WP411_06_011112avtt4.com

avtt4.com  时间:2021-03-19  阅读:()
WP411(v1.
0)January30,2012www.
xilinx.
com1Copyright2012Xilinx,Inc.
Xilinx,theXilinxlogo,Artix,ISE,Kintex,Spartan,Virtex,Zynq,andotherdesignatedbrandsincludedhereinaretrademarksofXilinxintheUnitedStatesandothercountries.
ThepurposeofaPowerDistributionNetwork(PDN)istoprovidepowertoelectricaldevicesinasystem.
Eachdeviceinasystemnotonlyhasitsownpowerrequirementsforitsinternaloperation,butalsoarequirementfortheinputvoltagefluctuationofthatpowerrail.
ForXilinxKintex-7andVirtex-7FPGAs,theanalogpowerrailshaveaninputvoltagefluctuationrequirementofnotmorethan10mVpeak-to-peakfromthe10kHztothe80MHzfrequencyrange.
Theself-generatedvoltagefluctuationonthepowerrailsisafunctionoffrequencyandcanbedescribedbyOhm'sLaw:Voltage(frequency)=Current(frequency)*Self-Impedance(frequency).
Thus,iftheuserdeterminestheself-impedance(frequency)andknowsthecurrent(frequency)ofthePDN,thenthevoltage(frequency)canbedetermined.
Theself-impedance(frequency)caneasilybedeterminedbysimulatingthefrequencydomainself-impedanceprofileofthePDNandis,thus,thesubjectofthiswhitepaper.
WhitePaper:Kintex-7andVirtex-7FPGAsWP411(v1.
0)January30,2012SimulatingFPGAPowerIntegrityUsingS-ParameterModelsBy:HanyFahmyandColinWarwickofAgilentTechnologies,Inc.
andJackCarrel,RayAnderson,HarryFu,andRomiMayderofXilinx,Inc.
2www.
xilinx.
comWP411(v1.
0)January30,2012OverviewOverviewBeforesimulatingthefrequencydomainself-impedanceprofilesofaPDN,itisimportanttoestablishexpectationsforthesimulationresults.
Todothis,anunderstandingofthefundamentalconceptsmustbeattained:Series-ResonanceCircuitandImpedanceMinimumsParallel-ResonanceCircuitandImpedanceMaximumsFrequencyComponentsofElectricalSignalsS-ParameterModelvs.
LumpedRLCModelforDecouplingCapacitorsSeries-ResonanceCircuitandImpedanceMinimumsAseries-resonantcircuitisdefinedbyacapacitor(C)andinductor(L)thatareconnectedinseries.
WhentheXC(capacitivereactance)andXL(inductivereactance)areequalinmagnitudeandoppositeinphase,thecurrentisatmaximum.
Thisconditiongivesrisetoanimpedanceminimum.
Thefrequencyatwhichthisequalityoccursiscalledtheseries-resonantfrequencyandisdescribedbyEquation1:Equation1Acommonseries-resonantcircuitisformedbythecapacitance(C)andtheparasiticinductance(L)ofagivencapacitormountedonaprintedcircuitboard.
Figure1showstheschematiccircuitrepresentationwhileFigure2showsthefrequencydomainimpedanceprofile.
X-RefTarget-Figure1Figure1:Series-ResonantComponentsofaPCB-MountedCapacitorX-RefTarget-Figure2Figure2:Frequency-DomainImpedanceProfileofPCB-MountedCapacitorf12πLC-=Series-ResonantCircuitP3Num=3P4Num=4CC2C=C_PCB_CapacitanceRR3R=R_PCB_CapacitanceLL2L=L_PCB_Cap_InductanceWP411_01_0124120.
00.
00.
20.
40.
60.
81.
01.
21.
41.
60.
10.
20.
30.
40.
5Freq,GHzImpedanceMinimumSeriesResonantCircuitSeries_Resonance0.
6WP411_02_1110110.
70.
80.
91.
0OverviewWP411(v1.
0)January30,2012www.
xilinx.
com3Parallel-ResonanceCircuitandImpedanceMaximumsAparallelanti-resonantcircuitisdefinedbyacapacitor(C)andinductor(L)thatareconnectedinparallel.
WhentheXC(capacitivereactance)andXL(inductivereactance)areequalinmagnitudeandoppositeinphase,thereactivebranchcurrentsarealsoequalinmagnitudeandoppositeinphase.
Thisgivesrisetoaminimumtotalcurrentandthus,amaximumtotalimpedanceiscreated.
Thefrequencyatwhichthisconditionoccursiscalledtheparallelanti-resonantfrequencyandisdescribedbyEquation2:Equation2Acommonparallelanti-resonantcircuitisoneformedbythediecapacitanceandpackageinductance.
Figure3showsaschematiccircuitrepresentationwhileFigure4showsthefrequencydomainimpedanceprofile.
X-RefTarget-Figure3Figure3:ParallelAnti-ResonantComponentsofDieandPackagePropertiesX-RefTarget-Figure4Figure4:Frequency-DomainImpedanceProfileofDieandPackagePropertiesf12πLC-=ParallelAnti-ResonantCircuitP1Num=1P2Num=2WP411_03_112411RR1R=R_Die_CapacitanceRR2R=R_Package_InductanceLL1L=L_Package_InductanceCC1C=C_Die_Capacitance0.
00.
00.
10.
20.
30.
40.
50.
60.
70.
80.
10.
20.
30.
40.
5Freq,GHzImpedanceMaximumParallelAnti-resonantCircuitParallel_Anti_Resonance0.
6WP411_04_1110110.
70.
80.
91.
04www.
xilinx.
comWP411(v1.
0)January30,2012OverviewFrequencyComponentsofElectricalSignalsThefrequencydomaincurrentprofileofVCCO(f)isshowninFigure5andFigure6assimulatedattheBGApowerballsoftheXilinxVirtex-7XC7VX485TFPGAintheFFG1761pinpackage.
Intheexample,thesimulationisrunningamemoryinterfaceat1.
866Gb/swithaPRBS15datapattern.
ThepowerspectraldensityofVCCO(t)iswide-banded,extendingfrom10MHzuptothe10GHz.
Asthedatatrafficpatternandactivitychange,thesimulationsdemonstratethatthedominantfrequencycomponentsofthepowerspectraldensityalsochange.
Therefore,thesimulationsshowthatPDNnoiseisawide-bandphenomenon;PDNsimulationsmust,therefore,berunoverawide-bandfrequencyrange.
X-RefTarget-Figure5Figure5:MemoryInterfaceSimulationActivityPatterns0.
00.
10.
20.
30.
40.
50.
60.
7Freq,HzFrequencySpectrumSSTL15CurrentSSTL15HPIOVCCOCurrentmag(FS_Kirtex_7_SSTL15_Current),mAWP411_05_011112IE9IE8IE7IE10051015202530Freq,HzFrequencySpectrumDDR3DieInputmag(FS_Kintex_7_SSTL15),mV-0.
50.
00.
51.
01.
52.
0DDR3_Die_Input_Eye_Diagram,VoltsIE9IE8IE7IE10-10-5051015202530Time,nsecKintex_7_SSTL15_Current,mA7080904050600012030100DDR3DieInput1,866Mb/sTime,nsec0.
70.
80.
90.
40.
50.
60.
00.
10.
20.
31.
01.
1OverviewWP411(v1.
0)January30,2012www.
xilinx.
com5Becausethepowerspectraldensityisofawideband,thefrequencydomainself-impedanceprofilemustbesimulatedoverawiderange.
Below1kHz,thevoltageregulatormodule(VRM)dominatesthefrequencydomainself-impedanceprofile.
Above10GHz,theon-diecapacitancedominatestheimpedanceprofile.
Thus,Xilinxrecommendsrunningthesimulationsfrom1kHzto10GHz.
S-ParameterModelvs.
LumpedRLCModelforDecouplingCapacitorsAsacomparisonbetweenusinglumpedRLCcircuitsandS-parameterstorunPDNsimulations,thedecouplingcapacitorsportionofthePDNcircuitisexaminedfirst.
Inthissimulation,anattemptismadetocurve-fitanS-parametermodelforcommonX5RcapacitorsinthefollowingEIAcasesizes:0201,0402,0603,0805,1206,and1610.
Aftermatchingthecapacitivereactanceandtheseries-resonantfrequencygiveninEquation1,thepercentageerroroftheinductivereactanceat100MHzismeasured.
Thesesimulationsaredoneatroomtemperature(25°C)withnoappliedDCbias.
Figure7throughFigure9showthecircuitschematicrepresentations.
Figure10andFigure11showthesimulationresults.
X-RefTarget-Figure6Figure6:SimulationTestSetupTTLPCPCGCGCPUPDPDPUVINI/OODigOPRBS15K7325TFF900SSTL15HPIODDR31.
86Gb/sDQPin40ΩImpedance3InchTraceDDR3PackageParasiticsWP411_06_011112VtPRBSVPRBS1PRBSIBIS_OIBIS1IBIS_IOIBIS4SLINTL1Subst="SSub1"W=5.
0milL=3000.
0milLL1L=1.
38nHR=0.
25656CC1C=0.
33pFDDR3DieInputEye_ProbeEye_Probe1V_DCSRC1VDC=1.
5VV_DCSRC2VDC=1.
5VPowerOutput++++––6www.
xilinx.
comWP411(v1.
0)January30,2012OverviewX-RefTarget-Figure7Figure7:DecouplingCapacitorsSimulation,SchematicRepresentation1X-RefTarget-Figure8Figure8:DecouplingCapacitorsSimulation,SchematicRepresentation2X-RefTarget-Figure9Figure9:DecouplingCapacitorsSimulation,SchematicRepresentation3DataSheetCeramic02011uF4VX5RWP411_07_013012TermTerm1Num=1Z=50Ω+–TermTerm2Num=2Z=50ΩS2PSNP1LL2L=320pHR=10mΩCC2C=0.
69uF+–TermTerm3Num=3Z=50Ω+–TermTerm4Num=4Z=50Ω+–DataSheetCeramic04024.
7uF4VX5RTermTerm16Num=16Z=50Ω+–TermTerm15Num=15Z=50ΩS2PSNP4LL3L=500pHR=8mΩCC3C=3.
7uF+–TermTerm14Num=14Z=50Ω+–TermTerm13Num=13Z=50Ω+–DataSheetCeramic060322uF4VX5RWP411_08_013012TermTerm12Num=12Z=50Ω+–TermTerm11Num=11Z=50ΩS2PSNP3LL4L=800pHR=4mΩCC4C=14uF+–TermTerm10Num=10Z=50Ω+–TermTerm9Num=9Z=50Ω+–DataSheetCeramic080522uF4VX5RTermTerm17Num=17Z=50Ω+–TermTerm18Num=18Z=50ΩS2PSNP5LL6L=800pHR=3.
5mΩCC6C=14uF+–TermTerm19Num=19Z=50Ω+–TermTerm20Num=20Z=50Ω+–DataSheetCeramic1206100uF4VX5RWP411_09_013012TermTerm21Num=21Z=50Ω+–TermTerm22Num=22Z=50ΩS2PSNP6LL5L=1,360pHR=2.
75mΩCC5C=50uF+–TermTerm23Num=23Z=50Ω+–TermTerm24Num=24Z=50Ω+–DataSheetCeramic1210100uF4VX5RTermTerm32Num=25Z=50Ω+–TermTerm31Num=26Z=50ΩS2PSNP8LL7L=1,200pHR=1.
9mΩCC7C=60uF+–TermTerm30Num=27Z=50Ω+–TermTerm29Num=28Z=50Ω+–OverviewWP411(v1.
0)January30,2012www.
xilinx.
com7X-RefTarget-Figure10Figure10:SimulationResults(EIACaseSizes0201/0603/1206)X-RefTarget-Figure11Figure11:SimulationResults(EIACaseSizes0402/0805/1210)1E-21E51E61E71E81E96E91E-111E1Freq,HzImpedanceMagnitude0201mag(Ceramic_0201_1uF_RLC)mag(Ceramic_0201_1uF_S)1E51E61E71E81E99580655035200-10-25-40-55-70-85-100Freq,HzImpedancePhase0201phase(Ceramic_0201_1uF_RLC),degphase(Ceramic_0201_1uF_S),deg1E-21E-31E51E61E71E81E96E91E-111E1Freq,HzImpedanceMagnitude0603mag(Ceramic_0603_1uF_RLC)mag(Ceramic_0603_1uF_S)1E51E61E71E81E99580655035200-10-25-40-55-70-85-100Freq,HzImpedancePhase0603phase(Ceramic_0603_1uF_RLC),degphase(Ceramic_0603_1uF_S),deg1E-21E-31E51E61E71E81E96E91E-111E1Freq,HzImpedanceMagnitude1206mag(Ceramic_1206_1uF_RLC)mag(Ceramic_1206_1uF_S)1E51E61E71E81E99580655035200-10-25-40-55-70-85-100Freq,HzImpedancePhase1206phase(Ceramic_1206_1uF_RLC),degphase(Ceramic_1206_1uF_S),degWP411_10_0116121E-31E-21E51E61E71E81E96E91E-111E1Freq,HzImpedanceMagnitude0402mag(Ceramic_0402_4_7uF_RLC)mag(Ceramic_0402_4_7uF_RLC)1E51E61E71E81E99580655035200-10-25-40-55-70-85-100Freq,HzImpedancePhase0402phase(Ceramic_0402_4_7uF_RLC),degphase(Ceramic_0402_4_7uF_S),deg1E-21E-31E51E61E71E81E96E91E-111E1Freq,HzImpedanceMagnitude0805mag(Ceramic_0805_22uF_RLC)mag(Ceramic_0805_22uF_S)1E51E61E71E81E99580655035200-10-25-40-55-70-85-100Freq,HzImpedancePhase0805phase(Ceramic_0805_22uF_RLC),degphase(Ceramic_0805_22uF_S),deg1E-21E-31E51E61E71E81E96E91E-111E1Freq,HzImpedanceMagnitude1210mag(Ceramic_1210_100uF_RLC)mag(Ceramic_1210_100uF_S)1E51E61E71E81E99580655035200-10-25-40-55-70-85-100Freq,HzImpedancePhase1210phase(Ceramic_1210_100uF_RLC),degphase(Ceramic_1210_100uF_S),degWP411_11_0116128www.
xilinx.
comWP411(v1.
0)January30,2012OverviewAsummaryofthedataisshownbelowinTable1:ItisknownthatthetypicalcapacitormanufacturerspecifiesthecapacitanceofacapacitorwithzeroDCbiasand0.
5VrmsACvoltage,whilethes-parametermodelsaretypicallymeasuredwitha0dbmACsignal.
InS-ParameterModelsforDecouplingCapacitorssection,thevariousmethodsforgeneratingtheS-parametermodelofacapacitorareexamined.
S-ParameterModelsforDecouplingCapacitorsAtfirstglance,themeasurementofthecapacitor'sPDNimpedanceprofile(theimpedancewithrespecttofrequency)seemstobeasimpletask,butseveralsubtledetailsarerequiredtoensurethemeasureddataisaccurate.
ThefrequencydomainmeasurementisusuallyaccomplishedbyutilizingaVectorNetworkAnalyzer(VNA).
TheobviousmethodistoprobethePDNmakinganS11measurement,andthenconvertthemeasureds-parameterstoimpedancebymeansoftheEquation3relationship:Equation3Animpedancemeasurementusingthismethod,however,hasinherentinaccuraciesduetothefactthattheinstrumenttypicallyhasa50ΩinputimpedanceandthePDNhasaverylowimpedance(typicallyinthemilliohmrange).
TheaccuracyofthemeasuredVNAdatainherentlyhaserrorsbecausethetypicaluncertaintyofS11(whenrho,thereflectioncoefficient,isnear1)canbeinthe1%–2%range.
Thisequatestoanimpedanceuncertaintyinthe0.
3Ω-to-0.
4Ωrange.
IfPDNimpedancesinthemilliohmrangearebeingmeasured,itquicklybecomesobviousthatthedesiredimpedancemeasurementislostinthemeasurementuncertainty.
AsecondfactortoconsideristhattheinductiveparasiticsoftheprobingarrangementcaneasilyexceedthevalueoftheDUTinductance.
Thereisnoeasywaytobackouttheprobeparasiticsfromthemeasureddata.
Fortunately,anS21measurementisagoodalternativetoanS11measurementtodeterminethePDNimpedance.
Inthismethod,itisfoundthatZdut=25(S21).
Withthismeasurementtechnique,thesolderofthedecouplingcapacitorisincludedinthemeasurement.
ByutilizingtheS21measurement,theimpedanceuncertaintyisreducedintothe10s-of-milliohmsrange.
Inaddition,theprobeparasiticsareinserieswith50ΩasopposedtobeinginserieswiththeDUTimpedance,whichreducestheireffectstonearnegligiblelevels.
Foramorecompletediscussionofthistopic,seeAccuracyImprovementsofPDNImpedanceMeasurementsintheLowtoMiddleFrequencyTable1:SummaryofResultData,DecouplingCapacitorsSimulationSizeCapacitance(F)ImpedanceMagnitude@100MHzSeries-ResonantFrequencyEIACodeS-ParameterDataSheet%ErrorS-ParameterRLCModel%Error12106010066.
70.
2090.
751259.
3600KHz120650100100.
00.
2550.
845231.
4700KHz805142257.
10.
180.
501178.
31.
5MHz603142257.
10.
1780.
501181.
51.
5MHz4023.
74.
727.
00.
150.
313108.
73.
5MHz2010.
69144.
90.
1290.
19853.
510MHzZdut501S11+1S11–-=OverviewWP411(v1.
0)January30,2012www.
xilinx.
com9RangepresentedatDesignCon2010byIstvanNovakofSUNMicrosystemsandYasuhiroMoriandMikeRessoofAgilentTechnologies(http://www.
home.
agilent.
com/upload/cmc_upload/All/DC10_ID2696_Novak-Mori-Resso.
pdf).
RLCModelsforDecouplingCapacitorDecouplingcapacitorsareoftencharacterizedbyvendorsbymeansofthreeparameters:R(resistance),L(inductance),andC(capacitance).
TheCparameteristhedecap'sintrinsiccapacitance;theLisitsintrinsicinductance;andtheRistheESRofthedecouplingcapacitor.
WhenthissimpleRLCmodelforadecouplingcapacitorisutilizedinasimulationalongwithagoodPDNmodel,themountinginductanceandspreadinginductanceassociatedwiththepackageorPCBcombineswiththedecap'sintrinsicinductancetoeffectivelymodeltheloopinductance.
Thisloopinductanceplusthepackageinductanceresonateswiththediecapacitancetoformaparallelanti-resonantcircuitwithauniqueimpedanceprofile.
SeriesRLCmodelsofdecouplingcapacitorsareeasytounderstand,andtheysimulatequicklyasbothfrequencydomainandtransientsimulationswithaminimumofissues.
Asnotedpreviously,theRLCvaluesforthemodelcancomefromavendor'sdatasheet;alternatively,theycanbederivedfrommeasureds-parameterdatabyfittingthevaluesofasimpleseriesRLCcircuittotheresponseofthes-parameters.
Insomecases,particularlyatlowfrequencies,thesimpleseriesRLCcircuitworksadequately.
However,whenitisrequiredtodeterminetheimpedanceprofileofaPDNaccuratelyoverawidebandwidthofDCtoseveralgigahertz,thingsusuallydonotworkoutsosimply.
TwomainissuesmakesimpleseriesRLCmodelsinadequateforaccuratePDNsimulations.
Duetothestackedlayersofthedecouplingcapacitorconstruction,thereisdistributedinductanceandresistanceintheZaxisoftheplatestack.
ThiscausestheLparameteroftheseriesRLCrepresentationtobefrequencydependent.
Inmostsimulators,thereisnofrequency-dependentLelement.
First,areasonablyaccurateseriesRLCmodelcanbeconstructedateitherlowfrequenciesorhighfrequencies,butcannotmodelbothsimultaneously.
Second,whileacomplexmulti-elementmodelcanbeconstructedtomoreaccuratelymodelthefrequency-dependentLeffect,suchmodelsareverydifficulttodesignandmanage.
Therefore,ratherthanuseasimpleseriesRLCcircuitthatisknowntobeinaccurateoverawidebandwidth,orattempttosynthesizeamorecomplexmulti-elementmodel,thesimulationworkdoneatXilinxsuggeststhatitismucheasierandmoreaccuratetoutilizeameasuredwidebands-parameterdecouplingcapacitormodelwhensimulatingPDNs.
Note:Ceramicdecouplingcapacitormodelsarestronglyvoltagedependent.
Therefore,itisimportanttoobtainthes-parametermodelfromthecapacitormanufacturerthathasbeenmeasuredattheoperatingvoltageofinterest—forbothDCandACvoltages.
10www.
xilinx.
comWP411(v1.
0)January30,2012RunningthePDNSimulationswiththeAgilentADS2011.
10RunningthePDNSimulationswiththeAgilentADS2011.
10Tosimulatethefrequencydomainself-impedanceprofileofaPowerDistributionNetwork,XilinxrecommendsusingtheAgilentADS2011softwarebundle.
Thissoftwarebundleprovidesthehigh-speed-digital(HSD)designerwithawiderangeoftools.
Everyaspectofthepowerintegrityproblemrequiresaspecifictechniqueforsolvingit.
Forexample,PDNanalysisrequiresthefollowing:1.
Truefrequency-domainsimulationofthePDNparallelanti-resonancesandseriesresonanceswithsolidS-parameterhandlingandassuranceof"PassivityandCausality"2.
Patentedconvolution(Kramers-Kronig)tobringfrequency-domainmodels(measurement-basedmodelsandEM-basedmodels)intothetimedomain(eyediagrams,BERcontours,andjitterdecomposition)3.
Usinganextractiontechnique,suchasMethod-of-Moment,whichhasexcellentaccuracyfromDCtoGHzrangePDNSimulationExampleInthissimulationexample,thesimulationperformedisthePDNoftheMGTAVCCandMGTAVTTanalogpowerrailsfortheXilinx7seriesXC7VX485TFPGAintheFFG1761pinpackage.
Twocasesaresimulatedhere.
Case1usesthePCBcapacitorslistedinTable2,whicharesimilartotherecommendedPCBcapsfortheXilinxVirtex-6devices.
Case2usesthePCBcapacitorsdescribedinTable3.
Figure12istheschematicforbothcases(1)and(2)listedabovefortheMGTAVCCandMGTAVTTpowerrails.
Forcase2(withnoPCBcapacitors),thereisstillonebulkcapacitormountedonthePCBspecifiedbythemanufacturerofthevoltageregulatormodule.
Table2:Case1CapacitorsQTYperGroupCapacitance(F)MGTAVCCMGTAVTTMGTVCCAUX4420.
0224400.
4722112214.
7Table3:Case2CapacitorsQTYperGroupCapacitance(F)MGTAVCCMGTAVTTMGTVCCAUX0000.
0220000.
4700010004.
7RunningthePDNSimulationswiththeAgilentADS2011.
10WP411(v1.
0)January30,2012www.
xilinx.
com11X-RefTarget-Figure12Figure12:PowerRailsSimulationSchematicRepresentationTermTerm13Num=13Z=50OhmTermTerm14Num=14Z=50OhmCC30C=22.
16nFS2PSNP105File="GRM155R61C223KA01_022uF_0402S2P"S2PSNP49File="T520V337M2R5ATE025.
s2p"S2PSNP111File="GRM152R60J474ME15_047_0402.
S2P"S2PSNP108File="GRM152R60J474ME15_047_0402.
S2P"S2PSNP107File="GRM152R60J474ME15_047_0402.
S2P"S2PSNP106File="GRM152R60J474ME15_047_0402.
S2P"S2PSNP109File="GRM188R61C105KA93_1uF_0603.
S2P"S2PSNP53File="GRM033C80G104KE19series(for_Fuji2_AVTT_AVCC).
s2p"S2PSNP52File="GRM033C80G104KE19series(for_Fuji2_AVTT_AVCC).
s2p"S2PSNP51File="GRM033C80G104KE19series(for_Fuji2_AVTT_AVCC).
s2p"S2PSNP50File="GRM033C80G104KE19series(for_Fuji2_AVTT_AVCC).
s2p"LL28L=25nHR=1mOhmV_DCSRC7Vdc=1.
2V+–S6PSNP48File="fga2034_485t_ff1761_031411_Avcc_G10.
s6p"S2PSNP104File="GRM155R61C223KA01_022uF_0402.
S2P"S2PSNP105File="GRM155R61C223KA01_022uF_0402.
S2P"S2PSNP105File="GRM155R61C223KA01_022uF_0402.
S2P"RR8R=10mOhmWP411_12_012212++––PackageCapacitorsVRMDieCapacitorsS2PSNP112File="GRM188R60J475KE19_47uF_0603.
S2P"S2PSNP113File="GRM188R60J475KE19_47uF_0603.
S2P"S2PSNP110File="GRM188R61C105KA93_1uF_0603.
S2P"S20PSNP47File="VC7203_MGTAVCC_092611_175001_S.
s20p"12www.
xilinx.
comWP411(v1.
0)January30,2012RunningthePDNSimulationswiththeAgilentADS2011.
10Figure13showthesimulationsresults.
Figure14showsthecompletesimulationtimeusingatypicallaptopcomputerrunningtheWindows-764-bitoperatingsystemisonly11.
68seconds!
Becausethesimulationresultsforbothcasesresultinalmostidenticalfrequencydomainself-impedanceprofilesfortheMGTAVCCandMGTAVTTpowerrails,andbecausetheMGTVCCAUXpowerrailhasaninternallowdropoutregulatorintegratedonthedie,similarperformancebetweenthetwocasesshouldbeexpected.
Asasimplereference,theimpedanceprofilesweresimulatedonacompetitivedevicewith0PCBcapacitorsbeyondthe1bulkPCBcapacitortypicallyrequiredbythevoltageregulatormanufacturer.
ProfilesrepresentingtheVCCH_GXBL0,VCCT_GXBL0,andVCCR_GXBL0powerrailswererun.
X-RefTarget-Figure13Figure13:PowerRailsSimulationResults1E31E41E51E61E71E81E91E10freq,HzMGTAVCC-MagnitudeTypicalCompetitormag(Competitor_PLL_Supply_With_PCB_Caps)mag(MGTAVCC_Die_Without_PCB_Caps)mag(MGTAVCC_Die_With_PCB_Caps)130012001100100090080070060050040030020010001E31E41E51E61E71E81E91E10freq,HzMGTAVCC-MagnitudeTypicalCompetitormag(Competitor_Tx_Rx_Supply_With_PCB_Caps)mag(MGTAVTT_Die_Without_PCB_Caps)mag(MGTAVTT_Die_With_PCB_Caps)13001200110010009008007006005004003002001000WP411_13_012212X-RefTarget-Figure14Figure14:CompleteSimulationTime,Windows-764-bitOSWP411_14_012212RunningthePDNSimulationswiththeAgilentADS2011.
10WP411(v1.
0)January30,2012www.
xilinx.
com13AscaneasilybeseeninthePDNprofilesofatypicalcompetitivedevice,theanalograilswouldhaveapeakimpedanceofwellover2ΩifthePCBcapswereremoved!
TransmitterHardwareMeasurementsFigure15throughFigure18containaseriesofeyediagramsat10.
3125Gb/susingtheQPLLand6.
25Gb/susingtheCPLLwithPRBS15datapatternmeasuredontheAgilentInfiniiumDCA-JWide-BandwidthOscilloscope.
ThisAgilent86100Cwiththe86108Aprecisionwaveformanalyzerhasbeenselectedtomakethesehardwaremeasurementsbecauseofthefollowingkeyattributes:1.
Highbandwidth,lownoise,andultra-lowresidualjitter2.
Simpleoneconnection"triggerless"operation3.
PLLcharacterizationincludingloopBW/jittertransfer4.
IntegratedhardwareclockrecoverwithadjustableloopBW/Peaking—exceedsindustrystandardsFigure15showstheeyediagramandassociatedjitterdecompositionwhenusingtheCPLLrunningat6.
25Gb/sforcase1.
Figure16showstheeyediagramandassociatedjitterdecompositionwhenusingtheCPLLrunningat6.
25Gb/sforcase2(noPCBcaps).
X-RefTarget-Figure15Figure15:Case1EyeDiagram,6.
25Gb/sWP411_15_01161214www.
xilinx.
comWP411(v1.
0)January30,2012RunningthePDNSimulationswiththeAgilentADS2011.
10Figure17showstheeyediagramandassociatedjitterdecompositionwhenusingtheQPLLrunningat10.
3125Gb/sforcase1.
Figure18showstheeyediagramandassociatedjitterdecompositionwhenusingtheQPLLrunningat10.
3125Gb/sforcase2(noPCBcaps).
X-RefTarget-Figure16Figure16:Case2EyeDiagram,6.
25Gb/sWP411_16_011612X-RefTarget-Figure17Figure17:Case1EyeDiagram,10.
3125Gb/sWP411_17_011612RunningthePDNSimulationswiththeAgilentADS2011.
10WP411(v1.
0)January30,2012www.
xilinx.
com15AsseeninthescopescreenshotsinFigure15throughFigure18,thetotaljitterisbothcases1and2iswithinthemeasurementtoleranceofthesetup.
Thus,hardwaremeasurementshaveconfirmedthesimulationresultsshowingthat0PCBcapsarerequiredforproperoperationofthetransmitter.
ReceiverMeasurementsTable4isasummaryofthereceiverhardwaremeasurementsbasedonaloopbacktestusingeyescan.
ThedatarecordedinTable4isthevoltageamplitudenoisewithalltransceiversinthepackagerunningasynchronously.
Asshownbythedata,thevoltageamplitudenoiseisthesameorlessafterallthePCBcapshavebeenremovedwhenusingeithertheCPLLortheQPLL.
Figure19isasummaryofthereceiver'sjittertoleranceanalysiswithalltransceiversinthepackagerunningasynchronouslyforbothcases1and2.
Asshownbythedata,thejittertoleranceisthesameorlessafterallthePCBcapshavebeenremoved.
Thejittertoleranceanalysiswasdoneat10-12BERthresholdandadatarateof10.
3125Gb/s.
X-RefTarget-Figure18Figure18:Case2EyeDiagram,10.
3125Gb/sWP411_18_011612Table4:ComparisonofVoltageAmplitudeNoisewith/withoutDecouplingCapsPLLCPLLQPLLBitRate6.
25Gb/s10.
3125Gb/sMGTAVCCAllCapsNoCapsAllCapsNoCapsMGTAVTTAllCapsNoCapsAllCapsNoCapsMGTVCCAUXAllCapsNoCapsAllCapsNoCaps%FullScale3.
6%3.
3%5.
0%4.
5%16www.
xilinx.
comWP411(v1.
0)January30,2012SummarySummaryPDNsimulations,confirmedbyhardwaremeasurements,haveshownthatnoPCBcapsbeyondthatrecommendedbythevoltageregulatormanufacturerarerequiredfortheMGTAVTT,MGTAVCC,andMGTVCCAUXpowerrailsforproperoperationofthetransceiversinXilinx'sKintex-7andVirtex-7devices.
WhilethePCBcapacitorsarenotneededforproperoperationofthetransceivers,however,properfilteringcanberequiredonthePCBtoachievetheinputvoltageripplenoisespecificationof10mVpeak-to-peak(10kHzto80MHz)whenmeasuredattheBGAballofthepackage.
Currently,XilinxhasseveralAgilentADSPowerIntegrityDesignKitsavailablefor7seriesFPGAsthatsupportalldevicepowersupplies(digitalandanalog).
ContactyourlocalXilinxfieldapplicationengineertoobtaintheseAgilentADSDesignKits.
Toobtaina30-dayfreelicenseofAgilentADS2011,pleasevisitthefollowinglink:https://software.
business.
agilent.
com/TrialLicense/TrialLicenseRequest.
aspxProdNum=W2200F-1U1-TRLX-RefTarget-Figure19Figure19:ComparisonofJitterTolerancewith/withoutDecouplingCaps100.
0010.
001.
000.
100AllCapsBER12NoCapsBER120.
010.
101.
00Frequency,MHzSI,UI10.
00100.
00WP411_xx_012212RevisionHistoryWP411(v1.
0)January30,2012www.
xilinx.
com17RevisionHistoryThefollowingtableshowstherevisionhistoryforthisdocument:NoticeofDisclaimerTheinformationdisclosedtoyouhereunder(the"Materials")isprovidedsolelyfortheselectionanduseofXilinxproducts.
Tothemaximumextentpermittedbyapplicablelaw:(1)Materialsaremadeavailable"ASIS"andwithallfaults,XilinxherebyDISCLAIMSALLWARRANTIESANDCONDITIONS,EXPRESS,IMPLIED,ORSTATUTORY,INCLUDINGBUTNOTLIMITEDTOWARRANTIESOFMERCHANTABILITY,NON-INFRINGEMENT,ORFITNESSFORANYPARTICULARPURPOSE;and(2)Xilinxshallnotbeliable(whetherincontractortort,includingnegligence,orunderanyothertheoryofliability)foranylossordamageofanykindornaturerelatedto,arisingunder,orinconnectionwith,theMaterials(includingyouruseoftheMaterials),includingforanydirect,indirect,special,incidental,orconsequentiallossordamage(includinglossofdata,profits,goodwill,oranytypeoflossordamagesufferedasaresultofanyactionbroughtbyathirdparty)evenifsuchdamageorlosswasreasonablyforeseeableorXilinxhadbeenadvisedofthepossibilityofthesame.
XilinxassumesnoobligationtocorrectanyerrorscontainedintheMaterialsortonotifyyouofupdatestotheMaterialsortoproductspecifications.
Youmaynotreproduce,modify,distribute,orpubliclydisplaytheMaterialswithoutpriorwrittenconsent.
CertainproductsaresubjecttothetermsandconditionsoftheLimitedWarrantieswhichcanbeviewedathttp://www.
xilinx.
com/warranty.
htm;IPcoresmaybesubjecttowarrantyandsupporttermscontainedinalicenseissuedtoyoubyXilinx.
Xilinxproductsarenotdesignedorintendedtobefail-safeorforuseinanyapplicationrequiringfail-safeperformance;youassumesoleriskandliabilityforuseofXilinxproductsinCriticalApplications:http://www.
xilinx.
com/warranty.
htm#critapps.
DateVersionDescriptionofRevisions01/30/121.
0InitialXilinxrelease.

HostKvm:夏季优惠,香港云地/韩国vps终身7折,线路好/机器稳/适合做站

hostkvm怎么样?hostkvm是一家国内老牌主机商家,商家主要销售KVM架构的VPS,目前有美国、日本、韩国、中国香港等地的服务,站长目前还持有他家香港CN2线路的套餐,已经用了一年多了,除了前段时间香港被整段攻击以外,一直非常稳定,是做站的不二选择,目前商家针对香港云地和韩国机房的套餐进行7折优惠,其他套餐为8折,商家支持paypal和支付宝付款。点击进入:hostkvm官方网站地址hos...

Boomer.host:$4.95/年-512MB/5GB/500GB/德克萨斯州(休斯顿)

部落曾经在去年分享过一次Boomer.host的信息,商家自述始于2018年,提供基于OpenVZ架构的VPS主机,配置不高价格较低。最近,主机商又在LET发了几款特价年付主机促销,最低每年仅4.95美元起,有独立IPv4+IPv6,开设在德克萨斯州休斯顿机房。下面列出几款VPS主机配置信息。CPU:1core内存:512MB硬盘:5G SSD流量:500GB/500Mbps架构:KVMIP/面板...

TmhHost 全场八折优惠且充值返10% 多款CN2线路

TmhHost 商家是一家成立于2019年的国人主机品牌。目前主营的是美国VPS以及美国、香港、韩国、菲律宾的独立服务器等,其中VPS业务涵盖香港CN2、香港NTT、美国CN2回程高防、美国CN2 GIA、日本软银、韩国cn2等,均为亚太中国直连优质线路,TmhHost提供全中文界面,支持支付宝付款。 TmhHost黑五优惠活动发布了,全场云服务器、独立服务器提供8折,另有充值返现、特价服务器促销...

avtt4.com为你推荐
蓝瘦香菇被抢注“蓝瘦香菇”是什么梗firetrap我淘宝店还是卖二单就被删,怎么回事!同ip网站查询怎样查询一个ip绑了多少域名同一服务器网站服务器建设:一个服务器有多个网站该如何设置?www.mywife.ccMywife-No 00357 MANAMI SAITO种子下载地址有么?求好心人给hao.rising.cn我一打开网页就是瑞星安全网站导航,怎么修改?222cc.com怎样开通网站啊www.28.cn北京吉信通公司是真是假的公司呢7po.comvivo手机怎么获得R00t雀嘴鳝什么是雀鳝鱼 雀鳝可以吃吗
免费申请域名 过期域名抢注 免费申请网页 息壤主机 256m内存 mediafire下载 12306抢票攻略 mobaxterm 国外网站代理服务器 京东商城双十一活动 193邮箱 架设服务器 200g硬盘 vip购优惠 hkt 免费网页申请 如何建立邮箱 申请免费空间和域名 google台湾 yundun 更多