maximum33.eee.com

33.eee.com  时间:2021-03-20  阅读:()
BayesianRobustLinearTransceiverDesignforDual-HopAmplify-and-ForwardMIMORelaySystemsChengwenXing,ShaodanMaandYik-ChungWuDepartmentofElectricalandElectronicEngineeringTheUniversityofHongKong,HongKongEmail:{cwxing,sdma,ycwu}@eee.
hku.
hkAbstract—Inthispaper,weaddresstherobustlineartransceiverdesignfordual-hopamplify-and-forward(AF)MIMOrelaysystems,wherebothtransmittersandreceivershaveimperfectchannelstateinformation(CSI).
WiththestatisticsofchannelestimationerrorsinthetwohopsbeingGaussian,wefor-mulatetherobustlinear-minimum-mean-square-error(LMMSE)transceiverdesignproblemusingtheBayesianframework,andderiveaclosed-formsolution.
Simulationresultsshowthattheproposedalgorithmreducesthesensitivityoftherelaysystemtochannelestimationerrors,andperformsbetterthanthealgorithmusingestimatedchannelonly.
I.
INTRODUCTIONRecently,cooperativecommunicationhasgainedsignicantinterest,duetoitsgreatpotentialstoimprovereliability,coverageandcapacityofwirelesslinks[1][2].
Generallyspeaking,therearethreekindsofrelayprotocols,amplify-and-forward(AF),compress-and-forward(CF)anddecode-and-forward(DF).
Amongthethreeschemes,AFisconceptuallythesimplestone,inwhichtherelayjustscalesthesignaltrans-mittedfromthesource,andthentransmitstothedestination.
Duetoitssimplicityandlowimplementationcomplexity,AFstrategyhasreceivedmanyresearchers'attention.
Ontheotherhand,itiswell-knownthatinfullyscatteredenvironments,multiantennasystemsprovidespatialdiversityandmultiplexinggains.
Thiskindofbenetscanbedirectlyintroducedintocooperativecommunicationsviadeploymentofmultipleantennasattransmittersandreceivers.
Thecom-binationofAFandMIMOsystemsbringsgreatpotentialsinperformanceimprovement.
LineartransceiverdesignforAFMIMOrelaysystemshasbeenaddressedin[2],[3],[4]and[5].
ThecapacityscalinglawofMIMOrelaynetworkshasbeendiscussedin[2].
Thelineartransceiverdesignforthexedrelayincellularnet-workshasbeenaddressedin[3].
Jointlinear-minimum-mean-square-error(LMMSE)transceiverdesignforAFMIMOrelaysystemsisconsideredin[4]and[5].
However,alloftheabovementionedworksrequirethechannelstateinformation(CSI)perfectlyknownatthetransmittersandreceivers.
Unfortunately,inpracticalsystems,channelestimationer-rorsareinevitable,whichshouldbetakenintoaccountintransceiverdesign.
Inthispaper,weproposearobustlineartransceiverdesignmethodforAFMIMOrelaysystems.
TheTheRelayTheDestinationTheSourcesNRNRMDMFGsrHrdHssFig.
1.
Amplify-and-forwardMIMOrelaydiagramchannelestimationerrorsaremodeledasGaussianrandomvariables.
ThestatisticsofthechannelestimationerrorsareincorporatedintothedesignusingtheBayesianframework,andaclosed-formsolutionisobtained.
Simulationresultsshowthattheproposedalgorithmperformsbetterthanthealgorithmusingestimatedchannelonly.
Thefollowingnotationsareusedthroughoutthispaper.
Boldfacelowercaselettersdenotevectors,whileboldfaceuppercaselettersdenotematrices.
ThenotationZHdenotestheHermitianofthematrixZ,andTr(Z)isthetraceofthematrixZ.
ThesymbolIMdenotesanM*Midentitymatrix,while0M,NdenotesanM*Nallzeromatrix.
ThenotationZ12istheHermitiansquarerootofthepositivesemidenitematrixZ,suchthatZ12Z12=ZandZ12isalsoaHermitianmatrix.
II.
PROBLEMFORMULATIONInthispaper,adual-hopamplify-and-forward(AF)cooper-ativecommunicationsystemisconsidered.
Intheconsideredsystem,thereisonesourcewithNSantennas,onerelaywithMRreceiveantennasandNRtransmitantennas,andonedestinationwithMDantennas,asshowninFig.
1.
Atthersthop,thesourcetransmitsdatatotherelay.
Thereceivedsignal,x,attherelayisx=Hsrs+n1(1)wheresisthedatavectortransmittedbythesourcewiththecovariancematrixRs=E{ssH}.
ThematrixHsristheMIMOchannelmatrixbetweenthesourceandtherelay.
Symboln1istheadditiveGaussiannoisewithcovariancematrixRn1.
Attherelay,thereceivedsignalxismultipliedbyaprecodermatrixF,underapowerconstraintTr(FRxFH)≤ThisfulltextpaperwaspeerreviewedatthedirectionofIEEECommunicationsSocietysubjectmatterexpertsforpublicationintheIEEE"GLOBECOM"2009proceedings.
978-1-4244-4148-8/09/$25.
002009PwhereRx=E{xxH}andPisthemaximumtransmitpower.
Thentheresultingsignalistransmittedtothedestina-tion.
Thereceivedsignalatthedestination,y,canbewrittenasy=HrdFHsrs+HrdFn1+n2,(2)whereHrdistheMIMOchannelmatrixbetweentherelayandthedestination,andn2istheadditiveGaussiannoisevectoratthesecondhopwithcovariancematrixRn2.
Inordertoguaranteethetransmitteddatascanberecoveredatthedestination,itisassumedthatMR,NR,andMDaregreaterthanorequaltoNS[4].
Itisassumedthatboththerelayanddestinationhavetheestimatedchannelstateinformation(CSI).
Whenchannelestimationerrorsareconsidered,wehaveHsr=Hsr+ΔHsr,Hrd=Hrd+ΔHrd,(3)wherethesymbolsHsrandHrdaretheestimatedCSI,whileΔHsrandΔHrdarethecorrespondingchannelestimationerrorswhoseelementsarezeromeanGaussianrandomvari-ables.
Ingeneral,theMR*NSmatrixΔHsrcanbewrittenasΔHsr=Σ12srHWΨ12srwheretheelementsoftheMR*NSmatrixHWareindependentandidenticallydistributed(i.
i.
d.
)Gaussianrandomvariableswithzeromeanandunitvariance.
TheMR*MRmatrixΣsrandNS*NSmatrixΨTsraretherowandcolumncovariancematricesofΔHsr,respectively[6].
Itiseasytoseethatvec(ΔHTsr)CN(0MR*NS,ΣsrΨTsr)basedonwhichΔHsrissaidtohaveamatrix-variatecomplexGaussiandistribution,whichcanbewrittenas[7]ΔHsrCNMR,NS(0MR,NS,ΣsrΨTsr),(4)withtheprobabilitydensityfunction(p.
d.
f.
)givenby[8][9]f(ΔHsr)=exp(Tr((ΔHsr0)HΣ1sr(ΔHsr0)Ψ1sr))(π)NSMRdet(Σsr)NSdet(Ψsr)MR.
(5)Similarly,fortheestimationerrorinthesecondhop,wehaveΔHrdCNMD,NR(0MD,NR,ΣrdΨTrd)(6)wheretheMD*MDmatrixΣrdandNR*NRmatrixΨTrdaretherowandcolumncovariancematricesofΔHrd,respectively.
Itisassumedthatthechannelestimationerrors,ΔHsrandΔHrd,areindependent.
Atthedestination,alinearequalizerGisadoptedtodetectthetransmitteddatas.
TheproblemishowtodesignthelinearprecodermatrixFattherelayandthelinearequalizerGatthedestinationtominimizethemeansquareerrors(MSE)ofthereceiveddataatthedestination:MSE(F,G)=E{Tr(Gys)(Gys)H},(7)wheretheexpectationistakenwithrespecttos,ΔHsr,ΔHrd,n1andn2.
III.
ROBUSTTRANSCEIVERDESIGNFORMIMORELAYA.
MSEAveragedoverChannelUncertaintiesSinces,n1andn2areindependent,theMSEexpression(7)canbewrittenasMSE(F,G)=E{(GHrdFHsrINS)s+GHrdFn1+Gn22}=EΔHsr,ΔHrd{Tr((GHrdFHsrI)Rs(GHrdFHsrI)H)}+EΔHrd{Tr(GHrdF)Rn1(GHrdF)H}+Tr(GRn2GH)=EΔHsr,ΔHrd{Tr(GHrdFHsr)Rs(GHrdFHsr)H}+TrGEΔHrd{HrdFRn1FHHHrd}GHTrRs(GHrdFHsr)HTrGHrdFHsrRs+Tr(Rs)+Tr(GRn2GH).
(8)BecauseΔHsrandΔHrdareindependent,thersttermofMSEisEΔHsr,ΔHrd{Tr(GHrdFHsr)Rs(GHrdFHsr)H}=TrGEΔHrdHrdFEΔHsr{HsrRsHHsr}FHHHrdGH.
(9)Fortheinnerexpectation,duetothefactthatthedistributionofΔHsrismatrix-variatecomplexGaussianwithzeromean,thefollowingequationholds[7]EΔHsr{HsrRsHHsr}=EΔHsr{(Hsr+ΔHsr)Rs(Hsr+ΔHsr)H}=Tr(RsΨsr)Σsr+HsrRsHHsrΠ0.
(10)Applying(10)andthecorrespondingresultforΔHrdto(9),thersttermofMSEbecomesTrGEΔHrdHrdFEΔHsr{HsrRsHHsr}FHHHrdGH=Tr(G(Tr(FΠ0FHΨrd)Σrd+HrdFΠ0FHHHrd)GH).
(11)Similarly,thesecondtermofMSEin(8)canbesimpliedasTrGEΔHrd{HrdFRn1FHHHrd}GH=Tr(GTr(FRn1FHΨrd)Σrd+HrdFRn1FHHHrdGH).
(12)Basedon(11)and(12),theMSE(8)equalstoMSE(F,G)=TrG(HrdFRxFHHHrd+K)GHTrRsHHsrFHHHrdGHTrRsGHrdFHsr+Tr(Rs)(13)whereRx=Π0+Rn1(14)K=Tr(F(Π0+Rn1)FHΨrd)Σrd+Rn2.
(15)NoticethatthematrixRxistheautocorrelationmatrixofthereceivesignalxattherelay.
ThisfulltextpaperwaspeerreviewedatthedirectionofIEEECommunicationsSocietysubjectmatterexpertsforpublicationintheIEEE"GLOBECOM"2009proceedings.
978-1-4244-4148-8/09/$25.
002009B.
JointRobustDesignofEqualizerandPrecoderSubjecttothetransmitpowerconstraintattherelay,thejointdesignofequalizerandprecodercanbeexpressedasthefollowingoptimizationproblemminF,GMSE(F,G)s.
t.
Tr(FRxFH)≤P.
(16)SincetheconstraintdoesnotinvolvetheequalizerG,whentheprecodermatrixFisxed,theoptimallinearequalizer,Gopt,satisesthefollowingconditionMSE(F,G)G=0,(17)basedonwhichwehaveGopt=Rs(HrdFHsr)H(HrdFRxFHHHrd+K)1.
(18)Substituting(18)into(13),theMSEatthedestinationequalstoMSE(F)=Tr(Rs)Tr(RsHHsr[FHHHrd(HrdFRxFHHHrd+K)1HrdF]HsrRs).
(19)SinceK12andRx12arebothHermitianmatrices,exploitingthematrixinversionlemma,wehaveFHHHrd(HrdFRxFHHHrd+K)1HrdF=RxH2RxH2FHHHrdKH2(K12HrdFRx12RxH2FHHHrdKH2+IMD)1K12HrdFRx12Rx12=Rx1RxH2(RxH2FHHHrdK1HrdFRx12+IMR)1Rx12.
(20)Putting(20)into(19),anddeningtheconstantpartcTr(Rs)Tr(RsHHsrRx1HsrRs),equation(19)canberewrittenasMSE(F)=Tr(RsHHsrRxH2(RxH2FHHHrdK1HrdFRx12+IMR)1Rx12HsrRs)+c.
(21)From(15),K=Tr(FRxFHΨrd)Σrd+Rn2,soMSE(F)isahighorderfunctionofFandtheproblemofminimizing(21)isverydifculttosolve.
Inordertoproceed,noticethat[10]Tr(FRxFH)λmax(Ψrd)Σrd+Rn2K,(22)whereλmax(Z)denotesthelargesteigenvalueofZ.
SincefortheminimumMSE,thecorrespondingtransmitpowermustbeontheboundary(i.
e.
,Tr(FRxFH)=P),wehavePλmax(Ψrd)Σrd+Rn2K.
AsshowninAp-pendixI,whenKin(21)isreplacedbyitsupper-boundΦPλmax(Ψrd)Σrd+Rn2,theresultantMSEexpression,denotedasMSEU(F)anddenedin(43),isanupper-boundofMSE(F)(i.
e.
,MSEU(F)≥MSE(F)).
Therefore,weproposetodesigntheprecoderFbyminimizingMSEU(F),whichcorrespondstominFTr(Rx12HsrRsRsHHsrRxH2T(RxH2FHHHrdΦ1HrdΘFRx12+IMR)1)s.
t.
Tr(FRxFH)≤P(23)wheretheconstantcisneglected,whichdoesnotaffecttheoptimizationproblem.
NoticethatwhenΨrd∝I,thereplacementinvolvesnoapproximation.
Basedoneigendecompostion,wehaveT=UTΛTUHT,(24)Θ=UΘΛΘUHΘ,(25)wherethematricesUTandUΘconsistoftheeigenvectorsofTandΘ,respectively,whilethediagonalmatricesΛTandΛΘcontainstheeigenvaluesofTandΘ,respectively.
Withoutlossofgenerality,itisassumedthatthediagonalelementsofΛTandΛΘareindecreasingorder.
Substituting(24)and(25)into(23)anddeningFUHΘFRx12UT,(26)theoptimizationproblemcanbewritteninacompactformasminFTrΛT(FHΛΘF+IMR)1s.
t.
Tr(FFH)≤P.
(27)Fortheobjectivefunctionof(27),noticethatTr(ΛTB)≥MRi=1λT,iλB,MRi+1(28)whereBisdenedasB(FHΛΘF+IMR)1,λB,iistheithlargesteigenvalueofB,andthesymbolλT,idenotestheithdiagonalelementofΛT.
In(28),theequalityholdswhenthematrixBisdiagonalwithdiagonalelementsinincreasingorder[11,9.
H.
1.
h].
Therefore,fortheoptimalsolution,(FHΛΘF+IMR)1mustbediagonalwithdiagonalelementsinincreasingorder.
Basedonthediagonalstructure,introducingapermutationmatrixwithdimensionM*MasQM=0010.
.
.
0100M,(29)theobjectivefunctionoftheoptimizationproblem(27)canberewrittenasTrΛT(FHΛΘF+IMR)1=TrΛT(FHΛΘF+IMR)1(30)whereΛT=QMRΛTQMRandΛΘ=QNRΛΘQNRareΛTandΛΘwithdiagonalelementsinreverseorder,andF=ThisfulltextpaperwaspeerreviewedatthedirectionofIEEECommunicationsSocietysubjectmatterexpertsforpublicationintheIEEE"GLOBECOM"2009proceedings.
978-1-4244-4148-8/09/$25.
002009QNRFQMR.
WiththefactthatΛTisadiagonalmatrix,theoptimizationproblem(27)canbereformulatedasminf0(b)=dT{ΛT}d{(FHΛΘF+IMR)1}bs.
t.
Tr(FHF)≤P,(31)wherethesymbold{Z}denotesthevectorformedfromthemaindiagonalofZ.
Noticethatbecauseofthepermutationmatrices,theorderofbisthereversetothatofthemaindiagonalofB(i.
e.
,theelementsofbareindecreasingorder).
TogetherwiththefactthatthediagonalelementsofΛTareinincreasingorder,thefunctionf0(b)isSchur-concave[11,3.
H.
3].
Basedon[12,Theorem1],theoptimalF=QNRFQMRfortheproblem(31)haszeroelementsexceptalongtherightmostmaindiagonal.
DeningN=min(Rank(ΛΘ),MR),theoptimalFhasthefollowingstruc-tureF=diag(f1,fN)0N*(MRN)0(NRN)*N0(NRN)*(MRN).
(32)With(32),theoptimizationproblem(27)canberewrittenasminf2iNi=1λT,iλΘ,if2i+1+MRi=N+1λT,is.
t.
Ni=1f2i≤P(33)whereλΘ,idenotestheithdiagonalelementofΛΘ.
Obvi-ously,thesolutionoftheproblem(33)isthemodiedwater-lling[13],andbasedontheKarush-Kuhn-Tucker(KKT)conditionsof(33),wehave[14]f2i,opt=λT,iμλΘ,i1λΘ,i+i=1,N(34)whereμ>0istheLagrangianmultipliersuchthatNi=1f2i,opt=Pholds.
FromthedenitionofFin(26),(32)and(34),wecanwritetheoptimalFcompactlyasFopt=UΘ,N1√μΛ12ΘΛ12TΛ1Θ+12UHT,NRx12(35)where[(Z)+]i,j=max(0,(Z)i,j).
ThematricesΛΘandΛTaretheprinciplesubmatricesofΛΘandΛTwithdimensionsN*N.
ThematricesUΘ,NandUT,NaretherstNcloumnsofUΘandUT,respectively.
Noticethatwhenthesource-relaylinkisnoiselessandthechannelrealizationisperfectlyknown,equation(35)reducestothepoint-to-pointMIMOrobustLMMSEtransceiver[15].
Ifbothtwochannelsareexactlyknown,(35)isexactlythesolutionin[5].
IV.
NUMERICALEXPERIMENTSInthissection,simulationresultswillbeshowntoverifytheeffectivenessoftheproposedalgorithm.
Inthispaper,thesource,relayanddestinationareallequippedwith3antennas.
Atthesource,itisassumedthatthetransmitpowerTr(Rs)=20dBandthemodulationschemeisQPSK.
Theestimatedchannelmatrices,HsrandHrd,areHsr=0.
27140.
3487i0.
61700.
4784i0.
2315+0.
5103i0.
2354+0.
2462i0.
3534+0.
1253i0.
19640.
7238i1.
18090.
3305i0.
3179+2.
3439i0.
19891.
1954iHrd=0.
90020.
4583i0.
96460.
6782i0.
9360+1.
1348i0.
9969+0.
1589i0.
2910+0.
3071i0.
60350.
4315i0.
67981.
1627i0.
7557+0.
3929i0.
37420.
0623i.
(36)TheestimationerrorcorrelationmatricesareassumedtobeΣsr=1ββ2β1ββ2β1Σrd=1ββ2β1ββ2β1Ψsr=0.
031αα2α1αα2α1Ψrd=0.
041αα2α1αα2α1.
(37)Ineachsimulationrun,channelestimationerrors,ΔHsrandΔHrd,aregeneratedindependently,accordingto(4)and(6),respectively,and1000trialsareaveragedtogiveeachpointinthegures.
Fig.
2showstheMSEofthereceivedsignalatthedesti-nationversusthetransmitpowerattherelayP,forthealgo-rithmusingestimatedchannelmatricesonlyandtheproposedBayesianalgorithm,withdifferentvaluesofβ,whenα=0.
4.
Itcanbeseenthatingeneral,thewholesystemperformancedegradeswhenthecorrelationfactorβincreases.
Thisisduetothefactthatchannelcorrelationsreducethenumberofeffectiveeigenchannels[6].
However,theperformanceoftheproposedalgorithmissignicantlybetterthanthealgorithmusingestimatedchannelmatricesonly,regardlessofthevalueofβ.
Fig.
3showsthecorrespondingresultsfordifferentvaluesofα,whenβ=0.
4.
AsimilarconclusiontothatofFig.
2canbedrawn.
V.
CONCLUSIONSInthispaper,wepresentedthejointdesignoflineartransceiversforAFMIMOrelaysystemsundertheknowledgeofestimatedchannelanderrorcovariancematrices.
Thestatis-ticsofchannelestimationerrorswereincorporatedintothetransceiverdesignusingtheBayesianframework.
Aclosed-formsolutionhasbeenderivedandtwoexistingalgorithmswereshowntobespecialcasesofourframework.
Fromthesimulations,itwasfoundthattheproposedalgorithmreducesthesensitivityoftherelaysystemtochannelestimationerrors,andimprovesthesystemperformancegreatly,comparedtothealgorithmusingestimatedchannelonly.
ThisfulltextpaperwaspeerreviewedatthedirectionofIEEECommunicationsSocietysubjectmatterexpertsforpublicationintheIEEE"GLOBECOM"2009proceedings.
978-1-4244-4148-8/09/$25.
002009051015202530100.
7100.
6100.
5100.
4100.
3100.
2α=0.
4P(dB)MSEAlgorithmbasedonestimatedCSI,β=0.
9AlgorithmbasedonestimatedCSI,β=0.
45AlgorithmbasedonestimatedCSI,β=0Proposedalgorithm,β=0.
9Proposedalgorithm,β=0.
45Proposedalgorithm,β=0β=0.
9β=0.
45β=0Fig.
2.
MSEversustransmitpowerattherelayforthealgorithmbasedonestimatedchannelandtheproposedBayesianalgorithm,withdifferentvaluesofβ,whenα=0.
4051015202530100.
7100.
6100.
5100.
4100.
3100.
2β=0.
4P(dB)MSEAlgorithmbasedonestimatedCSI,α=0.
9AlgorithmbasedonestimatedCSI,α=0.
45AlgorithmbasedonestimatedCSI,α=0Proposedalgorithm,α=0.
9Proposedalgorithm,α=0.
45Proposedalgorithm,α=0α=0.
9α=0.
45α=0Fig.
3.
MSEversustransmitpowerattherelayforthealgorithmbasedonestimatedchannelandtheproposedBayesianalgorithmwithdifferentvaluesofα,whenβ=0.
4APPENDIXIForpositiveHermitianmatrices,MandN,ifMN,thefollowinginequalityholds[10,7.
7.
4]N1M1.
(38)Furthermore,foranymatrixA,theinequalityAHN1AAHM1A(39)alwaysholds[10,7.
7.
3.
a].
Addinganidentitymatrixonbothsidesof(39),theinequalitysigndoesnotchange.
Togetherwith(38),wehave(AHM1A+I)1(AHN1A+I)1.
(40)Withtheresultin(39),foranarbitrarymatrixB,wehaveBH(AHM1A+I)1BBH(AHN1A+I)1B.
(41)PuttingA=HrdFRx12,B=Rx12HsrRs,N=KandM=Tr(FRxFH)λmax(Ψrd)Σrd+Rn2,andtakingthetraceonbothsidesof(41),wehaveMSEU(F)≥MSE(F)(42)whereMSEU(F)isdenedasMSEU(F)=Tr(RsHHsrRxH2(RxH2FHHHrdM1HrdFRx12+IMR)1Rx12HsrRs)+c,(43)andMSE(F)isdenedin(21).
ACKNOWLEDGEMENTThisstudywaspartiallysupportedbyagrantfromtheResearchGrantsCounciloftheHongKongSAR.
REFERENCES[1]A.
Scaglione,D.
L.
Goeckel,andJ.
N.
Laneman,"Cooperativecom-municationsinmobileAdHocnetworks,"IEEESignalProcessingMagazine,pp.
18–29,Sept.
2006.
[2]H.
Bolcskei,R.
U.
Nabar,O.
Oyman,andA.
J.
Paulraj,"CapacityscalinglawsinMIMOrelaynetworks,"IEEETrans.
onWirelessComm.
,vol.
5,no.
6,pp.
1433–1443,June2006.
[3]C.
-B.
Chae,T.
Tang,R.
W.
Health,andS.
Cho,"MIMOrelayingwithlinearprocessingformultiusertransmissioninxedrelaynetworks,"IEEETrans.
onSignalProcessing,vol.
56,no.
2,pp.
727–738,Feb.
2008.
[4]A.
S.
Behbahani,R.
Merched,andA.
M.
Eltawil,"OptimizationsofaMIMOrelaynetwork,"IEEETrans.
onSignalProcessing,vol.
56,no.
10,part2,pp.
5062–5073,Oct.
2008.
[5]W.
GuanandH.
Luo,"JointMMSEtransceiverdesigninnon-regenerativeMIMOrelaysystems,"IEEECommunicationsLetters,vol.
12,issue7,pp.
517–519,July2008.
[6]E.
G.
LarssonandP.
Stoica,Space-TimeBlockCodingforWirelessCommunications,CambridgeUniversityPress,2003.
[7]A.
GuptaandD.
Nagar,MatrixVariatesDistributions,London,U.
K.
,Chapamn&Hall/CRC,2000.
[8]A.
P.
Dawid,"Somematrix-variatedistributiontheory:Notationalcon-siderationsandaBayesianapplication,"OxfordJournals,Mathematics&PhysicalSciences,vol.
68,no.
1,pp.
265–274,1981.
[9]A.
T.
James,"Dstributionsofmatrixvariatesandlatentrootsderivedfromnormalsamples,"Ann.
Math.
Statistics,vol.
35,pp.
475–501,1964.
[10]R.
A.
HornandC.
R.
Johnson,MatrixAnalysis,CambridgeUniversityPress,1985.
[11]A.
W.
MarshallandI.
Olkin,Inequalities:TheoryofMajorizationandItsApplication,NewYork,AcademicPress,1979.
[12]D.
P.
Palomar,J.
M.
Ciof,andM.
A.
Lagunas,"JointTx-Rxbeam-formingdesignformulticarrierMIMOchannels:Auniedframeworkforconvexoptimization,"IEEETrans.
onSignalProcessing,vol.
51,no.
9,pp.
2381–2401,Sep.
2003.
[13]F.
FrachineiandJ.
Pang,Finite-DimensionalVariationalInequalitiesandComplementarityProblems,SpringSeriesinOperationResearch,VolumeI,2003.
[14]S.
BoydandL.
Vandenberghe,ConvexOptimization,CambridgeUni-versityPress,2004.
[15]X.
Zhang,D.
P.
Palomar,andB.
Ottersten,"StatisticallyrobustdesignoflinearMIMOtransceiver,"IEEETrans.
onSignalProcessing,vol.
56,no.
8,pp.
3678–3689,Aug.
2008.
ThisfulltextpaperwaspeerreviewedatthedirectionofIEEECommunicationsSocietysubjectmatterexpertsforpublicationintheIEEE"GLOBECOM"2009proceedings.
978-1-4244-4148-8/09/$25.
002009

onevps:新增(支付宝+中文网站),香港/新加坡/日本等9机房,1Gbps带宽,不限流量,仅需$4/月

onevps最新消息,为了更好服务中国区用户:1、网站支付方式新增了支付宝,即将增加微信;原信用卡、PayPal方式不变;(2)可以切换简体中文版网站,在网站顶部右上角找到那个米字旗,下拉可以换中国简体版本。VPS可选机房有:中国(香港)、新加坡、日本(东京)、美国(纽约、洛杉矶)、英国(伦敦)、荷兰(阿姆斯特丹)、瑞士(苏黎世)、德国(法兰克福)、澳大利亚(悉尼)。不管你的客户在亚太区域、美洲区...

HostNamaste$24 /年,美国独立日VPS优惠/1核1G/30GB/1Gbps不限流量/可选达拉斯和纽约机房/免费Windows系统/

HostNamaste是一家成立于2016年3月的印度IDC商家,目前有美国洛杉矶、达拉斯、杰克逊维尔、法国鲁贝、俄罗斯莫斯科、印度孟买、加拿大魁北克机房。其中洛杉矶是Quadranet也就是我们常说的QN机房(也有CC机房,可发工单让客服改机房);达拉斯是ColoCrossing也就是我们常说的CC机房;杰克逊维尔和法国鲁贝是OVH的高防机房。采用主流的OpenVZ和KVM架构,支持ipv6,免...

易探云330元/年,成都4核8G/200G硬盘/15M带宽,仅1888元/3年起

易探云服务器怎么样?易探云是国内一家云计算服务商家,致力香港云服务器、美国云服务器、国内外服务器租用及托管等互联网业务,目前主要地区为运作香港BGP、香港CN2、广东、北京、深圳等地区。目前,易探云推出的国内云服务器优惠活动,国内云服务器2核2G5M云服务器低至330元/年起;成都4核8G/200G硬盘/15M带宽,仅1888元/3年起!易探云便宜vps服务器配置推荐:易探云vps云主机,入门型云...

33.eee.com为你推荐
2020双十一成绩单2020年12月四级考试什么时候出成绩百度商城百度商城里抽奖全是假的access数据库Access数据库对象的操作包括哪五种?百度关键词分析关键词怎么分析?www.5ff.comhttp://www.940777.com/网站,是不是真的网投六合javbibitreebibi是什么牌子的杨丽晓博客杨丽晓是怎么 出道的杨丽晓博客杨丽晓哪一年出生的?ww.66bobo.com这个WWW ̄7222hh ̄com是不是真的不太易开了,换了吗?baqizi.cc孔融弑母是真的吗?
jsp虚拟空间 域名空间购买 免费域名解析 pccw edis iisphpmysql 长沙服务器 网盘申请 嘉洲服务器 777te 中国电信宽带测速器 免费私人服务器 新睿云 空间登录首页 网页提速 免费主页空间 mteam 百度新闻源申请 cc加速器 电信测速器在线测网速 更多