,2014).
InPhase1studiesoftheHIVAimmunogen(basedonHIVcladeAandastringofCTLepitopes),primingwithDNA(pTHr.
HIVA)followedwithMVAboosting(MVA.
HIVA)wasfoundtobeimmunogenic,inducingmultifunctionalandprolif-erativeCD8+andCD4+Tcellresponsesingreaterthan70%ofthevaccinees(Mwauetal.
,2004;Goonetillekeetal.
,2006).
Asdiscussedearlier,aPhaseIstudycombiningDNA-and/orChAdV63-primefollowedwithMVAboosttodeliveranHIV-1TcellimmunogeninducedhighmagnitudeTcellresponseswithpotentantiviralcapacity(Borthwicketal.
,2014).
Thisstudyandsimilarstudiesofmalariavaccines(Sheehyetal.
,2011,2012;O'Haraetal.
,2012)showedthatthemagnitudeofTcellresponsesinducedbyChAdV63aloneweremodest,butsig-nicantboostingwasachievedfollowingMVAadministration,thushighlightingthesuperiorimmunogenicpotentialofMVAwhencombinedwithappropriateprimingvectorssuchasBCG(Whelanetal.
,2009;Scribaetal.
,2012),naturalinuenzaAvirus(Berthoudetal.
,2011)orChAdV63(Collocaetal.
,2012).
FrontiersinMicrobiology|MicrobialImmunologyAugust2014|Volume5|Article439|10OndondoChallengesofHIVvaccinedeliveryRemarkably,aDNA/MVAprimeboostofavaccineexpress-ingmultipleHIVantigensinducedresponsesinabout90%ofvolunteersanddemonstratedstrongimmunogenicitydespitepre-existingimmunitytovacciniavirus(Sandstrometal.
,2008).
AsatherapeuticHIVvaccinevector,rMVAwasfoundtobesafeandtosignicantlyaugmentHIV-specicCD4+andCD8+TcellresponsesinHAART-treatedHIV-infectedvolunteersimmu-nizedwiththeMVA.
HIVAcandidatevaccine(Dorrelletal.
,2006;Ondondoetal.
,2006;Yangetal.
,2007c).
FurthermoreMVAwasfoundtobesafeinneonatesinaPhase1trialwhereMVA.
HIVAwasadministeredtoinfantsborntoHIV-infectedoruninfectedmothers(Afolabietal.
,2013).
TherapeuticadministrationofMVAprimefollowedwithfowlpoxboostexpressingEnv,Gag,Tat,Rev,andNef-RTfusionantigensincreasedthefrequenciesandbreadthofTcellresponsesinyoungadults(Greenoughetal.
,2008).
OneveryattractivefeatureofrMVA(andotherpoxvirusvectors)istheirabilitytoinducemucosalimmuneresponseswhenadministeredviamucosalroutes(GherardiandEsteban,1999,2005).
Inparticular,murineandmacaquesstudiesusingrMVAvectorsdemonstratedinductionofprotectiveHIV-specicimmuneresponseswithinthegenito-rectalmucosae,whichinsomecasescorrelatedwithreduceddiseaseprogression(Belyakovetal.
,1998a;Makitaloetal.
,2004;Wangetal.
,2004).
EnhancedimmunogenicityofrMVAincombinationwithDNAprimingwasalsoachievedbyusingthenon-toxicBsubunitofcholeratoxin(CTB)asmucosaladjuvant(Gherardietal.
,2004).
Thus,eventhoughMVAmaybeinadequateasastand-alonedeliveryplatform,itdenitelyshowsgreaterpotentialasaboostingvec-tor(especiallyforthechimpanzeeadenoviruses)andshouldbeevaluatedforefcacyinadvancedHIVvaccinetrials.
RECOMBINANTNYVACVACCINEVECTORSNYVACvectorisalsoavaccinia-basedvectorwhichwashighlyattenuatedbydeletionof18genesinvolvedinhostrangevir-ulence.
IthasbeenshowntoinducemainlyCD4+Tcellresponses,incontrasttoMVAwhichhasastrongerimmunos-timulatorypotentialandisknowntoinducebothCD8+andCD4+responses(Mooijetal.
,2008).
However,inatrialofchronicallyinfectedpatientsonHAART,aNYVAC-basedvac-cineexpressingGag/Pol/Nef/EnvfromanHIV-1cladeBisolate(NYVAC-B)wasfoundtobehighlyimmunogenicandinducedhighmagnitude,broadandpolyfunctionalCD4+andCD8+Tcells(Hararietal.
,2012).
SimilartoMVA,NYVACelicitsgreaterimmuneresponseswhenusedinprime-boostcombina-tionsratherthanonitsown(Hararietal.
,2008;McCormacketal.
,2008).
IntheseEuroVaccstudies,primingwithDNA-CfollowedwithNYVAC-Cboostelicitedbroad,polyfunctionalanddurableCD4+Tcellresponsesingreaterthan90%ofvolunteers,comparedtoonly40%whenNYVACwasusedalone(Hararietal.
,2008).
Moreover,inapreclinicalstudywithaDNAprimefollowedwithNYVACboost,responsestoavaccineexpressingSIV-Gag/Pol/Envwereboosted10-foldwithimprovedqualityandquantityofTcellresponses(Heletal.
,2001).
ANYVAC/SIV-gpevaccine(expressingSIVGag/Pol/Env)alsoelicitedmucosalimmuneresponsesinmacaquesfollow-ingbothmucosalandsystemicdelivery(Stevcevaetal.
,2002).
DespitetheskewingtowardCD4+Tcellresponses,NYVAChaspotentialtostimulateandboostmorebalancedimmuneresponseswhencombinedwithothervectors,anditspotentialshouldbefullyexplored,especiallyfortherapeuticHIVvaccineswhichrequirere-invigorationofCD4+Tcellfunctions(andfrequencies).
CANARYPOX(ALVAC)VACCINEVECTORSALVACisanattenuatedderivativeofthecanarypoxvirusthatwasrepeatedlypassagedinchickembryobroblastsandthushasrestrictedtropismwithveryminimalpathogenicityinhumans(Yuetal.
,2006).
Despitethecomparativelylowerimmunogenic-itywithrespecttootherpoxvirusvectorssuchasMVA(Zhangetal.
,2007)andNYVAC,thefactthatALVAChasnopoten-tialpre-existingimmunityinhumansmakesitamoreattractiveHIVvaccinedeliveryvector.
TheALVACvector(vCP205)wasshowntobesafeandtoinducestrongCD8+CTLandantibodyresponsestoanHIVvaccineexpressinggp120/41andGag/Polsequences[ALVAC-HIV(vCP205)]inaPhase1clinicaltrialintheUSAinthe1990s(Belsheetal.
,1998).
ArelatedALVAC-basedvaccineexpressingmultipleHIVantigenscomprisingGag,Env,Nef,PolandPro[ALVAC-HIV(vCP300)]alsoinduceddurableCTLresponsesinhealthyvolunteers(Evansetal.
,1999).
Inpre-clinicalstudies,ALVACexpressingSIVGag/Pol/Envprotectedagainstlow-doseoralSIVmac251challengeofneonaterhesusmacaquesinastudydesignaimingtomimicHIVtransmissionthroughbreastmilk(VanRompayetal.
,2005).
MorerecentlyALVAC-basedHIVvaccineshavebeentestedinbothadultsandinfants,wheretheyhaveshownmodestimmunogenicity(Kintuetal.
,2013;Kaleebuetal.
,2014)andintheRV144trialofALVACprime[ALVAC-HIV(vCP1521)]andproteinboost(AIDSVAXB/Ergp120),theonlyHIVvaccinecandidatetoshowefcacy(Rerks-Ngarmetal.
,2009,2013).
WhileitisunclearwhetherthemodestsuccessofRV144wasduetotheimmunostimulatorypotentialofcanarypoxvirusvec-tororimmunogenicityofthevaccineinserts,thefactthattheimmunogensintheRV144trialvaccinesarenotsignicantlydis-tinctfromthoseusedinotherHIVvaccinesintheeldeliminatesthe"immunogeneffect,"thusleavingthevectorsanddeliverymethodsaspossibleexplanations.
But,astheAIDSVAXvaccine(recombinantgp120)showednoefcacyinearliertrials(VAX003andVAX004),thesuccessofRV144pointstothedeliveryvec-tor(ALVAC)andpossiblythebenetsofacombinedviralvectorandproteinimmunizationregimenasopposedtohomologousboosts.
Thismightsuggestthatcombinedlivevector-primingandprotein-boostimmunizationmodalitiescouldbefurtherrenedtoachievegreaterpotentialforincreasedefcacy.
Alternatively,protectionbythecombinedvaccinescouldbeattributedtoTcellhelpfortheantibodyresponses.
ItmusthoweverbenotedthatunliketheRV144study,VAX003,andVAX004wereconductedinhigh-riskpopulations,whichmightbeastrongconfound-ingfactor,althoughthismightaswellbereectiveoftheverylimitedefcacyofstand-aloneproteinsubunitvaccinesforHIV.
DespitethemodestefcacyofRV144,theimmuneresponseswanedwithinashorttimeindicatingthatALVACmaynotbeaparticularlysuitablevectortoinducelong-livedanti-HIVimmunity,unlessitiscombinedwithotherpowerfulvectors.
Inwww.
frontiersin.
orgAugust2014|Volume5|Article439|11OndondoChallengesofHIVvaccinedeliverydirectcomparisonofimmunogenicity,ALVACwasfoundtobelessimmunogenicthanMVA,possiblyduetoMVA'senhancedantigenexpressionwithindendriticcells(Zhangetal.
,2007).
Nonetheless,ALVACisstillquitepromisingforHIVvaccinedeliv-ery,asitisalsoalreadylicensedfordeliveryofseveralveterinaryvaccinesincludingthefelineleukemiavirus(FeLV)andfelinerabiesvaccine(PUREVAX)andRECOMBITEKvaccinewhichprotectsagainstcaninedistemper,equineinuenzaandWestNileVirus.
MYCOBACTERIUMBOVISBACILLUSCALMETTE-GUERIN(BCG)VACCINEVECTORSPreventionofbreastmilktransmissionofHIV-1remainsanimportantgoalforHIVvaccineresearchers.
BCGisanattenuatedvaccineproventobesafeandhasformanyyearsbeenadmin-isteredtonew-bornbabiestoimmunizeagainstMycobacteriumtuberculosis(Mtb).
Assuch,BCGprovidesaplatformtoco-deliverHIVimmunogensinneonatestopotentiallyprotectagainstmother-to-childtransmissionofHIV-1.
ThepotentialuseofBCGasanHIVvaccinevectorwasexploredinpreclinicalstud-iesofadultandnew-bornBALB/cmiceusingtheHIV-1cladeAGagimmunogen(HIVA)(Mwauetal.
,2004).
PrimingwithrecombinantBCGexpressingHIVA(BCG.
HIVA)inducedHIV-specicTcellresponseswhichwereefcientlyboostedwithrMVA(MVA.
HIVA)(Hopkinsetal.
,2011a,b;Saubietal.
,2011,2012).
Infurtherrelatedstudies,primingwithBCG.
HIVAandboostingwithacombinationvaccineexpressingHIVAandtheMtbanti-gen85A(mMVA.
HIVA.
85A)inducedrobustIFN-γ-producingTcellstobothHIV-1andMtbantigens.
Moreover,inadultmice,BCG.
HIVAprimedweakHIV-1-specicCD8+Tcellresponses,whichwerestronglyboostedwitheitherAd5(HAdV5.
HIVA)orrMVA(MVA.
HIVA).
Thus,immunizationofneonateswithrecombinantBCGexpressingHIV-1immunogens,followedwithanMVAboostexpressingthesameHIVimmunogenmightcon-currentlyprotectagainstMtbandHIV-1.
ItremainstobeseenhowtheserBCG-vectoredHIV-1vaccineswillperforminclinicalstudies.
REPLICATION-COMPETENTVIRALVECTORSTheunprecedentedsuccessoftheSIVmac239nefexperimen-talvaccineinrhesusmacaques(Reynoldsetal.
,2008,2010)givesahintthatpossibly,asuccessfulHIVvaccinewillrequirealivedeliveryvector,astheseareknowntoinducehighmag-nitude,durableandbroadlyeffectiveimmunity.
Butasexcitingasthismaysound,therearesignicantchallengesintermsofbalancingthesafetyandimmunogenicityvs.
replicativecapacity.
Oftheadenoviruses,Ad4andAd7havebeentestedinclin-icalstudies(byoraldelivery)andweresuccessfullyusedforthepreventionofrespiratoryandentericillnesses(HokeandSnyder,2013).
Thesereplicationcompetentadenovirusesnat-urallyinfectandreplicateinmucosaltissues(PattersonandRobert-Guroff,2008)andcouldthusbequiterelevantforHIVvaccines.
PreclinicalstudiesofrecombinantAd4expressingHIV-1cladeCenvelopegp160(Ad4Env160),gp140(Ad4Env140),andgp120(Ad4Env120)demonstratedinductionofenvelope-specicTcellsinmiceandantibodyresponsesinrabbits(Alexanderetal.
,2013).
Serumfromtherabbitswasabletoneutralizeatier1cladeCpseudovirusandtoalesserextent,homologousandheterologoustier2pseudoviruses.
AreplicatingCMVvectoredSIVvaccine(RhCMV-SIV/Gag,Rev/Nef/Tat,Pol,Env)wasshowntopersistinvaccinatedrhesusmacaquesandconferreddurableprotectionfromdiseasepro-gressionowingtoinductionofhighmagnitudeeffectormemoryCD8+Tcells,despitepre-existingCMVimmunity(Hansenetal.
,2009,2011,2013).
Otherreplication-competentvirusesinclinicaldevelopmentincludetheTianTanvacciniavirus(TT),Vesicularstomatitisvirus(VSV),aderivativeofNYVAC(NYVAC-C-KC)andSendaivirus(SeV).
TheTianTanvacciniaviruswasusedinaDNA-prime(pCCMp24)/Tiantanboost(rddVTT-CCMp24)reg-imenwhereitwasshowntoinduceantibodyandHIV-specicTcellresponses(includingmemoryphenotypes)followingintra-musculardeliveryandhasnowbeenadvancedtoPhaseIIclinicalstudyinChina(Excleretal.
,2010;Liuetal.
,2013).
TheNYVAC-C-KCvectorshaveshownsuperiorcellularandhumoralimmu-nitycomparedtothenon-replicatingNYVAC,atleastinmice(Kibleretal.
,2011;Gomezetal.
,2012).
ASendaivirusvectorexpressingSIVGag(SeV-Gag)admin-isteredintranasallyasaboostfollowingintramuscularprimingwithanenvelope-independentDNAvaccine(CMV-SHIVdEN)demonstratedverystrongsuppressionofintravenousSIVmac239challengeinrhesusmacaques,whichwasextendedovera3-yearperiod(Matanoetal.
,2001;Takedaetal.
,2003;Kawadaetal.
,2007).
ClinicalinvestigationsofaSeV-basedcandidateHIVvaccineexpressingGag[SeV-G(NP)]areongoinginRwanda,KenyaandtheUK,anditisexpectedthatresultsofthesetri-alswillprovideafeelofthepotentialofSendaivirusasanHIVvaccinevector.
AttenuatedVSVisanon-pathogenic,lowsero-prevalencevectorthatwasalsofoundtobequitepromis-ingasitachievedviruscontrolduringSHIV89.
6PchallengeexperimentsinrhesusmacaquesimmunizedwithrVSVexpress-ingGagandEnv(Roseetal.
,2001).
RecombinantVSVvectorwasshowntoinducestrongmemoryCTLresponsestoHIV-1GagandEnvinmice,whichweresignicantlyampliedbyboostingwithheterologousrecombinantvacciniavirusvectors(Haglundetal.
,2002).
ItispostulatedthatintranasaldeliveryofrVSVvaccinesincombinationwithIL-12administeredduringDNAprimingmayelicitmucosalimmunityforHIV(Eganetal.
,2004,2005).
PrimingwithrVSV-Gag/Pol/Env(VSV-SIVgpe)fol-lowedwithMVA-Gag/Pol/Env(MVA-SIVgpe)boostwasshowntoinducestrongandlong-livedantibodyandcellularresponsesthatachievedlong-termcontrolofSHIVreplication(Schelletal.
,2009;VanRompayetal.
,2010).
Anongoingphase1trialofrVSV-HIV-1Gagvaccine(HVTN090)hasdemonstratedclini-calsafetyandTcellimmunogenicityfollowingintramusculardelivery(Fuchsetal.
,2012,2013),althoughthemagnitudeofresponseswaslimitedandwillmostlikelyrequirepriming(orboosting)withsuitablevectors.
Othervectorsbeingexploredincluderhadinovirus(Bilelloetal.
,2011),yellowfevervirus(Bonaldoetal.
,2010),rabiesvirus(Fauletal.
,2009),Venezuelanequineencephalitisvirus(VEEV)(Caleyetal.
,1997)andSemlikiForrestvirus(Schelletal.
,2011),allofwhichhaveshownstrongimmunogenic-ity,withsomeachievingefcacyinNHPchallengeprotec-tionmodels.
InuenzavirusvaccinevectorshavealsobeenFrontiersinMicrobiology|MicrobialImmunologyAugust2014|Volume5|Article439|12OndondoChallengesofHIVvaccinedeliverystudiedextensivelyandhavebeensuccessfullyusedasdeliveryvehiclesforseveralexperimentalHIVvaccines(Lietal.
,1993a,2013;Musteretal.
,1994,1995;Garcia-SastreandPalese,1995;Paleseetal.
,1997;Sextonetal.
,2009).
Asnaturalmucosalpathogens,inuenzavirusvectorsarewell-adaptedforstimulat-ingrobustmucosalandsystemicimmunitycomprisingbothanti-bodyandcellularimmuneresponses(Garcia-SastreandPalese,1995;Paleseetal.
,1997;Lietal.
,2013).
Mucosalimmuniza-tionofmicewithchimericinuenzavirusvectorsexpressingtheHIV-1gp120V3looppeptide(IHIGPGRAFTYTT)(Lietal.
,1993a)orthegp41epitope(ELDKWA)(Musteretal.
,1993,1994,1995)wasshowntoinducepersistentantibodyandCTLresponses.
Inuenzavirusvectorsmightbesuccessfullycom-binedinprime-boostregimensasdemonstratedininuenzavirus-primeandMVA-booststudiesinmice(Gherardietal.
,2003),althoughtheyhavealimitedcapacityforimmunogeninsertion.
HETEROLOGOUSPRIME-BOOSTSTRATEGIESFORENHANCEDHIVVACCINEEFFICACYRepeatedvaccinationinheterologousprimeboostapproachesemployingdifferentvectorcombinationsinaspecicorderiswidelyacceptedasthemostefcientmeanstoinducesupe-riorqualityandquantityofvaccine-specicimmuneresponses(Lietal.
,1993b;RamshawandRamsay,2000;Estcourtetal.
,2002;McShane,2002;Newman,2002).
Heterologousprimeboostregimesallowimmuneboostingwithoutcreatingproblemsofanti-vectorimmunity.
Furthermore,heterologousprime-boostsresultinincreasedfrequenciesofmemoryTcells,andithasbeenshownthatthenumberofimmunizationscansignicantlyinuencethephenotypeofvaccine-specicmemoryTcells,withsecondaryandtertiaryimmunizationsgeneratingeffector-likememoryTcellswhichpreferentiallyaccumulateinnon-lymphoidorgans(Masopustetal.
,2006;NolzandHarty,2011).
Thesendingshavehugeimplicationsonthequalityandpotentialofmucosalsurveillanceofcellsinducedinprime-boostvaccinationprotocols.
Distinctliveviralvectorscanbecombinedinprime-boostregimestomaximizeimmuneresponses.
InmoststudiesDNAhasbeenusedforpriming,butrecentlyanumberofvirusvectorsincludingAdenoviruses,inuenzavirusesaswellasfowlpoxandcanarypoxhavebeentestedinprime-boostregi-mens.
Prime-boostregimenscomprisingAdenovirusandMVAorheterologousAdenovirusstrainshaverecentlybeenshowntoinducebothcellularandhumoralimmuneresponsestoSIVandmalariaantigens(Draperetal.
,2008;Liuetal.
,2009;Tatsisetal.
,2009;Barouchetal.
,2012).
Inparticular,impres-siveprotectionagainstSIVacquisitioninrhesusmonkeyswasachievedfollowingimmunizationwithaSIVSME543-Gag/Pol/EnvvaccinedeliveredbyAd26/MVAandAd35/Ad26prime-boostregimenswhichinducedamixtureofneutralizingandbindingantibodyaswellascellularimmuneresponses(Barouchetal.
,2012).
Thisstudyfurtherdemonstratedinductionofbothsys-temicandmucosalimmuneresponsesandachievedprotectionfrombothacquisitionanddiseaseprogression,thusprovidingproofofconceptthatHIV-1acquisitionandpost-infectioncon-trolmightbeachievedbyimprovedimmunogendesignanddeliverystrategies.
Heterologousorhomologousregimenscom-prisingDNA/MVA,MVA/Ad26,andMVA/MVAwerecompar-ativelylessefcaciousthanAd26/MVAorAd35/Ad26,whichreducedviralloadset-pointsbygreaterthan100-fold.
APhase1clinicaltrial(B003/IPCAVD-004)assessingtheimmunogenic-ityofvariousprime-boostcombinationsofAd26andAd35isongoing,andwillinformtheeldontheclinicalutilityofthesetwopromisinghumanadenovirusvectorcombinations.
AnotherNHPstudyemployingthreedosesofplasmidDNAfollowedwithAd5todelivervariousimmunogenscomprisingSIV-Gag,SIV-EnvmosaicimmunogensorSIVmac239Envalsoinducedcellularandantibodyresponses(neutralizingantibodiesandADCC)andachievedsignicantprotectionagainstintra-rectalchallengeofrhesusmacaqueswithSIVsmE660thatwasamismatchofthevaccinestrain(Roedereretal.
,2014).
Moreover,superiorimmunogenicityofprime-boostcombinationsusingDNA/ChAdV63/MVAorChAdV63/MVAhasbeendemonstratedinaPhaseIstudy(Borthwicketal.
,2014).
ThesuccessofaviralvectorforpriminghasalreadybeendemonstratedintheRV144studywhichusedALVACtoprimeantibodyandTcellresponses,followedwithaproteinboost(Rerks-Ngarmetal.
,2009).
AlthoughprimingwithDNAhasalwaysseemedabetterstrategyasitfocusestheimmuneresponsetotheimmunogentransgene,asopposedtoviralvectorswhichcarrymultitudesofimmunogenicantigenswithintheirback-bones,theefcacyofviral-vectorprimingfollowedbyproteinboostingintheRV144studyandthesuperiorimmunogenicityofvirus-prime/virus-boostinthestudiesdiscussedabovesup-porttheuseofviralvectorsforbothprimingandboosting.
Therefore,heterologousprime-boostregimenscombiningDNA,AdenovirusandMVAorALVACarelikelytoachieveefcacyagainstHIVinclinicaltrials,althoughthiswillrequirethatHIVEnvorgenesencodingNAbepitopesareincludedintheimmuno-genformulations(Barouchetal.
,2012,2013).
Preclinicalstudiesinvestigatingthepotentialofcombinedchimpanzeeadenovirus,MVAandproteinprime-boostregimenstodeliverimmuno-genswhichcanstimulatebroadlyneutralizingantibodiessuchasBG505areunderway.
ThesuccessofrecombinantadenovirusvectorprimingfollowedwithMVAboostininducinghigh-titreantibodieseitherontheirownorinconjunctionwithmolecu-laradjuvantshasalreadybeenproveninpreclinicalstudiesofmalaria(Draperetal.
,2008).
Possiblythepersistenceofaden-ovirusensurescontinuousantigensupplywhichissuitableforBcellpriming.
ItisenvisagedthatoptimaldeliverymodalitieswhichcombineHIVimmunogenselicitingBNAbswiththosethatstimulatestrongTcellimmunitywillachieveenhancedvac-cineefcacy.
OfcourseamajorcaveatofcombiningstrongTcellvectorswithantibody-producingimmunogensisthepossi-bleimmuneinterferenceofantibodyproductionbythesevectors.
Nevertheless,thiscanbeoptimizedperhapsbyemployingsev-eralproteinboostswithpowerfuladjuvantsinordertodeliverthemostbalancedimmuneresponses.
POTENTIALVACCINE-ASSOCIATEDRISKOFHIVACQUISITIONTheincreasedriskofHIV-1acquisitionintheSTEPandHVTN505trialvaccineesdespitestrongimmuneresponseshaswww.
frontiersin.
orgAugust2014|Volume5|Article439|13OndondoChallengesofHIVvaccinedeliveryraisedmanyunansweredquestionsastowhetherthevaccinedeliverymodalities,suboptimalpotencyoftheHIVimmuno-gensorotherunknownexternalfactorsareresponsibleforvaccinefailure.
Asfarasimmunogendesign,thevaccinecon-structusedintheSTEP,PhambiliandHVTN505studiesrepre-sentsoneofthemostcomprehensiveimmunogenswithbroadcoverage,asitcompriseda6-plasmidDNAandrAd5vec-torsexpressingGag/Pol/Nef/Envproteinsfrommultipleclades.
Otherimmunogensbasedonsimilarorfarlesscomprehen-siveHIVproteincoveragehavealsobeentestedandshowedvarieddegreesofimmunogenicity.
Thus,anunderstandingonwhethertheoutcomesoftheSTEP/Phambili/HVTN505studies(efcacy,immunogenicityorincreasedriskofacquisition)wouldhavebeendifferentifotherdeliveryvectors(suchasDNA/MVA,DNA/ALVACorDNA/Ad35/Ad26orevenareplicatingCMVvec-tor)hadbeenusedtodeliverthesameimmunogensinthesetrialsiskeyforfurtherprogressionintheeld.
AnAlternativewaytolookatthisistoaskwhethertheresultsofRV144trialwouldhavebeenworseifAd5wasusedinsteadofALVAC,assumingthattheprevalenceofAd5neutralizingantibodiesintheRV144pop-ulationdoesnotdiffersignicantlyfromtheSTEPandPhambilistudypopulations.
Thendingthatthevaccinewasnotatallefcaciousamongstmenwhowerecircumcisedorinuncircumcisedmenwhodidnothavepre-existingAd5immunityraisesdoubtsastowhetheref-cacywasgenuinelyhinderedbyAd5serostatus.
ThisisfurthersupportedbytheresultsofHVTN505studywhichtestedonlycircumcisedindividualswithoutAd5antibodies,yetnoprotec-tionwasobserved.
Moreover,theabsenceofAd5antibodiesintheHVTN505studyparticipants(whichshouldintheoryallowforhigherimmunogenicity)wasnotassociatedwithanysignicantenhancementofthemagnitudeandqualityofimmuneresponsesoverthoseseenintheSTEPandPhambilistudies.
Therefore,Ad5serostatuscanbesafelyremovedfromtheequation,leav-ingtheonlyplausibleexplanationforvaccinefailuretobethequalityandquantityofimmuneresponses.
IfthiscanbefullydocumentedbeyonddoubtthenitimpliesthateithertheAd5deliveryvectorortheHIV-1antigensusedwerenotimmunogenicenoughtoaffordprotectionfrominfectionorpost-infectionviruscontrol.
However,consideringthatAd5isoneofthemostimmunogenicvectorscurrentlyavailable,(andthattheimmuno-genusedinthesestudieswascomprehensiveandwell-designed),thiswouldhaveseriousimplicationsforvaccinedesign,asitsetsthebarreallyhighfornewcandidatevaccineswhichwouldbeexpectedtostimulateresponsesofextremelyhighermagnitudesandsuperiorqualitativepropertiesinordertoachieveeventheminimalefcacy.
Onabrighterside,thiswouldperhapsinsti-gateintensescrutinyofthecurrentmethodsusedforassessingvaccineimmunogenicityinordertostandardizeandsynchronizewiththoseforefcacymeasurements.
Oneotherinterestingquestioniswhether(andhow)Ad5sero-positivityisintrinsicallyassociatedwithHIVacquisition.
AlthoughstudiesofuncircumcisedmendocumentincreasedriskofnaturalHIVacquisitionduetoahighfrequencyofCD4+CCR5+targetcellsintheforeskin(Prodgeretal.
,2012),howthisrelatestheirAd5sero-positivityandtitrelevelswithinfectionriskisnotveryclear.
However,thefactthattheriskofHIV-1acquisitionintheSTEPstudydiminishedwithtimeafterimmunization,andeventuallyleveledupwithplaceborecip-ients(Buchbinderetal.
,2008)mightinactualfactsupportaroleforvaccine-inducedimmuneactivationinHIVacquisition(Tenbuschetal.
,2012).
Perhapsthiscouldbeasaresultofgeneralizedimmuneactivationorinductionofactivatedvaccine-specicHIV-1targetswithmucosal-homingproperties.
Shouldthisbethecase,thenthiswouldnotbeuniquetoAd5vectorsaloneanditwouldthereforebeexpectedtoequallyaffectotherdeliveryvectorscapableofinducingactivatedmucosal-homingtargetcells.
However,astherewerenonotabledifferencesinactivatedcirculatingTcellsbetweenvaccineesandplacebos,itisunlikelythatgeneralizedvaccine-inducedimmuneactivationplayedarole,althoughitremainspossiblethattherecouldhavebeensignicantdifferencesinactivatedtargetsatmucosalsiteswhichwerenotmeasured.
ThisthenraisesanotherinterestingquestionastowhethertheoutcomeoftheSTEP/Phambili/HVTN505studieswouldhavebeensignicantlyworse(orbetter)hadthevaccinesbeenadmin-isteredmucosally.
Thisquestionmighthavetwosidestoit,inthesensethatmucosaldeliverywouldprobablyhavegeneratedhigherfrequenciesofactivatedHIVtargetsatthegenitalmucosae,henceincreasingthepotentialoffuellinginfection.
Ontheotherhand,inductionofrobustandpolyfunctionaleffectorimmuneresponsesatmucosalportalsofHIVentrywouldprobablyhaveclearedtheincomingHIVbeforeinfectionbecameestablished.
Althoughthesequestionshavenoclearcutanswersandcannotbeaddressedretrospectivelyinthecontextoftheclinicaltrialstheyrelateto,theyhoweverhighlighttheextremechallengesinHIVvaccinedelivery,andnewstudiesdesignedtodirectlytackletheseissueswillbequiteinformativeforfuturevaccinedevelopmentresearch.
Studieslookingatwhetherthemostpromisingdeliv-eryvectors(andtherespectiveimmunogens)canconcurrentlyinduceactivatedHIV-1targetcellsthatpreferentiallyhometoandpersistinthegenito-rectalandGALTmucosae,andwhetherornotsuchvaccine-inducedcellsbecomehighlypermissivetoHIVinfectionwillbeofparticularinterestineffortsaimedatlimit-ingtheriskofvaccine-inducedHIV-1acquisitionandaccelerateddiseaseprogression.
PERSPECTIVESANDCONCLUSIONIdeally,vectorsforHIV-1vaccinesshoulddirectlytargetanti-genpresentingcells(APCs)orotherimmunecellstoinducelong-lived,strongantibodyandcellularresponsesthatcanbroadlydisseminatetosystemicandmucosalcompartments.
Thevaccine-specicTcellsinparticularshouldbebroadandcontainactivatedeffector,effectormemoryandcentralmem-oryphenotypesinvariousproportionsinordertoachieveaproperbalancebetweenimmediatevirusclearanceandsus-tainedimmune-surveillanceforlong-termprotection,asdemon-stratedbytheRhCMV-SIVvaccinewhichcontrolledandclearedpathogenicSIVinfection(Hansenetal.
,2009,2011,2013).
Furthermore,vectorswhichcanstimulatepolyfunctionalCD4+andCD8+TcellsthatactinconcertwithBcellstoinhibitHIVreplicationthroughavarietyofmechanismswouldbemoresuc-cessfulthanthoseinducingonlymono-functionalTcellsofeithersubsetalone.
FrontiersinMicrobiology|MicrobialImmunologyAugust2014|Volume5|Article439|14OndondoChallengesofHIVvaccinedeliveryOfparticularrelevancetoprotectionfrominfectionwouldbevaccinevectorsassociatedwithhomingandlong-termpersistenceofvaccine-inducedimmuneresponsivecellsatthegenito-rectalmucosae(ChanzuandOndondo,2014)aswellasothermucosalsitesservingasHIVreservoirs.
ThisremainsaveryimportantpriorityinconsiderationofthesignicantrapidCD4+TcelldepletionintheintestinalmucosadespitesuccessfulHAART(Brenchleyetal.
,2004;Mehandruetal.
,2004).
Thus,vac-cinevectorswhichnaturallyinfectcellswithinmucosalinduc-tivesites,especiallythereplication-competentvirusessuchasadenovirusandinuenzavirusvectors(Gherardietal.
,2003;Sextonetal.
,2009)whichcanbeadministeredmucosallytotriggermucosalimmunity,wouldbemoresuitedforHIVvac-cinedelivery.
Alternatively,deliveryofvaccinesviarouteswhichenhancemucosalimmunity(Holmgrenetal.
,2003;HolmgrenandCzerkinsky,2005;CzerkinskyandHolmgren,2012)orvec-torspossessinganinherentabilitytoinducemucosalimmunityinadditiontosystemicimmuneresponsesfollowingparenteralormucosalvaccinedelivery(Moseretal.
,2007)maybeemployed.
Virosomevectorsforinstance,possessintrinsicadjuvantprop-ertiesandauniqueabilitytotargetantigenpresentingcells,hencehavebeenverysuccessfulatinducingprotectivemucosalimmunityinSHIVchallengemodels(Moseretal.
,2007;Bomseletal.
,2011;Leroux-Roelsetal.
,2013).
OthervectorssuitableformucosalvaccinedeliveryincludeVEEV(Caleyetal.
,1997).
Intheabsenceofmucosaldeliveryvectors,newdeliverytechnolo-giessuchasthe"primeandpull"approachmaybeutilizedinconjunctionwithsystemicdeliverymethodstoenhancemucosalhomingandsubsequentimmunity(Azizietal.
,2010;ShinandIwasaki,2012;Tregoningetal.
,2013).
Inthisapproach,spe-cializedchemokinesareadministeredinmucosalcompartmentsfollowingparenteralimmunizationinordertochemo-attracttheactivatedvaccine-specicimmunecellsfromthesystemiccompartments.
Furthermore,useofmucosaladjuvantssuchasCTBandLT-B(Albuetal.
,2003;YukiandKiyono,2003),pro-inammatorycytokines(IL-1α,IL-12,andIL-18)(Belyakovetal.
,1998b;Bradneyetal.
,2002;Albuetal.
,2003)orimmunostim-ulatoryCpGmotifs(Horneretal.
,2001;Dumaisetal.
,2002;Daftarianetal.
,2003;Jiangetal.
,2005)whichtargetrecruitmentofimmunecellstothemucosalsiteswouldbeuseful.
Co-deliveryofvaccineswithgenesencodingCCL19andCCL28wasalsoshowntoenhanceHIV-1-specicTandBcellresponsesinthesystemicaswellasmucosalcompartments(Huetal.
,2013).
Inconsiderationofbothsafetyandimmunogenicitygoalsasalreadydiscussed,andwithparticularemphasisonthepivotalroleofCTLresponsesincontrollingHIVreplication,itseemsthatnon-replicatingviralvectorswithlowersero-prevalencewouldbehighlydesirable,mainlyduetoexcellentsafetyprolesandpotentadjuvanteffectallowingforinductionofverystrong,highqualityandlong-livedcellularandhumoralimmunity.
However,althoughsafetyandreducedimmuneinterferencewouldbeguar-anteed,amajorcaveatwouldbethattheselowersero-prevalencevectorsmaynotbeadequatelyimmunogenic.
Perhapsthesevec-torscanbere-engineeredtoimprovetheirimmunogenicpoten-tial.
Forinstance,theimmunogenicityofvectorssuchasMVAandNYVACcanbeimprovedbyremovalofgenesassociatedwithimmuneevasionwhichcounteractimmuneresponsestothevaccine(Kibleretal.
,2011;Gomezetal.
,2012;Garcia-Arriazaetal.
,2013).
Inothercases,additionofcytokine-encodinggenessuchastype1interferons,IL-12orGM-CSFcanenhancevac-cineefcacy(Gherardietal.
,1999,2000;Rodriguezetal.
,1999;RamshawandRamsay,2000;Bayeretal.
,2011).
Furthermore,chemokinessuchasCCL3whichrecruitsprofessionalAPCscanbeco-deliveredwithHIVantigenstoenhancevaccineimmuno-genicity(Lietzetal.
,2012).
Alternatively,vectorscapableofinducingsubstantialimmuno-genicityinthepresenceofpre-existingnaturalorvaccine-inducedanti-vectorimmunitymaybeworthconsidering,althoughitisexpectedthatndinghighlyattenuatedvectorswhicharesafeandremainimmunologicallypotentwillbeequallychalleng-ing.
Asdiscussedearlier,combiningsomeofthemostpromisingvectorsinheterologousprime-boostregimenswillsignicantlyenhancethequantity,qualityandprotectiveefcacyofimmuneresponses.
However,inconsiderationofthepossiblecatastrophiceffectsofelevatedimmuneactivationlikelytoarisefromvar-iousvectorcombinations,itwouldbeexpectedthatsuitableHIVvaccinevectorsmaintainlowerlevelsofimmuneactiva-tiontolimitthenumbersofactivatedHIV-1targets(Perreauetal.
,2008;Benlahrechetal.
,2009)likelytofuelinfectionintheeventofexposure.
Furthermore,itisdocumentedthatintheabsenceofaverystrongprotectiveimmuneresponsestocoun-teracttheincomingvirus,thepresenceofvaccine-specicTcellswhichareactivatedandhencemoresusceptibletoinfectionmayincreasetheriskofacquisition(Tenbuschetal.
,2012).
Whetheritispossibletoachievepotentimmunostimulatorycapacitybutwithminimalimmuneactivationstillremainsasubjectofintenseinvestigation.
Whensafetyandversatilityareconsidered,andinfullviewoftheenormoustechnologyadvancementsinDNAplasmidformu-lationsanddelivery,inconjunctionwithotherimmunomodula-toryinterventionssuchasSAPdepletionanduseofmolecularadjuvants,recombinantDNAvaccinesremainveryattractive,althougheffortstoimprovestimulationoflong-livedeffec-tor/memoryCD8+Tcellphenotypesarestillneededtoachievelong-termefcacy.
Undoubtedly,repeatedimmunizationsorcombiningDNAvaccineswithpersistent(replicating)vectorsorvectorswithslowimmunogenreleasefeatureswouldinducedurableimmunity.
Nonetheless,replicatingvectorswithlowersero-prevalenceandminimalpathogenicity(Roseetal.
,2001;Kawadaetal.
,2007;Fuchsetal.
,2013;Liuetal.
,2013)arebeingconsideredastheywouldprovideapersistentpoolofHIVvaccine-speciceffectormemoryphenotypecytotoxicTcellswhicharecriticalforlong-termprotectionfromdiseaseprogres-sion(Hansenetal.
,2009,2011,2013).
Sucheffectormemoryresponseswouldotherwisebeexpectedtowanewithtime,intheabsenceofantigen.
Replicatingvectorsmayalsobebetter-suitedforinductionofbroadlyneutralizingantibodiessincepersistingexpressionoftheEnvantigensislikelytodrivehighlevelsofsomaticmutationsrequiredforafnitymaturationoftheseanti-bodies(vanGilsandSanders,2013).
AnewstrategythathasbeenproventoinducedurableandprotectiveantibodyresponsesinhumanizedmicechallengedwithhighdosesofdiverseHIVstrainsisvectoredimmunoprophylaxis,whichinvolvesinser-tionofimmunoglobulingenesintoviralvectorssuchasthewww.
frontiersin.
orgAugust2014|Volume5|Article439|15OndondoChallengesofHIVvaccinedeliveryadeno-associatedvirus(AAV)toprovidelong-termexpressionofneutralizingantibodies(Balazsetal.
,2012,2014).
Moreover,inclusionofTh2cytokinessuchasIL-4,IL-5,andIL-6whichenhanceBcellmaturationintolong-livedantibodysecretingcellsisyetanotherstrategyalreadyshowntoinducehightitresofneutralizingantibodieswhichprotectedmicefromFriendVirus(Ohsetal.
,2013).
Otherpossiblestrategiesincludeuseoflentivi-ralvectorsexpressingBcellreceptorgenesencodingneutralizingantibodiestoHIV-1totransducehaematopoieticstemcells(Luoetal.
,2009).
Sinceoptimuminductionofimmuneresponsestovaccinesstronglydependsoninnateimmunetriggeringaswellasthelevelsoftransgeneexpression,vectorswithnaturaladjuvantproper-tiesandthereforecapableofstronglyinducinginnateimmu-nityareparticularlyimmunogenicandthushighlydesirable.
However,caremustbetakentobalancebetweenstronginnatefunctionstimulationandthepotentialriskofinducingpotentstimulationofimmuno-pathologicaleffects,includingimmunehyper-activation.
Inconclusion,asuccessfulvaccineforHIVwillhavetostimu-latepotentantibodyandCTLresponsesbroadenoughtocovermultipleHIVvariantsandwithpotentialtoneutralize,bindorsuppressHIV-1replicationforsustained(possiblyinnite)lengthsoftime.
Ofutmostimportance,howeverisgenerationofvaccine-specicimmuneresponsesinthegenito-rectalmucosae,themajorportalsofHIVentry.
Emergingevidencestronglysuggeststhatnon-pathogenic,low-levelreplicatingviralvectorswhichcanmimicliveattenuatedvaccines,butwithlowsero-prevalencemightbethebestwaytoachieveHIVvaccineefcacy.
Asthesevectorspersistlongafterimmunization,theyarecapableofinducingandmaintainingeffector/memoryCTLsforcontin-uedimmunesurveillancethatisnecessarytoprotectfrominfec-tion,diseaseprogressionandtoclearorpreventestablishmentoflatentreservoirs.
Thus,toachieveprotectiveefcacyHIVvaccinedevelopmentwillneedingeniousstateofthearttechnologiestocreatetheverybestofTcellandantibodyimmunogens,deliv-eredbythemostpotentbutsafevectorspossessingremarkablyhighcapacitytoinducebothsystemicandmucosalimmunity,butwithoutsignicantimmuneactivationlikelytofuelHIVacquisi-tion.
RecentsignicantadvancesinvaccinedeliverytechnologiesandHIVimmunogendesignprovidehopethatthisisnotfarfromreality.
ACKNOWLEDGMENTSBeatriceO.
OndondoisaseniorHIVvaccinedevelopmentimmu-nologistemployedonaresearchgrantsupportedbyMRCUK.
REFERENCESAbbink,P.
,Lemckert,A.
A.
,Ewald,B.
A.
,Lynch,D.
M.
,Denholtz,M.
,Smits,S.
,etal.
(2007).
ComparativeseroprevalenceandimmunogenicityofsixrareserotyperecombinantadenovirusvaccinevectorsfromsubgroupsBandD.
J.
Virol.
81,4654–4663.
doi:10.
1128/JVI.
02696-06Abe,S.
,Okuda,K.
,Ura,T.
,Kondo,A.
,Yoshida,A.
,Yoshizaki,S.
,etal.
(2009).
Adenovirustype5withmodiedhexonsinducesrobusttransgene-specicimmuneresponsesinmicewithpre-existingimmunityagainstadenovirustype5.
J.
GeneMed.
11,570–579.
doi:10.
1002/jgm.
1332Afolabi,M.
O.
,Ndure,J.
,Drammeh,A.
,Darboe,F.
,Mehedi,S.
R.
,Rowland-Jones,S.
L.
,etal.
(2013).
AphaseIrandomizedclinicaltrialofcandidatehumanimmunodeciencyvirustype1vaccineMVA.
HIVAadministeredtoGambianinfants.
PLoSONE8:e78289.
doi:10.
1371/journal.
pone.
0078289Albarran,Y.
C.
A.
,delaGarza,A.
,CruzQuiroz,B.
J.
,VazquezZea,E.
,DiazEstrada,I.
,MendezFuentez,E.
,etal.
(2007).
MVAE2recombinantvaccineinthetreat-mentofhumanpapillomavirusinfectioninmenpresentingintraurethralatcondyloma:aphaseI/IIstudy.
BioDrugs21,47–59.
doi:10.
2165/00063030-200721010-00006Albu,D.
I.
,Jones-Trower,A.
,Woron,A.
M.
,Stellrecht,K.
,Broder,C.
C.
,andMetzger,D.
W.
(2003).
Intranasalvaccinationusinginterleukin-12andcholeratoxinsubunitBasadjuvantstoenhancemucosalandsystemicimmunitytohumanimmunodeciencyvirustype1glycoproteins.
J.
Virol.
77,5589–5597.
doi:10.
1128/JVI.
77.
10.
5589-5597.
2003Alexander,J.
,Mendy,J.
,Vang,L.
,Avanzini,J.
B.
,Garduno,F.
,Manayani,D.
J.
,etal.
(2013).
Pre-clinicaldevelopmentofarecombinant,replication-competentade-novirusserotype4vectorvaccineexpressingHIV-1envelope1086cladeC.
PLoSONE8:e82380.
doi:10.
1371/journal.
pone.
0082380Anderson,R.
J.
,Hannan,C.
M.
,Gilbert,S.
C.
,Laidlaw,S.
M.
,Sheu,E.
G.
,Korten,S.
,etal.
(2004).
EnhancedCD8+TcellimmuneresponsesandprotectionelicitedagainstPlasmodiumbergheimalariabyprimeboostimmunizationreg-imensusinganovelattenuatedfowlpoxvirus.
J.
Immunol.
172,3094–3100.
doi:10.
4049/jimmunol.
172.
5.
3094Antoine,G.
,Scheiinger,F.
,Dorner,F.
,andFalkner,F.
G.
(1998).
ThecompletegenomicsequenceofthemodiedvacciniaAnkarastrain:comparisonwithotherorthopoxviruses.
Virology244,365–396.
doi:10.
1006/viro.
1998.
9123Appledorn,D.
M.
,Patial,S.
,McBride,A.
,Godbehere,S.
,VanRooijen,N.
,Parameswaran,N.
,etal.
(2008).
Adenovirusvector-inducedinnateinamma-torymediators,MAPKsignaling,aswellasadaptiveimmuneresponsesaredependentuponbothTLR2andTLR9invivo.
J.
Immunol.
181,2134–2144.
doi:10.
4049/jimmunol.
181.
3.
2134Applequist,S.
E.
,Rollman,E.
,Wareing,M.
D.
,Liden,M.
,Rozell,B.
,Hinkula,J.
,etal.
(2005).
Activationofinnateimmunity,inammation,andpotentiationofDNAvaccinationthroughmammalianexpressionoftheTLR5agonistagellin.
J.
Immunol.
175,3882–3891.
doi:10.
4049/jimmunol.
175.
6.
3882Azizi,A.
,Ghunaim,H.
,Diaz-Mitoma,F.
,andMestecky,J.
(2010).
MucosalHIVvaccines:aholygrailoradudVaccine28,4015–4026.
doi:10.
1016/j.
vaccine.
2010.
04.
018Baden,L.
R.
,Walsh,S.
R.
,Seaman,M.
S.
,Tucker,R.
P.
,Krause,K.
H.
,Patel,A.
,etal.
(2013).
First-in-humanevaluationofthesafetyandimmunogenic-ityofarecombinantadenovirusserotype26HIV-1Envvaccine(IPCAVD001).
J.
Infect.
Dis.
207,240–247.
doi:10.
1093/infdis/jis670Bakari,M.
,Aboud,S.
,Nilsson,C.
,Francis,J.
,Buma,D.
,Moshiro,C.
,etal.
(2011).
BroadandpotentimmuneresponsestoalowdoseintradermalHIV-1DNAboostedwithHIV-1recombinantMVAamonghealthyadultsinTanzania.
Vaccine29,8417–8428.
doi:10.
1016/j.
vaccine.
2011.
08.
001Balazs,A.
B.
,Chen,J.
,Hong,C.
M.
,Rao,D.
S.
,Yang,L.
,andBaltimore,D.
(2012).
Antibody-basedprotectionagainstHIVinfectionbyvectoredimmunoprophy-laxis.
Nature481,81–84.
doi:10.
1038/nature10660Balazs,A.
B.
,Ouyang,Y.
,Hong,C.
M.
,Chen,J.
,Nguyen,S.
M.
,Rao,D.
S.
,etal.
(2014).
VectoredimmunoprophylaxisprotectshumanizedmicefrommucosalHIVtransmission.
Nat.
Med.
20,296–300.
doi:10.
1038/nm.
3471Bangari,D.
S.
,andMittal,S.
K.
(2006).
Developmentofnonhumanadenovirusesasvaccinevectors.
Vaccine24,849–862.
doi:10.
1016/j.
vaccine.
2005.
08.
101Bansal,A.
,Jackson,B.
,West,K.
,Wang,S.
,Lu,S.
,Kennedy,J.
S.
,etal.
(2008).
MultifunctionalT-cellcharacteristicsinducedbyapolyvalentDNAprime/proteinboosthumanimmunodeciencyvirustype1vaccineregimengiventohealthyadultsaredependentontherouteanddoseofadministration.
J.
Virol.
82,6458–6469.
doi:10.
1128/JVI.
00068-08Barnes,E.
,Folgori,A.
,Capone,S.
,Swadling,L.
,Aston,S.
,Kurioka,A.
,etal.
(2012).
Noveladenovirus-basedvaccinesinducebroadandsustainedTcellresponsestoHCVinman.
Sci.
Transl.
Med.
4,115ra1.
doi:10.
1126/scitranslmed.
3003155Barouch,D.
H.
,Kik,S.
V.
,Weverling,G.
J.
,Dilan,R.
,King,S.
L.
,Maxeld,L.
F.
,etal.
(2011).
Internationalseroepidemiologyofadenovirusserotypes5,26,35,and48inpediatricandadultpopulations.
Vaccine29,5203–5209.
doi:10.
1016/j.
vaccine.
2011.
05.
025Barouch,D.
H.
,Liu,J.
,Li,H.
,Maxeld,L.
F.
,Abbink,P.
,Lynch,D.
M.
,etal.
(2012).
Vaccineprotectionagainstacquisitionofneutralization-resistantSIVchallengesinrhesusmonkeys.
Nature482,89–93.
doi:10.
1038/nature10766Barouch,D.
H.
,Liu,J.
,Peter,L.
,Abbink,P.
,Iampietro,M.
J.
,Cheung,A.
,etal.
(2013).
CharacterizationofhumoralandcellularimmuneresponseselicitedFrontiersinMicrobiology|MicrobialImmunologyAugust2014|Volume5|Article439|16OndondoChallengesofHIVvaccinedeliverybyarecombinantadenovirusserotype26HIV-1Envvaccineinhealthyadults(IPCAVD001).
J.
Infect.
Dis.
207,248–256.
doi:10.
1093/infdis/jis671Barouch,D.
H.
,O'Brien,K.
L.
,Simmons,N.
L.
,King,S.
L.
,Abbink,P.
,Maxeld,L.
F.
,etal.
(2010).
MosaicHIV-1vaccinesexpandthebreadthanddepthofcellularimmuneresponsesinrhesusmonkeys.
Nat.
Med.
16,319–323.
doi:10.
1038/nm.
2089Bassett,J.
D.
,Swift,S.
L.
,andBramson,J.
L.
(2011).
Optimizingvaccine-inducedCD8(+)T-cellimmunity:focusonrecombinantadenovirusvectors.
ExpertRev.
Vaccines10,1307–1319.
doi:10.
1586/erv.
11.
88Bayer,W.
,Lietz,R.
,Ontikatze,T.
,Johrden,L.
,Tenbusch,M.
,Nabi,G.
,etal.
(2011).
Improvedvaccineprotectionagainstretrovirusinfectionafterco-administrationofadenoviralvectorsencodingviralantigensandtypeIinterferonsubtypes.
Retrovirology8:75.
doi:10.
1186/1742-4690-8-75Bejon,P.
,Ogada,E.
,Mwangi,T.
,Milligan,P.
,Lang,T.
,Fegan,G.
,etal.
(2007).
Extendedfollow-upfollowingaphase2brandomizedtrialofthecandidatemalariavaccinesFP9ME-TRAPandMVAME-TRAPamongchildreninKenya.
PLoSONE2:e707.
doi:10.
1371/journal.
pone.
0000707Belshe,R.
B.
,Gorse,G.
J.
,Mulligan,M.
J.
,Evans,T.
G.
,Keefer,M.
C.
,Excler,J.
L.
,etal.
(1998).
InductionofimmuneresponsestoHIV-1bycanarypoxvirus(ALVAC)HIV-1andgp120SF-2recombinantvaccinesinuninfectedvolunteers.
NIAIDAIDSVaccineEvaluationGroup.
AIDS12,2407–2415.
Belyakov,I.
M.
,Ahlers,J.
D.
,Brandwein,B.
Y.
,Earl,P.
,Kelsall,B.
L.
,Moss,B.
,etal.
(1998b).
TheimportanceoflocalmucosalHIV-specicCD8(+)cyto-toxicTlymphocytesforresistancetomucosalviraltransmissioninmiceandenhancementofresistancebylocaladministrationofIL-12.
J.
Clin.
Invest.
102,2072–2081.
doi:10.
1172/JCI5102Belyakov,I.
M.
,Derby,M.
A.
,Ahlers,J.
D.
,Kelsall,B.
L.
,Earl,P.
,Moss,B.
,etal.
(1998a).
MucosalimmunizationwithHIV-1peptidevaccineinducesmucosalandsystemiccytotoxicTlymphocytesandprotectiveimmunityinmiceagainstintrarectalrecombinantHIV-vacciniachallenge.
Proc.
Natl.
Acad.
Sci.
U.
S.
A.
95,1709–1714.
Benlahrech,A.
,Harris,J.
,Meiser,A.
,Papagatsias,T.
,Hornig,J.
,Hayes,P.
,etal.
(2009).
AdenovirusvectorvaccinationinducesexpansionofmemoryCD4TcellswithamucosalhomingphenotypethatarereadilysusceptibletoHIV-1.
Proc.
Natl.
Acad.
Sci.
U.
S.
A.
106,19940–19945.
doi:10.
1073/pnas.
0907898106Bergelson,J.
M.
,Cunningham,J.
A.
,Droguett,G.
,Kurt-Jones,E.
A.
,Krithivas,A.
,Hong,J.
S.
,etal.
(1997).
IsolationofacommonreceptorforCoxsackieBvirusesandadenoviruses2and5.
Science275,1320–1323.
Bergman,P.
J.
,McKnight,J.
,Novosad,A.
,Charney,S.
,Farrelly,J.
,Craft,D.
,etal.
(2003).
Long-termsurvivalofdogswithadvancedmalignantmelanomaafterDNAvaccinationwithxenogeneichumantyrosinase:aphaseItrial.
Clin.
CancerRes.
9,1284–1290.
Berthoud,T.
K.
,Hamill,M.
,Lillie,P.
J.
,Hwenda,L.
,Collins,K.
A.
,Ewer,K.
J.
,etal.
(2011).
PotentCD8+T-cellimmunogenicityinhumansofanovelhet-erosubtypicinuenzaAvaccine,MVA-NP+M1.
Clin.
Infect.
Dis.
52,1–7.
doi:10.
1093/cid/ciq015Bertley,F.
M.
,Kozlowski,P.
A.
,Wang,S.
W.
,Chappelle,J.
,Patel,J.
,Sonuyi,O.
,etal.
(2004).
Controlofsimian/humanimmunodeciencyvirusviremiaanddiseaseprogressionafterIL-2-augmentedDNA-modiedvacciniavirusAnkaranasalvaccinationinnonhumanprimates.
J.
Immunol.
172,3745–3757.
doi:10.
4049/jimmunol.
172.
6.
3745Bilello,J.
P.
,Manrique,J.
M.
,Shin,Y.
C.
,Lauer,W.
,Li,W.
,Lifson,J.
D.
,etal.
(2011).
Vaccineprotectionagainstsimianimmunodeciencyvirusinmon-keysusingrecombinantgamma-2herpesvirus.
J.
Virol.
85,12708–12720.
doi:10.
1128/JVI.
00865-11Bodin,K.
,Ellmerich,S.
,Kahan,M.
C.
,Tennent,G.
A.
,Loesch,A.
,Gilbertson,J.
A.
,etal.
(2010).
AntibodiestohumanserumamyloidPcomponenteliminatevisceralamyloiddeposits.
Nature468,93–97.
doi:10.
1038/nature09494Bomsel,M.
,Tudor,D.
,Drillet,A.
S.
,Alfsen,A.
,Ganor,Y.
,Roger,M.
G.
,etal.
(2011).
ImmunizationwithHIV-1gp41subunitvirosomesinducesmucosalantibodiesprotectingnonhumanprimatesagainstvaginalSHIVchallenges.
Immunity34,269–280.
doi:10.
1016/j.
immuni.
2011.
01.
015Bonaldo,M.
C.
,Martins,M.
A.
,Rudersdorf,R.
,Mudd,P.
A.
,Sacha,J.
B.
,Piaskowski,S.
M.
,etal.
(2010).
Recombinantyellowfevervaccinevirus17DexpressingsimianimmunodeciencyvirusSIVmac239gaginducesSIV-specicCD8+T-cellresponsesinrhesusmacaques.
J.
Virol.
84,3699–3706.
doi:10.
1128/JVI.
02255-09Borthwick,N.
,Ahmed,T.
,Ondondo,B.
,Hayes,P.
,Rose,A.
,Ebrahimsa,U.
,etal.
(2014).
Vaccine-elicitedhumanTcellsrecognizingconservedproteinregionsinhibitHIV-1.
Mol.
Ther.
22,464–475.
doi:10.
1038/mt.
2013.
248Boyer,J.
D.
,Robinson,T.
M.
,Kutzler,M.
A.
,Parkinson,R.
,Calarota,S.
A.
,Sidhu,M.
K.
,etal.
(2005).
SIVDNAvaccineco-administeredwithIL-12expressionplasmidenhancesCD8SIVcellularimmuneresponsesincynomolgusmacaques.
J.
Med.
Primatol.
34,262–270.
doi:10.
1111/j.
1600-0684.
2005.
00124.
xBradney,C.
P.
,Sempowski,G.
D.
,Liao,H.
X.
,Haynes,B.
F.
,andStaats,H.
F.
(2002).
Cytokinesasadjuvantsfortheinductionofanti-humanimmunode-ciencyviruspeptideimmunoglobulinG(IgG)andIgAantibodiesinserumandmucosalsecretionsafternasalimmunization.
J.
Virol.
76,517–524.
doi:10.
1128/JVI.
76.
2.
517-524.
2002Brave,A.
,Gudmundsdotter,L.
,Sandstrom,E.
,Haller,B.
K.
,Hallengard,D.
,Maltais,A.
K.
,etal.
(2010).
Biodistribution,persistenceandlackofintegrationofamultigeneHIVvaccinedeliveredbyneedle-freeintradermalinjectionandelectroporation.
Vaccine28,8203–8209.
doi:10.
1016/j.
vaccine.
2010.
08.
108Brenchley,J.
M.
,Schacker,T.
W.
,Ruff,L.
E.
,Price,D.
A.
,Taylor,J.
H.
,Beilman,G.
J.
,etal.
(2004).
CD4+TcelldepletionduringallstagesofHIVdiseaseoccurspredominantlyinthegastrointestinaltract.
J.
Exp.
Med.
200,749–759.
doi:10.
1084/jem.
20040874Bruder,J.
T.
,Chen,P.
,Semenova,E.
,Thomas,C.
A.
,Konovalova,S.
,Ekberg,G.
,etal.
(2013).
Identicationofasuppressormutationthatimprovestheyieldsofhexon-modiedadenovirusvectors.
J.
Virol.
87,9661–9671.
doi:10.
1128/JVI.
00462-13Bruder,J.
T.
,Semenova,E.
,Chen,P.
,Limbach,K.
,Patterson,N.
B.
,Stefaniak,M.
E.
,etal.
(2012).
ModicationofAd5hexonhypervariableregionscircumventspre-existingAd5neutralizingantibodiesandinducesprotectiveimmuneresponses.
PLoSONE7:e33920.
doi:10.
1371/journal.
pone.
0033920Buchbinder,S.
P.
,Mehrotra,D.
V.
,Duerr,A.
,Fitzgerald,D.
W.
,Mogg,R.
,Li,D.
,etal.
(2008).
Efcacyassessmentofacell-mediatedimmunityHIV-1vaccine(theStepStudy):adouble-blind,randomised,placebo-controlled,test-of-concepttrial.
Lancet372,1881–1893.
doi:10.
1016/S0140-6736(08)61591-3Caley,I.
J.
,Betts,M.
R.
,Irlbeck,D.
M.
,Davis,N.
L.
,Swanstrom,R.
,Frelinger,J.
A.
,etal.
(1997).
Humoral,mucosal,andcellularimmunityinresponsetoahumanimmunodeciencyvirustype1immunogenexpressedbyaVenezuelanequineencephalitisvirusvaccinevector.
J.
Virol.
71,3031–3038Capone,S.
,Reyes-Sandoval,A.
,Naddeo,M.
,Siani,L.
,Ammendola,V.
,Rollier,C.
S.
,etal.
(2010).
Immuneresponsesagainstaliver-stagemalariaantigeninducedbysimianadenoviralvectorAdCh63andMVAprime-boostimmunisa-tioninnon-humanprimates.
Vaccine29,256–265.
doi:10.
1016/j.
vaccine.
2010.
10.
041Carroll,M.
W.
,andMoss,B.
(1997).
HostrangeandcytopathogenicityofthehighlyattenuatedMVAstrainofvacciniavirus:propagationandgenerationofrecom-binantvirusesinanonhumanmammaliancellline.
Virology238,198–211.
doi:10.
1006/viro.
1997.
8845Casimiro,D.
R.
,Bett,A.
J.
,Fu,T.
M.
,Davies,M.
E.
,Tang,A.
,Wilson,K.
A.
,etal.
(2004).
Heterologoushumanimmunodeciencyvirustype1priming-boostingimmunizationstrategiesinvolvingreplication-defectiveadenovirusandpoxvirusvaccinevectors.
J.
Virol.
78,11434–11438.
doi:10.
1128/JVI.
78.
20.
11434-11438.
2004Casimiro,D.
R.
,Chen,L.
,Fu,T.
M.
,Evans,R.
K.
,Cauleld,M.
J.
,Davies,M.
E.
,etal.
(2003a).
ComparativeimmunogenicityinrhesusmonkeysofDNAplasmid,recombinantvacciniavirus,andreplication-defectiveadenovirusvec-torsexpressingahumanimmunodeciencyvirustype1gaggene.
J.
Virol.
77,6305–6313.
doi:10.
1128/JVI.
77.
11.
6305-6313.
2003Casimiro,D.
R.
,Tang,A.
,Chen,L.
,Fu,T.
M.
,Evans,R.
K.
,Davies,M.
E.
,etal.
(2003b).
Vaccine-inducedimmunityinbaboonsbyusingDNAandreplication-incompetentadenovirustype5vectorsexpressingahumanimmunodeciencyvirustype1gaggene.
J.
Virol.
77,7663–7668.
doi:10.
1128/JVI.
77.
13.
7663-7668.
2003Catanzaro,A.
T.
,Koup,R.
A.
,Roederer,M.
,Bailer,R.
T.
,Enama,M.
E.
,Moodie,Z.
,etal.
(2006).
Phase1safetyandimmunogenicityevaluationofamulti-cladeHIV-1candidatevaccinedeliveredbyareplication-defectiverecombinantadenovirusvector.
J.
Infect.
Dis.
194,1638–1649.
doi:10.
1086/509258Cerwenka,A.
,Morgan,T.
M.
,andDutton,R.
W.
(1999).
Naive,effector,andmem-oryCD8Tcellsinprotectionagainstpulmonaryinuenzavirusinfection:homingpropertiesratherthaninitialfrequenciesarecrucial.
J.
Immunol.
163,5535–5543.
www.
frontiersin.
orgAugust2014|Volume5|Article439|17OndondoChallengesofHIVvaccinedeliveryChanzu,N.
,andOndondo,B.
(2014).
Inductionofpotentandlong-livedanti-bodyandcellularimmuneresponsesinthegenitorectalmucosacouldbethecriticaldeterminantofHIVvaccineefcacy.
Front.
Immunol.
5:202.
doi:10.
3389/mmu.
2014.
00202Chen,H.
,Xiang,Z.
Q.
,Li,Y.
,Kurupati,R.
K.
,Jia,B.
,Bian,A.
,etal.
(2010).
Adenovirus-basedvaccines:comparisonofvectorsfromthreespeciesofade-noviridae.
J.
Virol.
84,10522–10532.
doi:10.
1128/JVI.
00450-10Chong,S.
Y.
,Egan,M.
A.
,Kutzler,M.
A.
,Megati,S.
,Masood,A.
,Roopchard,V.
,etal.
(2007).
ComparativeabilityofplasmidIL-12andIL-15toenhancecellularandhumoralimmuneresponseselicitedbyaSIVgagplasmidDNAvaccineandalterdiseaseprogressionfollowingSHIV(89.
6P)challengeinrhesusmacaques.
Vaccine25,4967–4982.
doi:10.
1016/j.
vaccine.
2006.
11.
070Chuang,I.
,Sedegah,M.
,Cicatelli,S.
,Spring,M.
,Polhemus,M.
,Tamminga,C.
,etal.
(2013).
DNAprime/AdenovirusboostmalariavaccineencodingP.
falci-parumCSPandAMA1inducessterileprotectionassociatedwithcell-mediatedimmunity.
PLoSONE8:e55571.
doi:10.
1371/journal.
pone.
0055571Colloca,S.
,Barnes,E.
,Folgori,A.
,Ammendola,V.
,Capone,S.
,Cirillo,A.
,etal.
(2012).
Vaccinevectorsderivedfromalargecollectionofsimianadenovirusesinducepotentcellularimmunityacrossmultiplespecies.
Sci.
Transl.
Med.
4,115ra2.
doi:10.
1126/scitranslmed.
3002925CoronaGutierrez,C.
M.
,Tinoco,A.
,Navarro,T.
,Contreras,M.
L.
,Cortes,R.
R.
,Calzado,P.
,etal.
(2004).
TherapeuticvaccinationwithMVAE2caneliminateprecancerouslesions(CIN1,CIN2,andCIN3)associatedwithinfec-tionbyoncogenichumanpapillomavirus.
Hum.
GeneTher.
15,421–431.
doi:10.
1089/10430340460745757Cristillo,A.
D.
,Ferrari,M.
G.
,Hudacik,L.
,Lewis,B.
,Galmin,L.
,Bowen,B.
,etal.
(2011).
InductionofmucosalandsystemicantibodyandT-cellresponsesfollowingprime-boostimmunizationwithnoveladjuvantedhumanimmun-odeciencyvirus-1-vaccineformulations.
J.
Gen.
Virol.
92(Pt1),128–140.
doi:10.
1099/vir.
0.
023242-0Cristillo,A.
D.
,Weiss,D.
,Hudacik,L.
,Restrepo,S.
,Galmin,L.
,Suschak,J.
,etal.
(2008).
PersistentantibodyandTcellresponsesinducedbyHIV-1DNAvaccinedeliveredbyelectroporation.
Biochem.
Biophys.
Res.
Commun.
366,29–35.
doi:10.
1016/j.
bbrc.
2007.
11.
052Czerkinsky,C.
,andHolmgren,J.
(2012).
Mucosaldeliveryroutesforoptimalimmunization:targetingimmunitytotherighttissues.
Curr.
Top.
Microbiol.
Immunol.
354,1–18.
doi:10.
1007/82_2010_112Daftarian,P.
,Ali,S.
,Sharan,R.
,Lacey,S.
F.
,LaRosa,C.
,Longmate,J.
,etal.
(2003).
ImmunizationwithTh-CTLfusionpeptideandcytosine-phosphate-guanineDNAintransgenicHLA-A2miceinducesrecognitionofHIV-infectedTcellsandclearsvacciniaviruschallenge.
J.
Immunol.
171,4028–4039.
doi:10.
4049/jimmunol.
171.
8.
4028Davis,B.
S.
,Chang,G.
J.
,Cropp,B.
,Roehrig,J.
T.
,Martin,D.
A.
,Mitchell,C.
J.
,etal.
(2001).
WestNilevirusrecombinantDNAvaccineprotectsmouseandhorsefromviruschallengeandexpressesinvitroanoninfectiousrecombinantantigenthatcanbeusedinenzyme-linkedimmunosorbentassays.
J.
Virol.
75,4040–4047.
doi:10.
1128/JVI.
75.
9.
4040-4047.
2001Dicks,M.
D.
,Spencer,A.
J.
,Edwards,N.
J.
,Wadell,G.
,Bojang,K.
,Gilbert,S.
C.
,etal.
(2012).
Anovelchimpanzeeadenovirusvectorwithlowhumanseropreva-lence:improvedsystemsforvectorderivationandcomparativeimmunogenic-ity.
PLoSONE7:e40385.
doi:10.
1371/journal.
pone.
0040385Dorrell,L.
,Yang,H.
,Ondondo,B.
,Dong,T.
,diGleria,K.
,Suttill,A.
,etal.
(2006).
Expansionanddiversicationofvirus-specicTcellsfollowingimmunizationofhumanimmunodeciencyvirustype1(HIV-1)-infectedindividualswitharecombinantmodiedvacciniavirusAnkara/HIV-1Gagvaccine.
J.
Virol.
80,4705–4716.
doi:10.
1128/JVI.
80.
10.
4705-4716.
2006Drape,R.
J.
,Macklin,M.
D.
,Barr,L.
J.
,Jones,S.
,Haynes,J.
R.
,andDean,H.
J.
(2006).
EpidermalDNAvaccineforinuenzaisimmunogenicinhumans.
Vaccine24,4475–4481.
doi:10.
1016/j.
vaccine.
2005.
08.
012Draper,S.
J.
,Biswas,S.
,Spencer,A.
J.
,Remarque,E.
J.
,Capone,S.
,Naddeo,M.
,etal.
(2010).
Enhancingblood-stagemalariasubunitvaccineimmunogenicityinrhesusmacaquesbycombiningadenovirus,poxvirus,andprotein-in-adjuvantvaccines.
J.
Immunol.
185,7583–7595.
doi:10.
4049/jimmunol.
1001760Draper,S.
J.
,Cottingham,M.
G.
,andGilbert,S.
C.
(2013).
Utilizingpoxviralvectoredvaccinesforantibodyinduction-progressandprospects.
Vaccine31,4223–4230.
doi:10.
1016/j.
vaccine.
2013.
05.
091Draper,S.
J.
,Moore,A.
C.
,Goodman,A.
L.
,Long,C.
A.
,Holder,A.
A.
,Gilbert,S.
C.
,etal.
(2008).
Effectiveinductionofhigh-titerantibodiesbyviralvectorvaccines.
Nat.
Med.
14,819–821.
doi:10.
1038/nm.
1850Dumais,N.
,Patrick,A.
,Moss,R.
B.
,Davis,H.
L.
,andRosenthal,K.
L.
(2002).
MucosalimmunizationwithinactivatedhumanimmunodeciencyvirusplusCpGoligodeoxynucleotidesinducesgenitalimmuneresponsesandprotectionagainstintravaginalchallenge.
J.
Infect.
Dis.
186,1098–1105.
doi:10.
1086/344232Dunachie,S.
J.
,Walther,M.
,Epstein,J.
E.
,Keating,S.
,Berthoud,T.
,Andrews,L.
,etal.
(2006).
ADNAprime-modiedvacciniavirusankaraboostvac-cineencodingthrombospondin-relatedadhesionproteinbutnotcircum-sporozoiteproteinpartiallyprotectshealthymalaria-naiveadultsagainstPlasmodiumfalciparumsporozoitechallenge.
Infect.
Immun.
74,5933–5942.
doi:10.
1128/IAI.
00590-06Egan,M.
A.
,Chong,S.
Y.
,Megati,S.
,Monteori,D.
C.
,Rose,N.
F.
,Boyer,J.
D.
,etal.
(2005).
PrimingwithplasmidDNAsexpressinginterleukin-12andsimianimmunodeciencyvirusgagenhancestheimmunogenicityandefcacyofanexperimentalAIDSvaccinebasedonrecombinantvesicularstomatitisvirus.
AIDSRes.
Hum.
Retroviruses21,629–643.
doi:10.
1089/aid.
2005.
21.
629Egan,M.
A.
,Chong,S.
Y.
,Rose,N.
F.
,Megati,S.
,Lopez,K.
J.
,Schadeck,E.
B.
,etal.
(2004).
ImmunogenicityofattenuatedvesicularstomatitisvirusvectorsexpressingHIVtype1EnvandSIVGagproteins:comparisonofintranasalandintramuscularvaccinationroutes.
AIDSRes.
Hum.
Retroviruses20,989–1004.
doi:10.
1089/0889222042222746Emini,E.
A.
,andKoff,W.
C.
(2004).
AIDS/HIV.
DevelopinganAIDSvaccine:need,uncertainty,hope.
Science304,1913–1914.
doi:10.
1126/science.
1100368Ersching,J.
,Hernandez,M.
I.
,Cezarotto,F.
S.
,Ferreira,J.
D.
,Martins,A.
B.
,Switzer,W.
M.
,etal.
(2010).
NeutralizingantibodiestohumanandsimianadenovirusesinhumansandNew-Worldmonkeys.
Virology407,1–6.
doi:10.
1016/j.
virol.
2010.
07.
043Estcourt,M.
J.
,Ramsay,A.
J.
,Brooks,A.
,Thomson,S.
A.
,Medveckzy,C.
J.
,andRamshaw,I.
A.
(2002).
Prime-boostimmunizationgeneratesahighfrequency,high-avidityCD8(+)cytotoxicTlymphocytepopulation.
Int.
Immunol.
14,31–37.
doi:10.
1093/intimm/14.
1.
31Evans,T.
G.
,Keefer,M.
C.
,Weinhold,K.
J.
,Wolff,M.
,Monteori,D.
,Gorse,G.
J.
,etal.
(1999).
Acanarypoxvaccineexpressingmultiplehumanimmunode-ciencyvirustype1genesgivenaloneorwithrgp120elicitsbroadanddurableCD8+cytotoxicTlymphocyteresponsesinseronegativevolunteers.
J.
Infect.
Dis.
180,290–298.
doi:10.
1086/314895Excler,J.
L.
,Parks,C.
L.
,Ackland,J.
,Rees,H.
,Gust,I.
D.
,andKoff,W.
C.
(2010).
ReplicatingviralvectorsasHIVvaccines:summaryreportfromtheIAVI-sponsoredsatellitesymposiumattheAIDSvaccine2009conference.
Biologicals38,511–521.
doi:10.
1016/j.
biologicals.
2010.
03.
005Faul,E.
J.
,Aye,P.
P.
,Papaneri,A.
B.
,Pahar,B.
,McGettigan,J.
P.
,Schiro,F.
,etal.
(2009).
Rabiesvirus-basedvaccineselicitneutralizingantibod-ies,poly-functionalCD8+Tcell,andprotectrhesusmacaquesfromAIDS-likediseaseafterSIV(mac251)challenge.
Vaccine28,299–308.
doi:10.
1016/j.
vaccine.
2009.
10.
051Finn,J.
D.
,Bassett,J.
,Millar,J.
B.
,Grinshtein,N.
,Yang,T.
C.
,Parsons,R.
,etal.
(2009).
PersistenceoftransgeneexpressioninuencesCD8+T-cellexpan-sionandmaintenancefollowingimmunizationwithrecombinantadenovirus.
J.
Virol.
83,12027–12036.
doi:10.
1128/JVI.
00593-09Fitzgerald,J.
C.
,Gao,G.
P.
,Reyes-Sandoval,A.
,Pavlakis,G.
N.
,Xiang,Z.
Q.
,Wlazlo,A.
P.
,etal.
(2003).
Asimianreplication-defectiveadenoviralrecom-binantvaccinetoHIV-1gag.
J.
Immunol.
170,1416–1422.
doi:10.
4049/jim-munol.
170.
3.
1416Flynn,N.
M.
,Forthal,D.
N.
,Harro,C.
D.
,Judson,F.
N.
,Mayer,K.
H.
,Para,M.
F.
,etal.
(2005).
Placebo-controlledphase3trialofarecombinantglycopro-tein120vaccinetopreventHIV-1infection.
J.
Infect.
Dis.
191,654–665.
doi:10.
1086/428404Frahm,N.
,DeCamp,A.
C.
,Friedrich,D.
P.
,Carter,D.
K.
,Defawe,O.
D.
,Kublin,J.
G.
,etal.
(2012).
Humanadenovirus-specicTcellsmodulateHIV-specicTcellresponsestoanAd5-vectoredHIV-1vaccine.
J.
Clin.
Invest.
122,359–367.
doi:10.
1172/JCI60202Fuchs,J.
,Frank,I.
,Kochar,N.
,Elizaga,M.
,Allen,M.
,Carter,D.
,etal.
(2012).
First-in-humanphaseIclinicaltrialofarecombinantvesicularstomati-tisvirus(rVSV)-basedpreventiveHIV-1vaccine.
Retrovirology9,P134.
doi:10.
1186/1742-4690-9-S2-P134Fuchs,J.
,Frank,I.
,Kochar,N.
,Elizaga,M.
,Allen,M.
,Frahm,N.
,etal.
(2013).
ARecombinantVesicularStomatitisVirus(rVSV)HIV-1gagVaccineisSafeAndImmunogenicinHealthy,HIV-1UninfectedPhaseITrialParticipants.
Barcelona:AIDSvaccine.
FrontiersinMicrobiology|MicrobialImmunologyAugust2014|Volume5|Article439|18OndondoChallengesofHIVvaccinedeliveryGabitzsch,E.
S.
,Xu,Y.
,Yoshida,L.
H.
,Balint,J.
,Amaltano,A.
,andJones,F.
R.
(2009).
NovelAdenovirustype5vaccineplatforminducescellularimmunityagainstHIV-1Gag,Pol,NefdespitethepresenceofAd5immunity.
Vaccine27,6394–6398.
doi:10.
1016/j.
vaccine.
2009.
06.
028Gaggar,A.
,Shayakhmetov,D.
M.
,andLieber,A.
(2003).
CD46isacellularreceptorforgroupBadenoviruses.
Nat.
Med.
9,1408–1412.
doi:10.
1038/nm952Garcia,F.
,BernaldodeQuiros,J.
C.
,Gomez,C.
E.
,Perdiguero,B.
,Najera,J.
L.
,Jimenez,V.
,etal.
(2011).
Safetyandimmunogenicityofamodiedpoxvector-basedHIV/AIDSvaccinecandidateexpressingEnv,Gag,PolandNefproteinsofHIV-1subtypeB(MVA-B)inhealthyHIV-1-uninfectedvol-unteers:aphaseIclinicaltrial(RISVAC02).
Vaccine29,8309–8316.
doi:10.
1016/j.
vaccine.
2011.
08.
098Garcia-Arriaza,J.
,Arnaez,P.
,Gomez,C.
E.
,Sorzano,C.
O.
,andEsteban,M.
(2013).
ImprovingadaptiveandmemoryimmuneresponsesofanHIV/AIDSVaccineCandidateMVA-Bbydeletionofvacciniavirusgenes(C6LandK7R)blockinginterferonsignalingpathways.
PLoSONE8:e66894.
doi:10.
1371/jour-nal.
pone.
0066894Garcia-Hernandez,E.
,Gonzalez-Sanchez,J.
L.
,Andrade-Manzano,A.
,Contreras,M.
L.
,Padilla,S.
,Guzman,C.
C.
,etal.
(2006).
Regressionofpapillomahigh-gradelesions(CIN2andCIN3)isstimulatedbytherapeuticvaccina-tionwithMVAE2recombinantvaccine.
CancerGeneTher.
13,592–597.
doi:10.
1038/sj.
cgt.
7700937Garcia-Sastre,A.
,andPalese,P.
(1995).
Inuenzavirusvectors.
Biologicals23,171–178.
Garver,K.
A.
,LaPatra,S.
E.
,andKurath,G.
(2005).
Efcacyofaninfectioushematopoieticnecrosis(IHN)virusDNAvaccineinChinookOncorhynchustshawytschaandsockeyeO.
nerkasalmon.
Dis.
Aquat.
Organ.
64,13–22.
doi:10.
3354/dao064013Gherardi,M.
M.
,andEsteban,M.
(1999).
Mucosalandsystemicimmuneresponsesinducedafteroraldeliveryofvacciniavirusrecombinants.
Vaccine17,1074–1083.
Gherardi,M.
M.
,andEsteban,M.
(2005).
Recombinantpoxvirusesasmucosalvaccinevectors.
J.
Gen.
Virol.
86(Pt11),2925–2936.
doi:10.
1099/vir.
0.
81181-0Gherardi,M.
M.
,Najera,J.
L.
,Perez-Jimenez,E.
,Guerra,S.
,Garcia-Sastre,A.
,andEsteban,M.
(2003).
Prime-boostimmunizationschedulesbasedoninuenzavirusandvacciniavirusvectorspotentiatecellularimmuneresponsesagainsthumanimmunodeciencyvirusEnvproteinsystemicallyandinthegenitorectaldraininglymphnodes.
J.
Virol.
77,7048–7057.
doi:10.
1128/JVI.
77.
12.
7048-7057.
2003Gherardi,M.
M.
,Perez-Jimenez,E.
,Najera,J.
L.
,andEsteban,M.
(2004).
InductionofHIVimmunityinthegenitaltractafterintranasaldeliveryofaMVAvector:enhancedimmunogenicityafterDNAprime-modiedvacciniavirusAnkaraboostimmunizationschedule.
J.
Immunol.
172,6209–6220.
doi:10.
4049/jim-munol.
172.
10.
6209Gherardi,M.
M.
,Ramirez,J.
C.
,andEsteban,M.
(2000).
Interleukin-12(IL-12)enhancementofthecellularimmuneresponseagainsthumanimmunode-ciencyvirustype1envantigeninaDNAprime/vacciniavirusboostvaccineregimenistimeanddosedependent:suppressiveeffectsofIL-12boostaremediatedbynitricoxide.
J.
Virol.
74,6278–6286.
doi:10.
1128/JVI.
74.
14.
6278-6286.
2000Gherardi,M.
M.
,Ramirez,J.
C.
,Rodriguez,D.
,Rodriguez,J.
R.
,Sano,G.
,Zavala,F.
,etal.
(1999).
IL-12deliveryfromrecombinantvacciniavirusattenuatesthevectorandenhancesthecellularimmuneresponseagainstHIV-1Envinadose-dependentmanner.
J.
Immunol.
162,6724–6733.
Gilbert,P.
B.
,Peterson,M.
L.
,Follmann,D.
,Hudgens,M.
G.
,Francis,D.
P.
,Gurwith,M.
,etal.
(2005).
Correlationbetweenimmunologicresponsestoarecombinantglycoprotein120vaccineandincidenceofHIV-1infectioninaphase3HIV-1preventivevaccinetrial.
J.
Infect.
Dis.
191,666–677.
doi:10.
1086/428405Gilbert,S.
C.
,Schneider,J.
,Hannan,C.
M.
,Hu,J.
T.
,Plebanski,M.
,Sinden,R.
,etal.
(2002).
EnhancedCD8Tcellimmunogenicityandprotectiveef-cacyinamousemalariamodelusingarecombinantadenoviralvaccineinheterologousprime-boostimmunisationregimes.
Vaccine20,1039–1045.
doi:10.
1016/S0264-410X(01)00450-9Gilbert,S.
C.
,Schneider,J.
,Plebanski,M.
,Hannan,C.
M.
,Blanchard,T.
J.
,Smith,G.
L.
,etal.
(1999).
Tyvirus-likeparticles,DNAvaccinesandModiedVacciniaVirusAnkara;comparisonsandcombinations.
Biol.
Chem.
380,299–303.
doi:10.
1515/BC.
1999.
041Gillmore,J.
D.
,Tennent,G.
A.
,Hutchinson,W.
L.
,Gallimore,J.
R.
,Lachmann,H.
J.
,Goodman,H.
J.
,etal.
(2010).
SustainedpharmacologicaldepletionofserumamyloidPcomponentinpatientswithsystemicamyloidosis.
Br.
J.
Haematol.
148,760–767.
doi:10.
1111/j.
1365-2141.
2009.
08036.
xGoepfert,P.
A.
,Elizaga,M.
L.
,Sato,A.
,Qin,L.
,Cardinali,M.
,Hay,C.
M.
,etal.
(2011).
Phase1safetyandimmunogenicitytestingofDNAandrecombi-nantmodiedvacciniaAnkaravaccinesexpressingHIV-1virus-likeparticles.
J.
Infect.
Dis.
203,610–619.
doi:10.
1093/infdis/jiq105Gomez,C.
E.
,Najera,J.
L.
,Perdiguero,B.
,Garcia-Arriaza,J.
,Sorzano,C.
O.
,Jimenez,V.
,etal.
(2011).
TheHIV/AIDSvaccinecandidateMVA-Badminis-teredasasingleimmunogeninhumanstriggersrobust,polyfunctional,andselectiveeffectormemoryTcellresponsestoHIV-1antigens.
J.
Virol.
85,11468–11478.
doi:10.
1128/JVI.
05165-11Gomez,C.
E.
,Perdiguero,B.
,Najera,J.
L.
,Sorzano,C.
O.
,Jimenez,V.
,Gonzalez-Sanz,R.
,etal.
(2012).
RemovalofvacciniavirusgenesthatblockinterferontypeIandIIpathwaysimprovesadaptiveandmemoryresponsesoftheHIV/AIDSvaccinecandidateNYVAC-Cinmice.
J.
Virol.
86,5026–5038.
doi:10.
1128/JVI.
06684-11Goonetilleke,N.
,Moore,S.
,Dally,L.
,Winstone,N.
,Cebere,I.
,Mahmoud,A.
,etal.
(2006).
Inductionofmultifunctionalhumanimmunodeciencyvirustype1(HIV-1)-specicTcellscapableofproliferationinhealthysubjectsbyusingaprime-boostregimenofDNA-andmodiedvacciniavirusAnkara-vectoredvaccinesexpressingHIV-1GagcoupledtoCD8+T-cellepitopes.
J.
Virol.
80,4717–4728.
doi:10.
1128/JVI.
80.
10.
4717-4728.
2006Graham,B.
S.
,Enama,M.
E.
,Nason,M.
C.
,Gordon,I.
J.
,Peel,S.
A.
,Ledgerwood,J.
E.
,etal.
(2013).
DNAvaccinedeliveredbyaneedle-freeinjectiondeviceimprovespotencyofprimingforantibodyandCD8+T-cellresponsesafterrAd5boostinarandomizedclinicaltrial.
PLoSONE8:e59340.
doi:10.
1371/journal.
pone.
0059340Graham,B.
S.
,Koup,R.
A.
,Roederer,M.
,Bailer,R.
T.
,Enama,M.
E.
,Moodie,Z.
,etal.
(2006).
Phase1safetyandimmunogenicityevaluationofamul-ticladeHIV-1DNAcandidatevaccine.
J.
Infect.
Dis.
194,1650–1660.
doi:10.
1086/509259Gray,G.
E.
,Allen,M.
,Moodie,Z.
,Churchyard,G.
,Bekker,L.
G.
,Nchabeleng,M.
,etal.
(2011).
SafetyandefcacyoftheHVTN503/Phambilistudyofaclade-B-basedHIV-1vaccineinSouthAfrica:adouble-blind,randomised,placebo-controlledtest-of-conceptphase2bstudy.
LancetInfect.
Dis.
11,507–515.
doi:10.
1016/S1473-3099Greenough,T.
C.
,Cunningham,C.
K.
,Muresan,P.
,McManus,M.
,Persaud,D.
,Fenton,T.
,etal.
(2008).
SafetyandimmunogenicityofrecombinantpoxvirusHIV-1vaccinesinyoungadultsonhighlyactiveantiretroviraltherapy.
Vaccine26,6883–6893.
doi:10.
1016/j.
vaccine.
2008.
09.
084Gudmundsdotter,L.
,Nilsson,C.
,Brave,A.
,Hejdeman,B.
,Earl,P.
,Moss,B.
,etal.
(2009).
RecombinantModiedVacciniaAnkara(MVA)effectivelyboostsDNA-primedHIV-specicimmuneresponsesinhumansdespitepre-existingvacciniaimmunity.
Vaccine27,4468–4474.
doi:10.
1016/j.
vaccine.
2009.
05.
018Guimaraes-Walker,A.
,Mackie,N.
,McCormack,S.
,Hanke,T.
,Schmidt,C.
,Gilmour,J.
,etal.
(2008).
LessonsfromIAVI-006,aphaseIclinicaltrialtoeval-uatethesafetyandimmunogenicityofthepTHr.
HIVADNAandMVA.
HIVAvaccinesinaprime-booststrategytoinduceHIV-1specicT-cellresponsesinhealthyvolunteers.
Vaccine26,6671–6677.
doi:10.
1016/j.
vaccine.
2008.
09.
016Haglund,K.
,Leiner,I.
,Kerksiek,K.
,Buonocore,L.
,Pamer,E.
,andRose,J.
K.
(2002).
Robustrecallandlong-termmemoryT-cellresponsesinducedbyprime-boostregimenswithheterologousliveviralvectorsexpressinghumanimmunodeciencyvirustype1GagandEnvproteins.
J.
Virol.
76,7506–7517.
doi:10.
1128/JVI.
76.
15.
7506-7517.
2002Hammer,S.
M.
,Sobieszczyk,M.
E.
,Janes,H.
,Karuna,S.
T.
,Mulligan,M.
J.
,Grove,D.
,etal.
(2013).
EfcacytrialofaDNA/rAd5HIV-1preventivevaccine.
N.
Engl.
J.
Med.
369,2083–2092.
doi:10.
1056/NEJMoa1310566Hansen,S.
G.
,Ford,J.
C.
,Lewis,M.
S.
,Ventura,A.
B.
,Hughes,C.
M.
,Coyne-Johnson,L.
,etal.
(2011).
ProfoundearlycontrolofhighlypathogenicSIVbyaneffectormemoryT-cellvaccine.
Nature473,523–527.
doi:10.
1038/nature10003Hansen,S.
G.
,Piatak,M.
Jr.
,Ventura,A.
B.
,Hughes,C.
M.
,Gilbride,R.
M.
,Ford,J.
C.
,etal.
(2013).
ImmuneclearanceofhighlypathogenicSIVinfection.
Nature502,100–104.
doi:10.
1038/nature12519Hansen,S.
G.
,Vieville,C.
,Whizin,N.
,Coyne-Johnson,L.
,Siess,D.
C.
,Drummond,D.
D.
,etal.
(2009).
EffectormemoryTcellresponsesareassociatedwithprotectionofrhesusmonkeysfrommucosalsimianimmunodeciencyviruschallenge.
Nat.
Med.
15,293–299.
doi:10.
1038/nm.
1935www.
frontiersin.
orgAugust2014|Volume5|Article439|19OndondoChallengesofHIVvaccinedeliveryHarari,A.
,Bart,P.
A.
,Stohr,W.
,Tapia,G.
,Garcia,M.
,Medjitna-Rais,E.
,etal.
(2008).
AnHIV-1cladeCDNAprime,NYVACboostvaccineregimeninducesreliable,polyfunctional,andlong-lastingTcellresponses.
J.
Exp.
Med.
205,63–77.
doi:10.
1084/jem.
20071331Harari,A.
,Rozot,V.
,Cavassini,M.
,Enders,F.
B.
,Vigano,S.
,Tapia,G.
,etal.
(2012).
NYVACimmunizationinducespolyfunctionalHIV-specicT-cellresponsesinchronically-infected,ART-treatedHIVpatients.
Eur.
J.
Immunol.
42,3038–3048.
doi:10.
1002/eji.
201242696Harrop,R.
,Connolly,N.
,Redchenko,I.
,Valle,J.
,Saunders,M.
,Ryan,M.
G.
,etal.
(2006).
VaccinationofcolorectalcancerpatientswithmodiedvacciniaAnkaradeliveringthetumorantigen5T4(TroVax)inducesimmuneresponseswhichcorrelatewithdiseasecontrol:aphaseI/IItrial.
Clin.
CancerRes.
12(Pt1),3416–3424.
doi:10.
1158/1078-0432.
CCR-05-2732Haut,L.
H.
,Lin,S.
W.
,Tatsis,N.
,DiMenna,L.
J.
,Giles-Davis,W.
,Pinto,A.
R.
,etal.
(2010).
Robustgenitalgag-specicCD8+T-cellresponsesinmiceuponintramuscularimmunizationwithsimianadenoviralvectorsexpressingHIV-1-gag.
Eur.
J.
Immunol.
40,3426–3438.
doi:10.
1002/eji.
201040440He,Z.
,Wlazlo,A.
P.
,Kowalczyk,D.
W.
,Cheng,J.
,Xiang,Z.
Q.
,Giles-Davis,W.
,etal.
(2000).
ViralrecombinantvaccinestotheE6andE7antigensofHPV-16.
Virology270,146–161.
doi:10.
1006/viro.
2000.
0271Hel,Z.
,Tsai,W.
P.
,Thornton,A.
,Nacsa,J.
,Giuliani,L.
,Tryniszewska,E.
,etal.
(2001).
Potentiationofsimianimmunodeciencyvirus(SIV)-specicCD4(+)andCD8(+)TcellresponsesbyaDNA-SIVandNYVAC-SIVprime/boostregimen.
J.
Immunol.
167,7180–7191.
doi:10.
4049/jimmunol.
167.
12.
7180Hemelaar,J.
,Gouws,E.
,Ghys,P.
D.
,Osmanov,S.
,andIsolationW-UNfH,Characterisation.
(2011).
GlobaltrendsinmolecularepidemiologyofHIV-1during2000-2007.
AIDS25,679–689.
doi:10.
1097/QAD.
0b013e328342ff93Hensley,S.
E.
,Giles-Davis,W.
,McCoy,K.
C.
,Weninger,W.
,andErtl,H.
C.
(2005).
Dendriticcellmaturation,butnotCD8+Tcellinduction,isdependentontypeIIFNsignalingduringvaccinationwithadenovirusvectors.
J.
Immunol.
175,6032–6041.
doi:10.
4049/jimmunol.
175.
9.
6032Hill,A.
V.
,Reyes-Sandoval,A.
,O'Hara,G.
,Ewer,K.
,Lawrie,A.
,Goodman,A.
,etal.
(2010).
Prime-boostvectoredmalariavaccines:progressandprospects.
Hum.
Vaccin.
6,78–83.
doi:10.
4161/hv.
6.
1.
10116Hoke,C.
H.
Jr.
,andSnyder,C.
E.
Jr.
(2013).
Historyoftherestorationofaden-ovirustype4andtype7vaccine,liveoral(AdenovirusVaccine)inthecontextoftheDepartmentofDefenseacquisitionsystem.
Vaccine31,1623–1632.
doi:10.
1016/j.
vaccine.
2012.
12.
029Holmgren,J.
,andCzerkinsky,C.
(2005).
Mucosalimmunityandvaccines.
Nat.
Med.
11,S45–53.
doi:10.
1038/nm1213Holmgren,J.
,Czerkinsky,C.
,Eriksson,K.
,andMharandi,A.
(2003).
Mucosalimmunisationandadjuvants:abriefoverviewofrecentadvancesandchal-lenges.
Vaccine21(Suppl.
2),S89–S95.
doi:10.
1016/S0264-410X(03)00206-8Holterman,L.
,Vogels,R.
,vanderVlugt,R.
,Sieuwerts,M.
,Grimbergen,J.
,Kaspers,J.
,etal.
(2004).
Novelreplication-incompetentvectorderivedfromadenovirustype11(Ad11)forvaccinationandgenetherapy:lowsero-prevalenceandnon-cross-reactivitywithAd5.
J.
Virol.
78,13207–13215.
doi:10.
1128/JVI.
78.
23.
13207-13215.
2004Hopkins,R.
,Bridgeman,A.
,Bourne,C.
,Mbewe-Mvula,A.
,Sadoff,J.
C.
,Both,G.
W.
,etal.
(2011a).
OptimizingHIV-1-specicCD8+T-cellinductionbyrecom-binantBCGinprime-boostregimenswithheterologousviralvectors.
Eur.
J.
Immunol.
41,3542–3552.
doi:10.
1002/eji.
201141962Hopkins,R.
,Bridgeman,A.
,Joseph,J.
,Gilbert,S.
C.
,McShane,H.
,andHanke,T.
,(2011b).
DualneonatevaccineplatformagainstHIV-1andM.
tuberculosis.
PLoSONE6:e20067.
doi:10.
1371/journal.
pone.
0020067Horner,A.
A.
,Datta,S.
K.
,Takabayashi,K.
,Belyakov,I.
M.
,Hayashi,T.
,Cinman,N.
,etal.
(2001).
ImmunostimulatoryDNA-basedvaccineselicitmultifacetedimmuneresponsesagainstHIVatsystemicandmucosalsites.
J.
Immunol.
167,1584–1591.
doi:10.
4049/jimmunol.
167.
3.
1584Howles,S.
,Guimaraes-Walker,A.
,Yang,H.
,Hancock,G.
,diGleria,K.
,Tarragona-Fiol,T.
,etal.
(2010).
VaccinationwithamodiedvacciniavirusAnkara(MVA)-vectoredHIV-1immunogeninducesmodestvector-specicTcellresponsesinhumansubjects.
Vaccine28,7306–7312.
doi:10.
1016/j.
vaccine.
2010.
08.
077Hu,K.
,Luo,S.
,Tong,L.
,Huang,X.
,Jin,W.
,Huang,W.
,etal.
(2013).
CCL19andCCL28augmentmucosalandsystemicimmuneresponsestoHIV-1gp140bymobilizingresponsiveimmunocytesintosecondarylymphnodesandmucosaltissue.
J.
Immunol.
191,1935–1947.
doi:10.
4049/jimmunol.
1300120Huster,K.
M.
,Kofer,M.
,Stemberger,C.
,Schiemann,M.
,Wagner,H.
,andBusch,D.
H.
(2006).
UnidirectionaldevelopmentofCD8+centralmemoryTcellsintoprotectiveListeria-speciceffectormemoryTcells.
Eur.
J.
Immunol.
36,1453–1464.
doi:10.
1002/eji.
200635874Hutnick,N.
A.
,Carnathan,D.
G.
,Dubey,S.
A.
,Cox,K.
S.
,Kierstead,L.
,Makadonas,G.
,etal.
(2010).
VaccinationwithAd5vectorsexpandsAd5-specicCD8Tcellswithoutalteringmemoryphenotypeorfunctionality.
PLoSONE5:e14385.
doi:10.
1371/journal.
pone.
0014385Jalah,R.
,Kulkarni,V.
,Patel,V.
,Rosati,M.
,Alicea,C.
,Bear,J.
,etal.
(2014).
DNAandproteinco-immunizationimprovesthemagnitudeandlongevityofhumoralimmuneresponsesinmacaques.
PLoSONE9:e91550.
doi:10.
1371/journal.
pone.
0091550Jiang,J.
Q.
,Patrick,A.
,Moss,R.
B.
,andRosenthal,K.
L.
(2005).
CD8+T-cell-mediatedcross-cladeprotectioninthegenitaltractfollowingintranasalimmunizationwithinactivatedhumanimmunodeciencyvirusantigenplusCpGoligodeoxynucleotides.
J.
Virol.
79,393–400.
doi:10.
1128/JVI.
79.
1.
393-400.
2005Kalams,S.
A.
,Parker,S.
,Jin,X.
,Elizaga,M.
,Metch,B.
,Wang,M.
,etal.
(2012).
SafetyandimmunogenicityofanHIV-1gagDNAvaccinewithorwithoutIL-12and/orIL-15plasmidcytokineadjuvantinhealthy,HIV-1uninfectedadults.
PLoSONE7:e29231.
doi:10.
1371/journal.
pone.
0029231Kalams,S.
A.
,Parker,S.
D.
,Elizaga,M.
,Metch,B.
,Edupuganti,S.
,Hural,J.
,etal.
(2013).
SafetyandcomparativeimmunogenicityofanHIV-1DNAvac-cineincombinationwithplasmidinterleukin12andimpactofintramuscularelectroporationfordelivery.
J.
Infect.
Dis.
208,818–829.
doi:10.
1093/infdis/jit236Kaleebu,P.
,Njai,H.
F.
,Wang,L.
,Jones,N.
,Ssewanyana,I.
,Richardson,P.
,etal.
(2014).
ImmunogenicityofALVAC-HIVvCP1521ininfantsofHIV-1-infectedwomeninUganda(HPTN027):therstpediatricHIVvac-cinetrialinAfrica.
J.
Acquir.
ImmuneDec.
Syndr.
65,268–277.
doi:10.
1097/01.
qai.
0000435600.
65845.
31Kawada,M.
,Tsukamoto,T.
,Yamamoto,H.
,Takeda,A.
,Igarashi,H.
,Watkins,D.
I.
,etal.
(2007).
Long-termcontrolofsimianimmunodeciencyvirusreplicationwithcentralmemoryCD4+T-cellpreservationafternonsterilepro-tectionbyacytotoxicT-lymphocyte-basedvaccine.
J.
Virol.
81,5202–5211.
doi:10.
1128/JVI.
02881-06Keefer,M.
C.
,Frey,S.
E.
,Elizaga,M.
,Metch,B.
,DeRosa,S.
C.
,Barroso,P.
F.
,etal.
(2011).
AphaseItrialofpreventiveHIVvaccinationwithheterologouspoxviral-vectorscontainingmatchingHIV-1insertsinhealthyHIV-uninfectedsubjects.
Vaccine29,1948–1958.
doi:10.
1016/j.
vaccine.
2010.
12.
104Keefer,M.
C.
,Gilmour,J.
,Hayes,P.
,Gill,D.
,Kopycinski,J.
,Cheeseman,H.
,etal.
(2012).
AphaseIdoubleblind,placebo-controlled,randomizedstudyofamultigenicHIV-1adenovirussubtype35vectorvaccineinhealthyuninfectedadults.
PLoSONE7:e41936.
doi:10.
1371/journal.
pone.
0041936Kennedy,J.
S.
,Co,M.
,Green,S.
,Longtine,K.
,Longtine,J.
,O'Neill,M.
A.
,etal.
(2008).
ThesafetyandtolerabilityofanHIV-1DNAprime-proteinboostvaccine(DP6-001)inhealthyadultvolunteers.
Vaccine26,4420–4424.
doi:10.
1016/j.
vaccine.
2008.
05.
090Kent,S.
J.
,Zhao,A.
,Best,S.
J.
,Chandler,J.
D.
,Boyle,D.
B.
,andRamshaw,I.
A.
(1998).
EnhancedT-cellimmunogenicityandprotectiveefcacyofahumanimmunodeciencyvirustype1vaccineregimenconsistingofconsecutiveprim-ingwithDNAandboostingwithrecombinantfowlpoxvirus.
J.
Virol.
72,10180–10188.
Kibler,K.
V.
,Gomez,C.
E.
,Perdiguero,B.
,Wong,S.
,Huynh,T.
,Holechek,S.
,etal.
(2011).
ImprovedNYVAC-basedvaccinevectors.
PLoSONE6:e25674.
doi:10.
1371/journal.
pone.
0025674Kim,T.
S.
,Hufford,M.
M.
,Sun,J.
,Fu,Y.
X.
,andBraciale,T.
J.
(2010).
AntigenpersistenceandthecontroloflocalTcellmemorybymigrantrespiratorydendriticcellsafteracutevirusinfection.
J.
Exp.
Med.
207,1161–1172.
doi:10.
1084/jem.
20092017Kintu,K.
,Andrew,P.
,Musoke,P.
,Richardson,P.
,Asiimwe-Kateera,B.
,Nakyanzi,T.
,etal.
(2013).
FeasibilityandsafetyofALVAC-HIVvCP1521vaccineinHIV-exposedinfantsinUganda:resultsfromtherstHIVvaccinetrialininfantsinAfrica.
J.
Acquir.
ImmuneDec.
Syndr.
63,1–8.
doi:10.
1097/QAI.
0b013e31827f1c2dKiyono,H.
,andFukuyama,S.
(2004).
NALT-versusPeyer's-patch-mediatedmucosalimmunity.
Nat.
Rev.
Immunol.
4,699–710.
doi:10.
1038/nri1439Kong,W.
P.
,Wu,L.
,Wallstrom,T.
C.
,Fischer,W.
,Yang,Z.
Y.
,Ko,S.
Y.
,etal.
(2009).
ExpandedbreadthoftheT-cellresponsetomosaichumanimmunod-eciencyvirustype1envelopeDNAvaccination.
J.
Virol.
83,2201–2215.
doi:10.
1128/JVI.
02256-08FrontiersinMicrobiology|MicrobialImmunologyAugust2014|Volume5|Article439|20OndondoChallengesofHIVvaccinedeliveryKopycinski,J.
,Cheeseman,H.
,Ashraf,A.
,Gill,D.
,Hayes,P.
,Hannaman,D.
,etal.
(2012).
ADNA-basedcandidateHIVvaccinedeliveredviainvivoelectro-porationinducesCD4responsestowardthealpha4beta7-bindingV2loopofHIVgp120inhealthyvolunteers.
Clin.
VaccineImmunol.
19,1557–1559.
doi:10.
1128/CVI.
00327-12Korber,B.
T.
,Letvin,N.
L.
,andHaynes,B.
F.
(2009).
T-cellvaccinestrategiesforhumanimmunodeciencyvirus,theviruswithathousandfaces.
J.
Virol.
83,8300–8314.
doi:10.
1128/JVI.
00114-09Kurath,G.
,Garver,K.
A.
,Corbeil,S.
,Elliott,D.
G.
,Anderson,E.
D.
,andLaPatra,S.
E.
(2006).
ProtectiveimmunityandlackofhistopathologicaldamagetwoyearsafterDNAvaccinationagainstinfectioushematopoieticnecrosisvirusintrout.
Vaccine24,345–354.
doi:10.
1016/j.
vaccine.
2005.
07.
068Lai,L.
,Kwa,S.
,Kozlowski,P.
A.
,Monteori,D.
C.
,Ferrari,G.
,Johnson,W.
E.
,etal.
(2011).
Preventionofinfectionbyagranulocyte-macrophagecolony-stimulatingfactorco-expressingDNA/modiedvacciniaAnkarasimianimmunodeciencyvirusvaccine.
J.
Infect.
Dis.
204,164–173.
doi:10.
1093/infdis/jir199Lasaro,M.
O.
,andErtl,H.
C.
(2009).
Newinsightsonadenovirusasvaccinevectors.
Mol.
Ther.
17,1333–1339.
doi:10.
1038/mt.
2009.
130Leroux-Roels,G.
,Maes,C.
,Clement,F.
,vanEngelenburg,F.
,vandenDobbelsteen,M.
,Adler,M.
,etal.
(2013).
RandomizedphaseI:safety,immunogenic-ityandmucosalantiviralactivityinyounghealthywomenvaccinatedwithHIV-1Gp41P1peptideonvirosomes.
PLoSONE8:e55438.
doi:10.
1371/jour-nal.
pone.
0055438Letourneau,S.
,Im,E.
J.
,Mashishi,T.
,Brereton,C.
,Bridgeman,A.
,Yang,H.
,etal.
(2007).
Designandpre-clinicalevaluationofauniversalHIV-1vaccine.
PLoSONE2:e984.
doi:10.
1371/journal.
pone.
0000984Li,J.
,Arevalo,M.
T.
,andZeng,M.
(2013).
Engineeringinuenzaviralvectors.
Bioengineered4,9–14.
doi:10.
4161/bioe.
21950Li,S.
,Polonis,V.
,Isobe,H.
,Zaghouani,H.
,Guinea,R.
,Moran,T.
,etal.
(1993a).
ChimericinuenzavirusinducesneutralizingantibodiesandcytotoxicTcellsagainsthumanimmunodeciencyvirustype1.
J.
Virol.
67,6659–6666.
Li,S.
,Rodrigues,M.
,Rodriguez,D.
,Rodriguez,J.
R.
,Esteban,M.
,Palese,P.
,etal.
(1993b).
Primingwithrecombinantinuenzavirusfollowedbyadministra-tionofrecombinantvacciniavirusinducesCD8+T-cell-mediatedprotectiveimmunityagainstmalaria.
Proc.
Natl.
Acad.
Sci.
U.
S.
A.
90,5214–5218.
Lietz,R.
,Bayer,W.
,Ontikatze,T.
,Johrden,L.
,Tenbusch,M.
,StorcksdieckGenanntBonsmann,M.
,etal.
(2012).
CodeliveryofthechemokineCCL3byanadenovirus-basedvaccineimprovesprotectionfromretrovirusinfection.
J.
Virol.
86,1706–1716.
doi:10.
1128/JVI.
06244-11Lillie,P.
J.
,Berthoud,T.
K.
,Powell,T.
J.
,Lambe,T.
,Mullarkey,C.
,Spencer,A.
J.
,etal.
(2012).
PreliminaryassessmentoftheefcacyofaT-cell-basedinuenzavaccine,MVA-NP+M1,inhumans.
Clin.
Infect.
Dis.
55,19–25.
doi:10.
1093/cid/cis327Liu,C.
,Du,S.
,Li,C.
,Wang,Y.
,Wang,M.
,Li,Y.
,etal.
(2013).
ImmunogenicityanalysisfollowinghumanimmunodeciencyvirusrecombinantDNAandrecombinantvacciniavirusTianTanprime-boostimmunization.
Sci.
ChinaLifeSci.
56,531–540.
doi:10.
1007/s11427-013-4484-2Liu,J.
,O'Brien,K.
L.
,Lynch,D.
M.
,Simmons,N.
L.
,LaPorte,A.
,Riggs,A.
M.
,etal.
(2009).
ImmunecontrolofanSIVchallengebyaT-cell-basedvaccineinrhesusmonkeys.
Nature457,87–91.
doi:10.
1038/nature07469Lopez-Gordo,E.
,Podgorski,I.
I.
,Downes,N.
,andAlemany,R.
(2014).
Circumventingantivectorimmunity:potentialuseofnonhumanadenoviralvectors.
Hum.
GeneTher.
25,285–300.
doi:10.
1089/hum.
2013.
228Luo,X.
M.
,Maarschalk,E.
,O'Connell,R.
M.
,Wang,P.
,Yang,L.
,andBaltimore,D.
(2009).
Engineeringhumanhematopoieticstem/progenitorcellstoproduceabroadlyneutralizinganti-HIVantibodyafterinvitromaturationtohumanBlymphocytes.
Blood113,1422–1431.
doi:10.
1182/blood-2008-09-177139Mahnel,H.
,andMayr,A.
(1994).
[ExperienceswithimmunizationagainstorthopoxvirusesofhumansandanimalsusingvaccinestrainMVA].
Berl.
Munch.
Tierarztl.
Wochenschr.
107,253–256.
Makitalo,B.
,Lundholm,P.
,Hinkula,J.
,Nilsson,C.
,Karlen,K.
,Morner,A.
,etal.
(2004).
EnhancedcellularimmunityandsystemiccontrolofSHIVinfectionbycombinedparenteralandmucosaladministrationofaDNAprimeMVAboostvaccineregimen.
J.
Gen.
Virol.
85(Pt8),2407–2419.
doi:10.
1099/vir.
0.
79869-0Mann,J.
F.
,McKay,P.
F.
,Fiserova,A.
,Klein,K.
,Cope,A.
,Rogers,P.
,etal.
(2014).
EnhancedimmunogenicityofanHIV-1DNAvaccinedeliveredwithelec-troporationviacombinedintramuscularandintradermalroutes.
J.
Virol.
88,6959–6969.
doi:10.
1128/JVI.
00183-14Masopust,D.
,Ha,S.
J.
,Vezys,V.
,andAhmed,R.
(2006).
Stimulationhistorydic-tatesmemoryCD8Tcellphenotype:implicationsforprime-boostvaccination.
J.
Immunol.
177,831–839.
doi:10.
4049/jimmunol.
177.
2.
831Masopust,D.
,Vezys,V.
,Marzo,A.
L.
,andLefrancois,L.
(2001).
Preferentiallocal-izationofeffectormemorycellsinnonlymphoidtissue.
Science291,2413–2417.
doi:10.
1126/science.
1058867Mast,T.
C.
,Kierstead,L.
,Gupta,S.
B.
,Nikas,A.
A.
,Kallas,E.
G.
,Novitsky,V.
,etal.
(2010).
Internationalepidemiologyofhumanpre-existingadenovirus(Ad)type-5,type-6,type-26andtype-36neutralizingantibodies:correlatesofhighAd5titersandimplicationsforpotentialHIVvaccinetrials.
Vaccine28,950–957.
doi:10.
1016/j.
vaccine.
2009.
10.
145Matano,T.
,Kano,M.
,Nakamura,H.
,Takeda,A.
,andNagai,Y.
(2001).
RapidappearanceofsecondaryimmuneresponsesandprotectionfromacuteCD4depletionafterahighlypathogenicimmunodeciencyviruschallengeinmacaquesvaccinatedwithaDNAprime/Sendaivirusvectorboostregimen.
J.
Virol.
75,11891–11896.
doi:10.
1128/JVI.
75.
23.
11891-118l96.
2001Mazumder,S.
,Maji,M.
,Das,A.
,andAli,N.
(2011).
Potency,efcacyanddura-bilityofDNA/DNA,DNA/proteinandprotein/proteinbasedvaccinationusinggp63againstLeishmaniadonovaniinBALB/cmice.
PLoSONE6:e14644.
doi:10.
1371/journal.
pone.
0014644McConkey,S.
J.
,Reece,W.
H.
,Moorthy,V.
S.
,Webster,D.
,Dunachie,S.
,Butcher,G.
,etal.
(2003).
EnhancedT-cellimmunogenicityofplasmidDNAvaccinesboostedbyrecombinantmodiedvacciniavirusAnkarainhumans.
Nat.
Med.
9,729–735.
doi:10.
1038/nm881McCormack,S.
,Stohr,W.
,Barber,T.
,Bart,P.
A.
,Harari,A.
,Moog,C.
,etal.
(2008).
EV02:aPhaseItrialtocomparethesafetyandimmunogenicityofHIVDNA-Cprime-NYVAC-CboosttoNYVAC-Calone.
Vaccine26,3162–3174.
doi:10.
1016/j.
vaccine.
2008.
02.
072McCoy,K.
,Tatsis,N.
,Korioth-Schmitz,B.
,Lasaro,M.
O.
,Hensley,S.
E.
,Lin,S.
W.
,etal.
(2007).
Effectofpreexistingimmunitytoadenovirushumanserotype5antigensontheimmuneresponsesofnonhumanprimatestovaccineregi-mensbasedonhuman-orchimpanzee-derivedadenovirusvectors.
J.
Virol.
81,6594–6604.
doi:10.
1128/JVI.
02497-06McElrath,M.
J.
,DeRosa,S.
C.
,Moodie,Z.
,Dubey,S.
,Kierstead,L.
,Janes,H.
,etal.
(2008).
HIV-1vaccine-inducedimmunityinthetest-of-conceptStepStudy:acase-cohortanalysis.
Lancet372,1894–1905.
doi:10.
1016/S0140-6736(08)61592-5McKay,P.
F.
,Cope,A.
V.
,Mann,J.
F.
,Joseph,S.
,Esteban,M.
,Tatoud,R.
,etal.
(2014).
GlucopyranosyllipidAadjuvantsignicantlyenhancesHIVspecicTandBcellresponseselicitedbyaDNA-MVA-proteinvaccineregimen.
PLoSONE9:e84707.
doi:10.
1371/journal.
pone.
0084707McMichael,A.
J.
(2006).
HIVvaccines.
Annu.
Rev.
Immunol.
24,227–255.
doi:10.
1146/annurev.
immunol.
24.
021605.
090605McShane,H.
(2002).
Prime-boostimmunizationstrategiesforinfectiousdiseases.
Curr.
Opin.
Mol.
Ther.
4,23–27.
Mehandru,S.
,Poles,M.
A.
,Tenner-Racz,K.
,Horowitz,A.
,Hurley,A.
,Hogan,C.
,etal.
(2004).
PrimaryHIV-1infectionisassociatedwithpreferentialdepletionofCD4+Tlymphocytesfromeffectorsitesinthegastrointestinaltract.
J.
Exp.
Med.
200,761–770.
doi:10.
1084/jem.
20041196Meyer,H.
,Sutter,G.
,andMayr,A.
(1991).
MappingofdeletionsinthegenomeofthehighlyattenuatedvacciniavirusMVAandtheirinuenceonvirulence.
J.
Gen.
Virol.
72(Pt5),1031–1038.
Mooij,P.
,Balla-Jhagjhoorsingh,S.
S.
,Koopman,G.
,Beenhakker,N.
,vanHaaften,P.
,Baak,I.
,etal.
(2008).
DifferentialCD4+versusCD8+T-cellresponseselicitedbydifferentpoxvirus-basedhumanimmunodeciencyvirustype1vaccinecandidatesprovidecomparableefcaciesinprimates.
J.
Virol.
82,2975–2988.
doi:10.
1128/JVI.
02216-07Moser,C.
,Amacker,M.
,Kammer,A.
R.
,Rasi,S.
,Westerfeld,N.
,andZurbriggen,R.
(2007).
Inuenzavirosomesasacombinedvaccinecarrierandadjuvantsys-temforprophylacticandtherapeuticimmunizations.
ExpertRev.
Vaccines6,711–721.
doi:10.
1586/14760584.
6.
5.
711Muruve,D.
A.
,Petrilli,V.
,Zaiss,A.
K.
,White,L.
R.
,Clark,S.
A.
,Ross,P.
J.
,etal.
(2008).
TheinammasomerecognizescytosolicmicrobialandhostDNAandtriggersaninnateimmuneresponse.
Nature452,103–107.
doi:10.
1038/nature06664Muster,T.
,Ferko,B.
,Klima,A.
,Purtscher,M.
,Trkola,A.
,Schulz,P.
,etal.
(1995).
Mucosalmodelofimmunizationagainsthumanimmunodeciencyvirustype1withachimericinuenzavirus.
J.
Virol.
69,6678–6686.
www.
frontiersin.
orgAugust2014|Volume5|Article439|21OndondoChallengesofHIVvaccinedeliveryMuster,T.
,Guinea,R.
,Trkola,A.
,Purtscher,M.
,Klima,A.
,Steindl,F.
,etal.
(1994).
Cross-neutralizingactivityagainstdivergenthumanimmunodeciencyvirustype1isolatesinducedbythegp41sequenceELDKWAS.
J.
Virol.
68,4031–4034.
Muster,T.
,Steindl,F.
,Purtscher,M.
,Trkola,A.
,Klima,A.
,Himmler,G.
,etal.
(1993).
Aconservedneutralizingepitopeongp41ofhumanimmunodeciencyvirustype1.
J.
Virol.
67,6642–6647.
Mwau,M.
,Cebere,I.
,Sutton,J.
,Chikoti,P.
,Winstone,N.
,Wee,E.
G.
,etal.
(2004).
Ahumanimmunodeciencyvirus1(HIV-1)cladeAvaccineinclinicaltrials:stimulationofHIV-specicT-cellresponsesbyDNAandrecombinantmodiedvacciniavirusAnkara(MVA)vaccinesinhumans.
J.
Gen.
Virol.
85,911–919.
doi:10.
1099/vir.
0.
19701-0Nazir,S.
A.
,andMetcalf,J.
P.
(2005).
Innateimmuneresponsetoadenovirus.
J.
Investig.
Med.
53,292–304.
doi:10.
2310/6650.
2005.
53605Newman,M.
J.
(2002).
Heterologousprime-boostvaccinationstrategiesforHIV-1:augmentingcellularimmuneresponses.
Curr.
Opin.
Investig.
Drugs3,374–378.
Nolz,J.
C.
,andHarty,J.
T.
(2011).
Strategiesandimplicationsforprime-boostvaccinationtogeneratememoryCD8Tcells.
Adv.
Exp.
Med.
Biol.
780:69–83.
doi:10.
1007/978-1-4419-5632-3_7O'Hara,G.
A.
,Duncan,C.
J.
,Ewer,K.
J.
,Collins,K.
A.
,Elias,S.
C.
,Halstead,F.
D.
,etal.
(2012).
ClinicalassessmentofarecombinantsimianadenovirusChAd63:apotentnewvaccinevector.
J.
Infect.
Dis.
205,772–781.
doi:10.
1093/infdis/jir850Ohs,I.
,Windmann,S.
,Wildner,O.
,Dittmer,U.
,andBayer,W.
(2013).
Interleukin-encodingadenoviralvectorsasgeneticadjuvantforvaccinationagainstretrovi-ralinfection.
PLoSONE8:e82528.
doi:10.
1371/journal.
pone.
0082528Olive,M.
,Eisenlohr,L.
,Flomenberg,N.
,Hsu,S.
,andFlomenberg,P.
(2002).
Theadenoviruscapsidproteinhexoncontainsahighlycon-servedhumanCD4+T-cellepitope.
Hum.
GeneTher.
13,1167–1178.
doi:10.
1089/104303402320138952Ondondo,B.
O.
,Yang,H.
,Dong,T.
,diGleria,K.
,Suttill,A.
,Conlon,C.
,etal.
(2006).
ImmunisationwithrecombinantmodiedvacciniavirusAnkaraexpressingHIV-1gaginHIV-1-infectedsubjectsstimulatesbroadfunctionalCD4+Tcellresponses.
Eur.
J.
Immunol.
36,2585–2594.
doi:10.
1002/eji.
200636508Palese,P.
,Zavala,F.
,Muster,T.
,Nussenzweig,R.
S.
,andGarcia-Sastre,A.
(1997).
Developmentofnovelinuenzavirusvaccinesandvectors.
J.
Infect.
Dis.
176(Suppl.
1),S45–S49.
Patel,V.
,Jalah,R.
,Kulkarni,V.
,Valentin,A.
,Rosati,M.
,Alicea,C.
,etal.
(2013).
DNAandvirusparticlevaccinationprotectsagainstacquisitionandconferscontrolofviremiauponheterologoussimianimmunode-ciencyviruschallenge.
Proc.
Natl.
Acad.
Sci.
U.
S.
A.
110,2975–2980.
doi:10.
1073/pnas.
1215393110Patel,V.
,Valentin,A.
,Kulkarni,V.
,Rosati,M.
,Bergamaschi,C.
,Jalah,R.
,etal.
(2010).
Long-lastinghumoralandcellularimmuneresponsesandmucosaldis-seminationafterintramuscularDNAimmunization.
Vaccine28,4827–4836.
doi:10.
1016/j.
vaccine.
2010.
04.
064Patterson,L.
J.
,andRobert-Guroff,M.
(2008).
Replicatingadenovirusvectorprime/proteinbooststrategiesforHIVvaccinedevelopment.
ExpertOpin.
Biol.
Ther.
8,1347–1363.
doi:10.
1517/14712598.
8.
9.
1347Perreau,M.
,Pantaleo,G.
,andKremer,E.
J.
(2008).
Activationofadendriticcell-TcellaxisbyAd5immunecomplexescreatesanimprovedenviron-mentforreplicationofHIVinTcells.
J.
Exp.
Med.
205,2717–2725.
doi:10.
1084/jem.
20081786Pichla-Gollon,S.
L.
,Lin,S.
W.
,Hensley,S.
E.
,Lasaro,M.
O.
,Herkenhoff-Haut,L.
,Drinker,M.
,etal.
(2009).
Effectofpreexistingimmunityonanadenovirusvaccinevector:invitroneutralizationassaysfailtopredictinhibitionbyantiviralantibodyinvivo.
J.
Virol.
83,5567–5573.
doi:10.
1128/JVI.
00405-09Pitisuttithum,P.
,Gilbert,P.
,Gurwith,M.
,Heyward,W.
,Martin,M.
,vanGriensven,F.
,etal.
(2006).
Randomized,double-blind,placebo-controlledefcacytrialofabivalentrecombinantglycoprotein120HIV-1vaccineamonginjectiondrugusersinBangkok,Thailand.
J.
Infect.
Dis.
194,1661–1671.
doi:10.
1086/508748Price,P.
J.
,Torres-Dominguez,L.
E.
,Brandmuller,C.
,Sutter,G.
,andLehmann,M.
H.
(2013).
ModiedVacciniavirusAnkara:innateimmuneactiva-tionandinductionofcellularsignalling.
Vaccine31,4231–4234.
doi:10.
1016/j.
vaccine.
2013.
03.
017Prodger,J.
L.
,Gray,R.
,Kigozi,G.
,Nalugoda,F.
,Galiwango,R.
,Hirbod,T.
,etal.
(2012).
ForeskinT-cellsubsetsdiffersubstantiallyfrombloodwithrespecttoHIVco-receptorexpression,inammatoryprole,andmemorystatus.
MucosalImmunol.
5,121–128.
doi:10.
1038/mi.
2011.
56Qureshi,H.
,Ma,Z.
M.
,Huang,Y.
,Hodge,G.
,Thomas,M.
A.
,DiPasquale,J.
,etal.
(2012).
Low-dosepenileSIVmac251exposureofrhesusmacaquesinfectedwithadenovirustype5(Ad5)andthenimmunizedwithareplication-defectiveAd5-basedSIVgag/pol/nefvaccinerecapitulatestheresultsofthephaseIIbsteptrialofasimilarHIV-1vaccine.
J.
Virol.
86,2239–2250.
doi:10.
1128/JVI.
06175-11Ramshaw,I.
A.
,andRamsay,A.
J.
(2000).
Theprime-booststrategy:excit-ingprospectsforimprovedvaccination.
Immunol.
Today21,163–165.
doi:10.
1016/S0167-5699(00)01612-1Ranasinghe,C.
,Turner,S.
J.
,McArthur,C.
,Sutherland,D.
B.
,Kim,J.
H.
,Doherty,P.
C.
,etal.
(2007).
MucosalHIV-1poxvirusprime-boostimmunizationinduceshigh-avidityCD8+Tcellswithregime-dependentcytokine/granzymeBproles.
J.
Immunol.
178,2370–2379.
doi:10.
4049/jimmunol.
178.
4.
2370Ratto-Kim,S.
,Currier,J.
R.
,Cox,J.
H.
,Excler,J.
L.
,Valencia-Micolta,A.
,Thelian,D.
,etal.
(2012).
Heterologousprime-boostregimensusingrAd35andrMVAvectorselicitstrongercellularimmuneresponsestoHIVproteinsthanhomol-ogousregimens.
PLoSONE7:e45840.
doi:10.
1371/journal.
pone.
0045840Rerks-Ngarm,S.
,Paris,R.
M.
,Chunsutthiwat,S.
,Premsri,N.
,Namwat,C.
,Bowonwatanuwong,C.
,etal.
(2013).
Extendedevaluationofthevirologic,immunologic,andclinicalcourseofvolunteerswhoacquiredHIV-1infectioninaphaseIIIvaccinetrialofALVAC-HIVandAIDSVAXB/E.
J.
Infect.
Dis.
207,1195–1205.
doi:10.
1093/infdis/jis478Rerks-Ngarm,S.
,Pitisuttithum,P.
,Nitayaphan,S.
,Kaewkungwal,J.
,Chiu,J.
,Paris,R.
,etal.
(2009).
VaccinationwithALVACandAIDSVAXtopre-ventHIV-1infectioninThailand.
N.
Engl.
J.
Med.
361,2209–2220.
doi:10.
1056/NEJMoa0908492Reyes-Sandoval,A.
,Berthoud,T.
,Alder,N.
,Siani,L.
,Gilbert,S.
C.
,Nicosia,A.
,etal.
(2010).
Prime-boostimmunizationwithadenoviralandmodiedvac-ciniavirusAnkaravectorsenhancesthedurabilityandpolyfunctionalityofprotectivemalariaCD8+T-cellresponses.
Infect.
Immun.
78,145–153.
doi:10.
1128/IAI.
00740-09Reyes-Sandoval,A.
,Fitzgerald,J.
C.
,Grant,R.
,Roy,S.
,Xiang,Z.
Q.
,Li,Y.
,etal.
(2004).
Humanimmunodeciencyvirustype1-specicimmuneresponsesinprimatesuponsequentialimmunizationwithadenoviralvac-cinecarriersofhumanandsimianserotypes.
J.
Virol.
78,7392–7399.
doi:10.
1128/JVI.
78.
14.
7392-7399.
2004Reyes-Sandoval,A.
,Sridhar,S.
,Berthoud,T.
,Moore,A.
C.
,Harty,J.
T.
,Gilbert,S.
C.
,etal.
(2008).
Single-doseimmunogenicityandprotectiveefcacyofsimianadenoviralvectorsagainstPlasmodiumberghei.
Eur.
J.
Immunol.
38,732–741.
doi:10.
1002/eji.
200737672Reynolds,M.
R.
,Weiler,A.
M.
,Piaskowski,S.
M.
,Kolar,H.
L.
,Hessell,A.
J.
,Weiker,M.
,etal.
(2010).
Macaquesvaccinatedwithsimianimmunode-ciencyvirusSIVmac239Deltanefdelayacquisitionandcontrolreplicationafterrepeatedlow-doseheterologousSIVchallenge.
J.
Virol.
84,9190–9199.
doi:10.
1128/JVI.
00041-10Reynolds,M.
R.
,Weiler,A.
M.
,Weisgrau,K.
L.
,Piaskowski,S.
M.
,Furlott,J.
R.
,Weinfurter,J.
T.
,etal.
(2008).
Macaquesvaccinatedwithlive-attenuatedSIVcontrolreplicationofheterologousvirus.
J.
Exp.
Med.
205,2537–2550.
doi:10.
1084/jem.
20081524Roberts,D.
M.
,Nanda,A.
,Havenga,M.
J.
,Abbink,P.
,Lynch,D.
M.
,Ewald,B.
A.
,etal.
(2006).
Hexon-chimaericadenovirusserotype5vectorscircumventpre-existinganti-vectorimmunity.
Nature441,239–243.
doi:10.
1038/nature04721Robinson,H.
L.
,andAmara,R.
R.
(2005).
Tcellvaccinesformicrobialinfections.
Nat.
Med.
11,S25–S32.
doi:10.
1038/nm1212Rodriguez,D.
,Rodriguez,J.
R.
,Llorente,M.
,Vazquez,I.
,Lucas,P.
,Esteban,M.
,etal.
(1999).
Ahumanimmunodeciencyvirustype1Env-granulocyte-macrophagecolony-stimulatingfactorfusionproteinenhancesthecellularimmuneresponsetoEnvinavacciniavirus-basedvaccine.
J.
Gen.
Virol.
80(Pt1),217–223.
Roederer,M.
,Keele,B.
F.
,Schmidt,S.
D.
,Mason,R.
D.
,Welles,H.
C.
,Fischer,W.
,etal.
(2014).
Immunologicalandvirologicalmechanismsofvaccine-mediatedprotectionagainstSIVandHIV.
Nature505,502–508.
doi:10.
1038/nature12893Rosati,M.
,Bergamaschi,C.
,Valentin,A.
,Kulkarni,V.
,Jalah,R.
,Alicea,C.
,etal.
(2009).
DNAvaccinationinrhesusmacaquesinducespotentimmuneresponsesanddecreasesacuteandchronicviremiaafterSIVmac251challenge.
Proc.
Natl.
Acad.
Sci.
U.
S.
A.
106,15831–15836.
doi:10.
1073/pnas.
0902628106Rosati,M.
,vonGegerfelt,A.
,Roth,P.
,Alicea,C.
,Valentin,A.
,Robert-Guroff,M.
,etal.
(2005).
DNAvaccinesexpressingdifferentformsofsimianimmunode-ciencyvirusantigensdecreaseviremiauponSIVmac251challenge.
J.
Virol.
79,8480–8492.
doi:10.
1128/JVI.
79.
13.
8480-8492.
2005FrontiersinMicrobiology|MicrobialImmunologyAugust2014|Volume5|Article439|22OndondoChallengesofHIVvaccinedeliveryRose,N.
F.
,Marx,P.
A.
,Luckay,A.
,Nixon,D.
F.
,Moretto,W.
J.
,Donahoe,S.
M.
,etal.
(2001).
AneffectiveAIDSvaccinebasedonliveattenuatedvesic-ularstomatitisvirusrecombinants.
Cell106,539–549.
doi:10.
1016/S0092-8674(01)00482-2Roshorm,Y.
,Cottingham,M.
G.
,Potash,M.
J.
,Volsky,D.
J.
,andHanke,T.
(2012).
Tcellsinducedbyrecombinantchimpanzeeadenovirusaloneandinprime-boostregimensdecreasechimericEcoHIV/NDKchallengevirusload.
Eur.
J.
Immunol.
42,3243–3255.
doi:10.
1002/eji.
201242624Sallusto,F.
,Geginat,J.
,andLanzavecchia,A.
(2004).
Centralmemoryandeffec-tormemoryTcellsubsets:function,generation,andmaintenance.
Annu.
Rev.
Immunol.
22,745–763.
doi:10.
1146/annurev.
immunol.
22.
012703.
104702Sandstrom,E.
,Nilsson,C.
,Hejdeman,B.
,Brave,A.
,Bratt,G.
,Robb,M.
,etal.
(2008).
Broadimmunogenicityofamultigene,multicladeHIV-1DNAvaccineboostedwithheterologousHIV-1recombinantmodiedvacciniavirusAnkara.
J.
Infect.
Dis.
198,1482–1490.
doi:10.
1086/592507Santra,S.
,Liao,H.
X.
,Zhang,R.
,Muldoon,M.
,Watson,S.
,Fischer,W.
,etal.
(2010).
MosaicvaccineselicitCD8+TlymphocyteresponsesthatconferenhancedimmunecoverageofdiverseHIVstrainsinmonkeys.
Nat.
Med.
16,324–328.
doi:10.
1038/nm.
2108Santra,S.
,Muldoon,M.
,Watson,S.
,Buzby,A.
,Balachandran,H.
,Carlson,K.
R.
,etal.
(2012).
Breadthofcellularandhumoralimmuneresponseselicitedinrhe-susmonkeysbymulti-valentmosaicandconsensusimmunogens.
Virology428,121–127.
doi:10.
1016/j.
virol.
2012.
03.
012Saubi,N.
,Im,E.
J.
,Fernandez-Lloris,R.
,Gil,O.
,Cardona,P.
J.
,Gatell,J.
M.
,etal.
(2011).
NewbornmicevaccinationwithBCG.
HIVA(2)(2)(2)+MVA.
HIVAenhancesHIV-1-specicimmuneresponses:inuenceofageandimmunizationroutes.
Clin.
Dev.
Immunol.
2011:516219.
doi:10.
1155/2011/516219Saubi,N.
,Mbewe-Mvula,A.
,Gea-Mallorqui,E.
,Rosario,M.
,Gatell,J.
M.
,Hanke,T.
,etal.
(2012).
Pre-clinicaldevelopmentofBCG.
HIVA(CAT),anantibiotic-freeselectionstrain,forHIV-TBpediatricvaccinevectoredbylysineauxotrophofBCG.
PLoSONE7:e42559.
doi:10.
1371/journal.
pone.
0042559Schell,J.
,Rose,N.
F.
,Fazo,N.
,Marx,P.
A.
,Hunter,M.
,Ramsburg,E.
,etal.
(2009).
Long-termvaccineprotectionfromAIDSandclearanceofviralDNAfol-lowingSHIV89.
6Pchallenge.
Vaccine27,979–986.
doi:10.
1016/j.
vaccine.
2008.
12.
017Schell,J.
B.
,Rose,N.
F.
,Bahl,K.
,Diller,K.
,Buonocore,L.
,Hunter,M.
,etal.
(2011).
Signicantprotectionagainsthigh-dosesimianimmunodeciencyviruschal-lengeconferredbyanewprime-boostvaccineregimen.
J.
Virol.
85,5764–5772.
doi:10.
1128/JVI.
00342-11Schneider,J.
,Gilbert,S.
C.
,Blanchard,T.
J.
,Hanke,T.
,Robson,K.
J.
,Hannan,C.
M.
,etal.
(1998).
EnhancedimmunogenicityforCD8+TcellinductionandcompleteprotectiveefcacyofmalariaDNAvaccinationbyboostingwithmodiedvacciniavirusAnkara.
Nat.
Med.
4,397–402.
Schneider,J.
,Gilbert,S.
C.
,Hannan,C.
M.
,Degano,P.
,Prieur,E.
,Sheu,E.
G.
,etal.
(1999).
InductionofCD8+Tcellsusingheterologousprime-boostimmunisationstrategies.
Immunol.
Rev.
170,29–38.
Scriba,T.
J.
,Tameris,M.
,Smit,E.
,vanderMerwe,L.
,Hughes,E.
J.
,Kadira,B.
,etal.
(2012).
AphaseIIatrialofthenewtuberculosisvaccine,MVA85A,inHIV-and/orMycobacteriumtuberculosis-infectedadults.
Am.
J.
Respir.
Crit.
CareMed.
185,769–778.
doi:10.
1164/rccm.
201108-1548OCSedegah,M.
,Tamminga,C.
,McGrath,S.
,House,B.
,Ganeshan,H.
,Lejano,J.
,etal.
(2011).
Adenovirus5-vectoredP.
falciparumvaccineexpressingCSPandAMA1.
PartA:safetyandimmunogenicityinseronegativeadults.
PLoSONE6:e24586.
doi:10.
1371/journal.
pone.
0024586Sekaly,R.
P.
(2008).
ThefailedHIVMerckvaccinestudy:astepbackoralaunchingpointforfuturevaccinedevelopmentJ.
Exp.
Med.
205,7–12.
doi:10.
1084/jem.
20072681Selby,M.
,Goldbeck,C.
,Pertile,T.
,Walsh,R.
,andUlmer,J.
(2000).
EnhancementofDNAvaccinepotencybyelectroporationinvivo.
J.
Biotechnol.
83,147–152.
doi:10.
1016/S0168-1656(00)00308-4Sexton,A.
,DeRose,R.
,Reece,J.
C.
,Alcantara,S.
,Loh,L.
,Moffat,J.
M.
,etal.
(2009).
Evaluationofrecombinantinuenzavirus-simianimmunodeciencyvirusvaccinesinmacaques.
J.
Virol.
83,7619–7628.
doi:10.
1128/JVI.
00470-09Sharpe,S.
,Fooks,A.
,Lee,J.
,Hayes,K.
,Clegg,C.
,andCranage,M.
(2002).
Singleoralimmunizationwithreplicationdecientrecombinantadenoviruselicitslong-livedtransgene-speciccellularandhumoralimmuneresponses.
Virology293,210–216.
doi:10.
1006/viro.
2001.
1281Sheehy,S.
H.
,Duncan,C.
J.
,Elias,S.
C.
,Biswas,S.
,Collins,K.
A.
,O'Hara,G.
A.
,etal.
(2012).
PhaseIaclinicalevaluationofthesafetyandimmunogenicityofthePlasmodiumfalciparumblood-stageantigenAMA1inChAd63andMVAvaccinevectors.
PLoSONE7:e31208.
doi:10.
1371/journal.
pone.
0031208Sheehy,S.
H.
,Duncan,C.
J.
,Elias,S.
C.
,Collins,K.
A.
,Ewer,K.
J.
,Spencer,A.
J.
,etal.
(2011).
PhaseIaclinicalevaluationofthePlasmodiumfalciparumblood-stageantigenMSP1inChAd63andMVAvaccinevectors.
Mol.
Ther.
19,2269–2276.
doi:10.
1038/mt.
2011.
176Shin,H.
,andIwasaki,A.
(2012).
Avaccinestrategythatprotectsagainstgen-italherpesbyestablishinglocalmemoryTcells.
Nature491,463–467.
doi:10.
1038/nature11522Shiver,J.
W.
,Fu,T.
M.
,Chen,L.
,Casimiro,D.
R.
,Davies,M.
E.
,Evans,R.
K.
,etal.
(2002).
Replication-incompetentadenoviralvaccinevectorelicitseffectiveanti-immunodeciency-virusimmunity.
Nature415,331–335.
doi:10.
1038/415331aSmaill,F.
,Jeyanathan,M.
,Smieja,M.
,Medina,M.
F.
,Thanthrige-Don,N.
,Zganiacz,A.
,etal.
(2013).
Ahumantype5adenovirus-basedtuberculo-sisvaccineinducesrobustTcellresponsesinhumansdespitepreexistinganti-adenovirusimmunity.
Sci.
Transl.
Med.
5,205ra134.
doi:10.
1126/sci-translmed.
3006843Smith,G.
L.
,andMoss,B.
(1983).
Infectiouspoxvirusvectorshavecapacityforatleast25000basepairsofforeignDNA.
Gene25,21–28.
Spearman,P.
,Lally,M.
A.
,Elizaga,M.
,Monteori,D.
,Tomaras,G.
D.
,McElrath,M.
J.
,etal.
(2011).
Atrimeric,V2-deletedHIV-1envelopeglycoproteinvaccineelicitspotentneutralizingantibodiesbutlimitedbreadthofneutralizationinhumanvolunteers.
J.
Infect.
Dis.
203,1165–1173.
doi:10.
1093/infdis/jiq175Stevceva,L.
,Alvarez,X.
,Lackner,A.
A.
,Tryniszewska,E.
,Kelsall,B.
,Nacsa,J.
,etal.
(2002).
Bothmucosalandsystemicroutesofimmunizationwiththelive,atten-uatedNYVAC/simianimmunodeciencyvirusSIV(gpe)recombinantvaccineresultingag-specicCD8(+)T-cellresponsesinmucosaltissuesofmacaques.
J.
Virol.
76,11659–11676.
doi:10.
1128/JVI.
76.
22.
11659-11676.
2002Suleman,M.
,Galea,S.
,Gavard,F.
,Merillon,N.
,Klonjkowski,B.
,Tartour,E.
,etal.
(2011).
Antigenencodedbyvaccinevectorsderivedfromhumanadenovirusserotype5ispreferentiallypresentedtoCD8+Tlympho-cytesbytheCD8alpha+dendriticcellsubset.
Vaccine29,5892–5903.
doi:10.
1016/j.
vaccine.
2011.
06.
071Takeda,A.
,Igarashi,H.
,Nakamura,H.
,Kano,M.
,Iida,A.
,Hirata,T.
,etal.
(2003).
ProtectiveefcacyofanAIDSvaccine,asingleDNAprimingfollowedbyasingleboosterwitharecombinantreplication-defectiveSendaivirusvector,inamacaqueAIDSmodel.
J.
Virol.
77,9710–9715.
doi:10.
1128/JVI.
77.
17.
9710-9715.
2003Tameris,M.
,Geldenhuys,H.
,Luabeya,A.
K.
,Smit,E.
,Hughes,J.
E.
,Vermaak,S.
,etal.
(2014).
ThecandidateTBvaccine,MVA85A,induceshighlydurableTh1responses.
PLoSONE9:e87340.
doi:10.
1371/journal.
pone.
0087340Tameris,M.
D.
,Hatherill,M.
,Landry,B.
S.
,Scriba,T.
J.
,Snowden,M.
A.
,Lockhart,S.
,etal.
(2013).
SafetyandefcacyofMVA85A,anewtuberculosisvaccine,ininfantspreviouslyvaccinatedwithBCG:arandomised,placebo-controlledphase2btrial.
Lancet381,1021–1028.
doi:10.
1016/S0140-6736Tamminga,C.
,Sedegah,M.
,Regis,D.
,Chuang,I.
,Epstein,J.
E.
,Spring,M.
,etal.
(2011).
Adenovirus-5-vectoredP.
falciparumvaccineexpressingCSPandAMA1.
PartB:safety,immunogenicityandprotectiveefcacyoftheCSPcomponent.
PLoSONE6:e25868.
doi:10.
1371/journal.
pone.
0025868Tatsis,N.
,andErtl,H.
C.
(2004).
Adenovirusesasvaccinevectors.
Mol.
Ther.
10,616–629.
doi:10.
1016/j.
ymthe.
2004.
07.
013Tatsis,N.
,Fitzgerald,J.
C.
,Reyes-Sandoval,A.
,Harris-McCoy,K.
C.
,Hensley,S.
E.
,Zhou,D.
,etal.
(2007a).
Adenoviralvectorspersistinvivoandmain-tainactivatedCD8+Tcells:implicationsfortheiruseasvaccines.
Blood110,1916–1923.
doi:10.
1182/blood-2007-02-062117Tatsis,N.
,Lasaro,M.
O.
,Lin,S.
W.
,Haut,L.
H.
,Xiang,Z.
Q.
,Zhou,D.
,etal.
(2009).
Adenovirusvector-inducedimmuneresponsesinnonhumanpri-mates:responsestoprimeboostregimens.
J.
Immunol.
182,6587–6599.
doi:10.
4049/jimmunol.
0900317Tatsis,N.
,Lin,S.
W.
,Harris-McCoy,K.
,Garber,D.
A.
,Feinberg,M.
B.
,andErtl,H.
C.
,(2007b).
MultipleimmunizationswithadenovirusandMVAvec-torsimproveCD8+Tcellfunctionalityandmucosalhoming.
Virology367,156–167.
doi:10.
1016/j.
virol.
2007.
05.
028Tenbusch,M.
,Ignatius,R.
,Temchura,V.
,Nabi,G.
,Tippler,B.
,Stewart-Jones,G.
,etal.
(2012).
Riskofimmunodeciencyvirusinfectionmayincreasewithvaccine-inducedimmuneresponse.
J.
Virol.
86,10533–10539.
doi:10.
1128/JVI.
00796-12Thorner,A.
R.
,andBarouch,D.
H.
(2007).
HIV-1vaccinedevelopment:progressandprospects.
Curr.
Infect.
Dis.
Rep.
9,71–75.
doi:10.
1007/s11908-007-0025-0www.
frontiersin.
orgAugust2014|Volume5|Article439|23OndondoChallengesofHIVvaccinedeliveryTregoning,J.
S.
,Buffa,V.
,Oszmiana,A.
,Klein,K.
,Walters,A.
A.
,andShattock,R.
J.
(2013).
A"prime-pull"vaccinestrategyhasamodesteffectonlocalandsystemicantibodyresponsestoHIVgp140inmice.
PLoSONE8:e80559.
doi:10.
1371/journal.
pone.
0080559Vaine,M.
,Wang,S.
,Liu,Q.
,Arthos,J.
,Monteori,D.
,Goepfert,P.
,etal.
(2010).
ProlesofhumanserumantibodyresponseselicitedbythreeleadingHIVvac-cinesfocusingontheinductionofEnv-specicantibodies.
PLoSONE5:e13916.
doi:10.
1371/journal.
pone.
0013916Valentin,A.
,vonGegerfelt,A.
,Rosati,M.
,Miteloudis,G.
,Alicea,C.
,Bergamaschi,C.
,etal.
(2010).
RepeatedDNAtherapeuticvaccinationofchronicallySIV-infectedmacaquesprovidesadditionalvirologicalbenet.
Vaccine28,1962–1974.
doi:10.
1016/j.
vaccine.
2009.
10.
099vanGils,M.
J.
,andSanders,R.
W.
(2013).
Broadlyneutralizingantibod-iesagainstHIV-1:templatesforavaccine.
Virology435,46–56.
doi:10.
1016/j.
virol.
2012.
10.
004VanRompay,K.
K.
,Abel,K.
,Earl,P.
,Kozlowski,P.
A.
,Easlick,J.
,Moore,J.
,etal.
(2010).
Immunogenicityofviralvector,prime-boostSIVvaccineregi-mensininfantrhesusmacaques:attenuatedvesicularstomatitisvirus(VSV)andmodiedvacciniaAnkara(MVA)recombinantSIVvaccinescomparedtolive-attenuatedSIV.
Vaccine28,1481–1492.
doi:10.
1016/j.
vaccine.
2009.
11.
061VanRompay,K.
K.
,Abel,K.
,Lawson,J.
R.
,Singh,R.
P.
,Schmidt,K.
A.
,Evans,T.
,etal.
(2005).
Attenuatedpoxvirus-basedsimianimmunodeciencyvirus(SIV)vaccinesgivenininfancypartiallyprotectinfantandjuvenilemacaquesagainstrepeatedoralchallengewithvirulentSIV.
J.
Acquir.
ImmuneDec.
Syndr.
38,124–134.
doi:10.
1097/00126334-200502010-00002Vasan,S.
,Hurley,A.
,Schlesinger,S.
J.
,Hannaman,D.
,Gardiner,D.
F.
,Dugin,D.
P.
,etal.
(2011).
InvivoelectroporationenhancestheimmunogenicityofanHIV-1DNAvaccinecandidateinhealthyvolunteers.
PLoSONE6:e19252.
doi:10.
1371/journal.
pone.
0019252vonGegerfelt,A.
S.
,Rosati,M.
,Alicea,C.
,Valentin,A.
,Roth,P.
,Bear,J.
,etal.
(2007).
Long-lastingdecreaseinviremiainmacaqueschronicallyinfectedwithsimianimmunodeciencyvirusSIVmac251aftertherapeuticDNAimmuniza-tion.
J.
Virol.
81,1972–1979.
doi:10.
1128/JVI.
01990-06Wallace,A.
,West,K.
,Rothman,A.
L.
,Ennis,F.
A.
,Lu,S.
,andWang,S.
(2013).
Post-translationalintracellulartrafckingdeterminesthetypeofimmuneresponseelicitedbyDNAvaccinesexpressingGagantigenofHumanImmunodeciencyVirusType1(HIV-1).
Hum.
Vaccin.
Immunother.
9,2095–2102.
doi:10.
4161/hv.
26009Wang,S.
,Farfan-Arribas,D.
J.
,Shen,S.
,Chou,T.
H.
,Hirsch,A.
,He,F.
,etal.
(2006a).
Relativecontributionsofcodonusage,promoterefciencyandleadersequencetotheantigenexpressionandimmunogenicityofHIV-1EnvDNAvaccine.
Vaccine24,4531–4540.
doi:10.
1016/j.
vaccine.
2005.
08.
023Wang,S.
,Kennedy,J.
S.
,West,K.
,Monteori,D.
C.
,Coley,S.
,Lawrence,J.
,etal.
(2008b).
Cross-subtypeantibodyandcellularimmuneresponsesinducedbyapolyvalentDNAprime-proteinboostHIV-1vaccineinhealthyhumanvolunteers.
Vaccine26,1098–1110.
doi:10.
1016/j.
vaccine.
2007.
12.
024Wang,S.
,Pal,R.
,Mascola,J.
R.
,Chou,T.
H.
,Mboudjeka,I.
,Shen,S.
,etal.
(2006b).
PolyvalentHIV-1EnvvaccineformulationsdeliveredbytheDNAprimingplusproteinboostingapproachareeffectiveingeneratingneutraliz-ingantibodiesagainstprimaryhumanimmunodeciencyvirustype1isolatesfromsubtypesA,B,C,DandE.
Virology350,34–47.
doi:10.
1016/j.
virol.
2006.
02.
032Wang,S.
,Zhang,C.
,Zhang,L.
,Li,J.
,Huang,Z.
,andLu,S.
,(2008a).
Therela-tiveimmunogenicityofDNAvaccinesdeliveredbytheintramuscularneedleinjection,electroporationandgenegunmethods.
Vaccine26,2100–2110.
doi:10.
1016/j.
vaccine.
2008.
02.
033Wang,S.
W.
,Bertley,F.
M.
,Kozlowski,P.
A.
,Herrmann,L.
,Manson,K.
,Mazzara,G.
,etal.
(2004).
AnSHIVDNA/MVArectalvaccinationinmacaquesprovidessystemicandmucosalvirus-specicresponsesandprotectionagainstAIDS.
AIDSRes.
Hum.
Retroviruses20,846–859.
doi:10.
1089/0889222041725253Wang,Y.
,Guo,Y.
,Wang,X.
,Huang,J.
,Shang,J.
,andSun,S.
(2011).
HumanserumamyloidPfunctionsasanegativeregulatoroftheinnateandadap-tiveimmuneresponsestoDNAvaccines.
J.
Immunol.
186,2860–2870.
doi:10.
4049/jimmunol.
1003641Wang,Y.
,Guo,Y.
,Wang,X.
,Huang,J.
,Shang,J.
,andSun,S.
(2012).
SerumamyloidPcomponentfacilitatesDNAclearanceandinhibitsplasmidtrans-fection:implicationsforhumanDNAvaccine.
GeneTher.
19,70–77.
doi:10.
1038/gt.
2011.
67Webster,D.
P.
,Dunachie,S.
,Vuola,J.
M.
,Berthoud,T.
,Keating,S.
,Laidlaw,S.
M.
,etal.
(2005).
EnhancedTcell-mediatedprotectionagainstmalariainhumanchallengesbyusingtherecombinantpoxvirusesFP9andmodi-edvacciniavirusAnkara.
Proc.
Natl.
Acad.
Sci.
U.
S.
A.
102,4836–4841.
doi:10.
1073/pnas.
0406381102Whelan,K.
T.
,Pathan,A.
A.
,Sander,C.
R.
,Fletcher,H.
A.
,Poulton,I.
,Alder,N.
C.
,etal.
(2009).
SafetyandimmunogenicityofboostingBCGvaccinatedsubjectswithBCG:comparisonwithboostingwithanewTBvaccine,MVA85A.
PLoSONE4:e5934.
doi:10.
1371/journal.
pone.
0005934Widera,G.
,Austin,M.
,Rabussay,D.
,Goldbeck,C.
,Barnett,S.
W.
,Chen,M.
,etal.
(2000).
IncreasedDNAvaccinedeliveryandimmunogenicitybyelec-troporationinvivo.
J.
Immunol.
164,4635–4640.
doi:10.
4049/jimmunol.
164.
9.
4635Winstone,N.
,Wilson,A.
J.
,Morrow,G.
,Boggiano,C.
,Chiuchiolo,M.
J.
,Lopez,M.
,etal.
(2011).
EnhancedcontrolofpathogenicSimianimmunodeciencyvirusSIVmac239replicationinmacaquesimmunizedwithaninterleukin-12plasmidandaDNAprime-viralvectorboostvaccineregimen.
J.
Virol.
85,9578–9587.
doi:10.
1128/JVI.
05060-11Xiang,Z.
,Gao,G.
,Reyes-Sandoval,A.
,Cohen,C.
J.
,Li,Y.
,Bergelson,J.
M.
,etal.
(2002).
Novel,chimpanzeeserotype68-basedadenoviralvaccinecarrierforinductionofantibodiestoatransgeneproduct.
J.
Virol.
76,2667–2675.
doi:10.
1128/JVI.
76.
6.
2667-2675.
2002Xiang,Z.
,Li,Y.
,Cun,A.
,Yang,W.
,Ellenberg,S.
,Switzer,W.
M.
,etal.
(2006).
Chimpanzeeadenovirusantibodiesinhumans,sub-SaharanAfrica.
EmergingInfect.
Dis.
12,1596–1599.
doi:10.
3201/eid1210.
060078Xiang,Z.
Q.
,Gao,G.
P.
,Reyes-Sandoval,A.
,Li,Y.
,Wilson,J.
M.
,andErtl,H.
C.
(2003).
Oralvaccinationofmicewithadenoviralvectorsisnotimpairedbypreexistingimmunitytothevaccinecarrier.
J.
Virol.
77,10780–10789.
doi:10.
1128/JVI.
77.
20.
10780-10789.
2003Xiang,Z.
Q.
,Knowles,B.
B.
,McCarrick,J.
W.
,andErtl,H.
C.
(1995).
Immuneeffectormechanismsrequiredforprotectiontorabiesvirus.
Virology214,398–404.
doi:10.
1006/viro.
1995.
0049Xiang,Z.
Q.
,Pasquini,S.
,andErtl,H.
C.
(1999).
InductionofgenitalimmunitybyDNAprimingandintranasalboosterimmunizationwithareplication-defectiveadenoviralrecombinant.
J.
Immunol.
162,6716–6723.
Xiang,Z.
Q.
,Yang,Y.
,Wilson,J.
M.
,andErtl,H.
C.
(1996).
Areplication-defectivehumanadenovirusrecombinantservesasahighlyefcaciousvaccinecarrier.
Virology219,220–227.
doi:10.
1006/viro.
1996.
0239Yan,J.
,Yoon,H.
,Kumar,S.
,Ramanathan,M.
P.
,Corbitt,N.
,Kutzler,M.
,etal.
(2007).
EnhancedcellularimmuneresponseselicitedbyanengineeredHIV-1subtypeBconsensus-basedenvelopeDNAvaccine.
Mol.
Ther.
15,411–421.
doi:10.
1038/sj.
mt.
6300036Yang,H.
,Dong,T.
,Turnbull,E.
,Ranasinghe,S.
,Ondondo,B.
,Goonetilleke,N.
,etal.
(2007c).
BroadTCRusageinfunctionalHIV-1-specicCD8+Tcellexpansionsdrivenbyvaccinationduringhighlyactiveantiretroviraltherapy.
J.
Immunol.
179,597–606.
doi:10.
4049/jimmunol.
179.
1.
597Yang,T.
C.
,Dayball,K.
,Wan,Y.
H.
,andBramson,J.
(2003a).
Detailedanaly-sisoftheCD8+T-cellresponsefollowingadenovirusvaccination.
J.
Virol.
77,13407–13411.
doi:10.
1128/JVI.
77.
24.
13407-13411.
2003Yang,T.
C.
,Millar,J.
B.
,Grinshtein,N.
,Bassett,J.
,Finn,J.
,andBramson,J.
L.
,(2007a).
T-cellimmunitygeneratedbyrecombinantadenovirusvaccines.
ExpertRev.
Vaccines6,347–356.
doi:10.
1586/14760584.
6.
3.
347Yang,T.
C.
,Millar,J.
,Groves,T.
,Grinshtein,N.
,Parsons,R.
,Takenaka,S.
,etal.
(2006).
TheCD8+Tcellpopulationelicitedbyrecombinantadenovirusdis-playsanovelpartiallyexhaustedphenotypeassociatedwithprolongedantigenpresentationthatnonethelessprovideslong-termimmunity.
J.
Immunol.
176,200–210.
doi:10.
4049/jimmunol.
176.
1.
200Yang,T.
C.
,Millar,J.
,Groves,T.
,Zhou,W.
,Grinshtein,N.
,Parsons,R.
,etal.
(2007b).
OntheroleofCD4+TcellsintheCD8+T-cellresponseelicitedbyrecombinantadenovirusvaccines.
Mol.
Ther.
15,997–1006.
doi:10.
1038/sj.
mt.
6300130Yang,Z.
Y.
,Wyatt,L.
S.
,Kong,W.
P.
,Moodie,Z.
,Moss,B.
,andNabel,G.
J.
,(2003b).
OvercomingimmunitytoaviralvaccinebyDNAprimingbeforevectorboosting.
J.
Virol.
77,799–803.
doi:10.
1128/JVI.
77.
1.
799-803.
2003Yu,Q.
,Jones,B.
,Hu,N.
,Chang,H.
,Ahmad,S.
,Liu,J.
,etal.
(2006).
Comparativeanalysisoftropismbetweencanarypox(ALVAC)andvacciniavirusesrevealsamorerestrictedandpreferentialtropismofALVACforhumancellsofthemonocyticlineage.
Vaccine24,6376–6391.
doi:10.
1016/j.
vaccine.
2006.
06.
011FrontiersinMicrobiology|MicrobialImmunologyAugust2014|Volume5|Article439|24OndondoChallengesofHIVvaccinedeliveryYuki,Y.
,andKiyono,H.
(2003).
Newgenerationofmucosaladjuvantsfortheinductionofprotectiveimmunity.
Rev.
Med.
Virol.
13,293–310.
doi:10.
1002/rmv.
398Zhang,S.
,Huang,W.
,Zhou,X.
,Zhao,Q.
,Wang,Q.
,andJia,B.
(2013).
Seroprevalenceofneutralizingantibodiestohumanadenovirusestype-5andtype-26andchimpanzeeadenovirustype-68inhealthyChineseadults.
J.
Med.
Virol.
85,1077–1084.
doi:10.
1002/jmv.
23546Zhang,X.
,Cassis-Ghavami,F.
,Eller,M.
,Currier,J.
,Slike,B.
M.
,Chen,X.
,etal.
(2007).
Directcomparisonofantigenproductionandinductionofapoptosisbycanarypoxvirus-andmodiedvacciniavirusankara-humanimmunode-ciencyvirusvaccinevectors.
J.
Virol.
81,7022–7033.
doi:10.
1128/JVI.
02654-06Zhang,Y.
,Chirmule,N.
,Gao,G.
P.
,Qian,R.
,Croyle,M.
,Joshi,B.
,etal.
(2001).
Acutecytokineresponsetosystemicadenoviralvectorsinmiceismediatedbydendriticcellsandmacrophages.
Mol.
Ther.
697–707.
doi:10.
1006/mthe.
2001.
0329ConictofInterestStatement:Theauthordeclaresthattheresearchwascon-ductedintheabsenceofanycommercialornancialrelationshipsthatcouldbeconstruedasapotentialconictofinterest.
Received:30June2014;accepted:03August2014;publishedonline:22August2014.
Citation:OndondoBO(2014)TheinuenceofdeliveryvectorsonHIVvaccineefcacy.
Front.
Microbiol.
5:439.
doi:10.
3389/fmicb.
2014.
00439ThisarticlewassubmittedtoMicrobialImmunology,asectionofthejournalFrontiersinMicrobiology.
Copyright2014Ondondo.
Thisisanopen-accessarticledistributedunderthetermsoftheCreativeCommonsAttributionLicense(CCBY).
Theuse,distributionorreproductioninotherforumsispermitted,providedtheoriginalauthor(s)orlicensorarecreditedandthattheoriginalpublicationinthisjournaliscited,inaccordancewithacceptedacademicpractice.
Nouse,distributionorreproductionispermittedwhichdoesnotcomplywiththeseterms.
www.
frontiersin.
orgAugust2014|Volume5|Article439|25

Virtono:€23.7/年,KVM-2GB/25GB/2TB/洛杉矶&达拉斯&纽约&罗马尼亚等

Virtono最近推出了夏季促销活动,为月付、季付、半年付等提供9折优惠码,年付已直接5折,而且下单后在LET回复订单号还能获得双倍内存,不限制付款周期。这是一家成立于2014年的国外VPS主机商,提供VPS和服务器租用等产品,商家支持PayPal、信用卡、支付宝等国内外付款方式,可选数据中心包括罗马尼亚、美国洛杉矶、达拉斯、迈阿密、英国和德国等。下面列出几款VPS主机配置信息,请留意,下列配置中...

港云网络(¥1/月活动机器),香港CN2 4核4G 1元/月 美国CN2

港云网络官方网站商家简介港云网络成立于2016年,拥有IDC/ISP/云计算资质,是正规的IDC公司,我们采用优质硬件和网络,为客户提供高速、稳定的云计算服务。公司拥有一流的技术团队,提供7*24小时1对1售后服务,让您无后顾之忧。我们目前提供高防空间、云服务器、物理服务器,高防IP等众多产品,为您提供轻松上云、安全防护。点击进入港云网络官方网站港云网络中秋福利1元领【每人限量1台】,售完下架,活...

racknerd:美国大硬盘服务器(双路e5-2640v2/64g内存/256gSSD+160T SAS)$389/月

racknerd在促销美国洛杉矶multacom数据中心的一款大硬盘服务器,用来做存储、数据备份等是非常划算的,而且线路还是针对亚洲有特别优化处理的。双路e5+64G内存,配一个256G的SSD做系统盘,160T SAS做数据盘,200T流量每个月,1Gbps带宽,5个IPv4,这一切才389美元...洛杉矶大硬盘服务器CPU:2 * e5-2640v2内存:64G(可扩展至128G,+$64)硬...

www.gegeshe.com为你推荐
刘祚天Mc浩然的资料以及百科谁知道?陈嘉垣陈浩民、马德钟强吻女星陈嘉桓,求大家一个说法。haole018.com为啥进WWWhaole001)COM怎么提示域名出错?囡道是haole001换地了吗www.baitu.com韩国片爱人.欲望的观看地址杨丽晓博客明星的最新博文baqizi.cc孔融弑母是真的吗?www4399com4399网站是什么www.cn12365.orgwww.12365china.net是不是真的防伪网站300373一搓黑是真的吗dpscycle寻求LR 高输出宏达林赞雅请问达林赞雅还有没有一首比peerless还好听的歌?
播放vps上的视频 免费申请域名 科迈动态域名 主机屋 香港主机 便宜建站 xfce hostloc 免费防火墙 阿里校园 稳定免费空间 什么是web服务器 ssl加速 好看的空间 建站技术 神棍节 台式机主机 国外bt下载网站 护卫神主机管理系统 qq空间申请关闭 更多