myeloproliferation7788kk.com

7788kk.com  时间:2021-03-21  阅读:()
REVIEWSpecicationandfunctionofhemogenicendotheliumduringembryogenesisEmilyGritz1,2KarenK.
Hirschi1Received:20August2015/Revised:16December2015/Accepted:7January2016/Publishedonline:5February2016TheAuthor(s)2016.
ThisarticleispublishedwithopenaccessatSpringerlink.
comAbstractHemogenicendotheliumisaspecializedsubsetofdevelopingvascularendotheliumthatacquireshematopoieticpotentialandcangiverisetomultilineagehematopoieticstemandprogenitorcellsduringanarrowdevelopmentalwindowintissuessuchastheextraembry-onicyolksacandembryonicaorta-gonad-mesonephros.
Herein,wereviewcurrentknowledgeaboutthehistoricalanddevelopmentaloriginsofhemogenicendothelium,themoleculareventsthatgovernhemogenicspecicationofvascularendothelialcells,thegenerationofmultilineagehematopoieticstemandprogenitorcellsfromhemogenicendothelium,andthepotentialfortranslationalapplica-tionsofknowledgegainedfromfurtherstudyoftheseprocesses.
keywordsEmbryogenesisDevelopmentalhematopoiesisHemogenicendotheliumEndothelialtohematopoietictransitionIntroductionNormalembryogenesisispredicateduponthedevelopmentofafunctioningcardiovascularsystemearlyingestation—disruptionsinthisleadtovascular,cardiac,hematologicdisease,andinextremecasesembryoniclethality.
Astheprimitivevasculatureexpandsthroughoutearlydevelop-ment,itremodelsandspecializestofulllthecriticalmetabolicdemandsofthetissuesitsupplies[1].
Aspartofthisremodeling,endothelialcellsliningthecardiovascularsystemsubspecializetoarterial,venous,lymphatic,andhemogenicfatesviaacomplexnetworkofintersectingmolecularpathways.
Themechanismsunderlyingnormalvasculardevelopmentremainasyetincompletelydened,andagreaterunderstandingoftheseprocesseswillenhanceourunderstandingofcertainpathologicstatesrelatedtothevascularsystemandhowtheymightbetreated.
Hemogenicendotheliumisasmall,specializedsubsetofvascularendotheliumthatacquireshematopoieticpotentialandcangiverisetomultilineagehematopoieticstemandprogenitorcells(HSPC)withinanarrowdevelopmentalwindowwithindistincttissues[1].
Workinthelastdecadehasbeguntoclarifythecomplexsignalsthatleadtoacquisitionofthisblood-formingpotential.
Ourunder-standingoftheeventsthatleadtohemogenicspecicationofendothelialcellsfromvascularendothelium,aswellastheeventsthatleadtogenerationofHSPCfromhemogenicendotheliumisstillinitsinfancy.
Thisreviewwilloutlinecurrentknowledgeaboutthehistoricalanddevelopmentaloriginsofhemogenicendothelium,themoleculareventsthatgovernhemogenicspecicationofvascularendothelialcells,thegenerationofmultilineageHSPCfromhemogenicendothelium,andthepotentialforclini-cal/translationalapplicationsofknowledgegainedfromfurtherstudyoftheseprocesses.
&KarenK.
Hirschikaren.
hirschi@yale.
edu1DepartmentsofMedicine,GeneticsandBiomedicalEngineering,YaleCardiovascularResearchCenter,VascularBiologyandTherapeuticsProgram,andYaleStemCellCenter,YaleUniversitySchoolofMedicine,300GeorgeSt.
,NewHaven,CT06511,USA2DepartmentofPediatrics,SectionofNeonatal-PerinatalMedicine,YaleUniversitySchoolofMedicine,333CedarSt.
,NewHaven,CT06511,USACell.
Mol.
LifeSci.
(2016)73:1547–1567DOI10.
1007/s00018-016-2134-0CellularandMolecularLifeSciences123DevelopmentalandhistoricaloriginsofhemogenicendotheliumPrimitivehematopoiesisHematopoiesisoccursintwowavesduringembryonicdevelopment—theprimitive(precirculation)waveanddenitivewave.
Therstbloodandendothelialcellsarederivedfromtheextraembryonicmesodermbeginningaroundembryonicday(E)7.
0[2];whethertheyarederivedfromacommonbipotentprogenitor(hemangioblast),orareindependentlyfated,remainsasubjectofdebate,asdis-cussedlaterinthisreview.
Primitivehematopoiesisismarkedbythebriefemergenceofmostlynucleatedery-throidprogenitors,aswellasmacrophageprogenitors[3],thataregeneratedinparallelwithendothelialcells.
Theseprimitiveerythroidcellsarefunctionallyandmorphologi-callydistinctfromlatererythroidprogenitorsinthattheyarelarge,nucleated,expressembryonicglobins,andareexclusivelydetectedintheextra-embyonicyolksacduringanarrow(*48h)windowbeforetheydisappear[3].
Otherprecirculationextra-embryonicsourcesofpro-denitiveerythroidandmyeloidprogenitorcellslateremergebetweenE7.
5andE8.
0andincludetheallantois[4,5]andpara-aorticsplanchnopleura(pSP)[6,7].
Theseearlycellsareofgreatimportancetothedevelopingembryoastheysustainembryonicsurvivaluntilthedenitivehematopoieticsystemisestablished,andtheyformstructuresreferredtoas''bloodislands''aroundE7.
5[8],inwhichthecellsintheinteriorgiverisetonucleatederythroidandmyeloidcellsandthoseontheperipherybecomelumenizedendothelialcells[1].
Bloodislandsthencoalescetoformvascularchannelsandaplexusnetworkthroughouttheyolksac,whichconductsoscillatoryplasmaowdrivenbythedevelopinghearttube[9].
ByE8.
25,asecondwaveoferythromyeloidprogenitor(EMP)cellsaregeneratedwhichalsogiverisetotissuemacrophagesthatpersistintoadulthood[10–12].
Followingtheonsetofplasmaow,theimmatureprogenitorcellsjointheplasmacirculation[3,13].
DenitivehematopoiesisDenitivehematopoiesisisthesecondphaseofbloodproductionbeginningwithproductionoferythroidandmyeloidprogenitorsthatisthenfollowedbygenerationoflong-termrepopulatinghematopoieticstemcells(HSC)capableofcolonizinghematopoieticorgansandgivingrisetoalldifferentiatedbloodlineages[14,15].
DenitivehematopoiesiscoincideswiththeonsetofpulsatilebloodowduetocoordinatedcardiaccontractionbeginningaroundE8.
25,astherstwaveofextra-embryonicprimitiveerythroidprogenitorspreviouslydescribeddecreaseinnumberandthepreviouslydescribedsecondyolksacwaveoferythroidandmyeloidcellsaregeneratedandentertheplasmacirculation[3,14,16].
GenerationofhematopoieticprogenitorsthenbeginsintheplacentabetweenE9.
0and9.
5[17–20].
Inthemurineembryoproper,denitivehematopoiesisoccurslater,withintheaorta-gonad-mesonephros(AGM)regionpeakingatE10.
5[21–23]andismarkedbythegenerationofbothprogenitorcells,aswellasHSC.
TheseAGMandyolk-sac-derivedhematopoieticstemandprogenitorcellsarethoughttomigrateto,andcolonizeothersitesofdenitivehemato-poiesis,mostnotablythefetalliverbyE11.
0–E12.
0[24–26]andthebonemarrowatE16.
5[27],andcontributetotheadultHSCpool.
Whileitisclearthatprogenitorcellsemergefromtheyolksacandplacentaltissuesduringdenitivehematopoiesis,itremainsdebatedwhetherornottheplacentaandyolksacactuallygenerateHSCde-novo—althoughithasbeenshownthatthenumberofHSCcol-onizingthefetalliverisgreaterthanwhatcanbeaccountedforbytheAGMalone[26].
ThissuggeststhatadditionalsourcesofHSC,suchastheplacentaandyolksac,mayexistandcontributetotheHSCpoolusedbytheliverforself-expansion[14,18,26,28].
Italsoremainsunclearwhetherthereexistsde-novogenerationofHSCwithinfetalliver,fetalbonemarroworpostnataltissues,orifHSCaremerelyreplenishedviaself-renewalofyolksac-andAGM-derivedcells[29].
WhileithasbeendemonstratedthattheyolksacandAGMaresitesofdenitivehematopoiesis,thecellularoriginsoftheHSPCwithinthesetissuesisstillunderinvestigation,andmaybedifferentindistinctspecies.
Nonetheless,itisgenerallythoughtthatmurinedenitiveHSPCarederivedfromasmallsubsetofvascularendotheliumthatacquireshemogenicpotential,so-calledhemogenicendothelium.
Interestingly,hematopoieticcellsproducedbyhemogenicendothelialcellshavedifferentfunctionalcharacteristicsdependingontheirsiteoforigin[29].
Thatis,yolksachemogenicendothelialcellsgiverisetomultilineagehematopoieticprogenitorsthatcannotrepopulateneonataloradultbonemarrowlong-terminvivo[7],andarethereforereferredtoasmultilineageprogenitors.
Incontrast,AGM-derivedhematopoieticcellsarecapableofrescuingirradiatedneonatalandadultrecipients[30];thus,thesecellsareconsidereddenitiveHSC.
Thisraisesthepossibilitythatnotallhemogenicendothelialcellsarecreatedequally,orthattheiranatomicnicheinuencestheirfunctionandprogeny,inamannerdependentonthedevelopmentaltimingoftheiremergenceand/orthecellularandextracellularcompositionoftheirmicroenvironment[29].
1548E.
Gritz,K.
K.
Hirschi123ConceptevolutionofhemogenicendotheliumTobestunderstandthesignicanceofhemogenicendothelialcellsinembryonichematopoiesis,itisusefultoconsidertheevolutionoftheconceptoftheirexistenceandfunctionoverthecourseofthelastcentury.
Insightsgainedduringtheirdiscovery,identicationandcharacterizationhavehelpedintertwinetheeldsofhematopoieticstemcellbiologyandvascularbiology.
Theconceptofhemogenicendotheliumdatesbackinthescienticliteraturetothelate19thcentury.
Beginningin1899,severalanatomistsobservedanassociationofbloodformingcellswithdevelopingvascularstructuresacrossawidevarietyofmammalianspeciesincludingthebat(1899),chick(1907),rabbit(1909),human(1912),pig(1916),andmongoose(1917)[15].
In1917,anatomistFlorenceSabindirectlyobservedinchickembryostudiesthat''redblood-corpus-clescanbeseentogrowfromtheendothelialliningofblood-vessels''[31].
Thesebloodcellswerethennotedtobudofffromvascularendothelialcellsintoplasmaowingthroughprimitivevascularplexusofthedevelopingchick.
Inthe1930s,Murrayre-brandedSabin's''angioblast''asa''hemangioblast''orasubsetofmesenchymally-derivedprimitiveendotheliumthattransientlyacquiresblood-formingpotential[32].
Overthenextseveraldec-ades,however,thisconceptofthehemangioblastandthequestionssurroundinganassociationbetweenvascularendotheliumandbloodformationwentlargelyunad-dressed.
Inthe1960s,MooreandOwensuggestedthatallembryonichematopoiesisoccurredintheextra-embryonicyolksac,andthatintra-embryonicbloodinlaterstagesofdevelopmentwasaresultofmigrationofyolksacderivedhematopoieticprogenitors[15].
Thisconceptofexclu-sivelyextra-embryonichematopoiesiswasrefutedbyDieterlen-Lie`vreandcoworkersin1975whentheydemonstratedintraembryonicaortichemogenesisinquail-chickembryograftingexperimentsandrenewedinterestintheoriginofhematopoieticstemandprogenitorcellsinthedevelopingembryo[15,33].
ThehemangioblastOverthenexttwodecades,severalgroupscorroboratedtheworkofDieterlen-Lie`vreandcoworkersbydemonstratingthepresenceofhematopoieticstemandprogenitorcellsintheventralaspectofthedevelopingdorsalaortapriortohepaticcolonization,anddemonstratedthatthesecellclustersarenecessaryfortheestablishmentofdenitivehematopoiesis[6,15,23,24,34,35].
Thisconrmedassociationofhematopoieticcellswithvascularendothe-liumbroughtintoquestionthedevelopmentalrelationshipbetweenhematopoieticcellsandvascularendothelium—weretheytwoindependentlineagesderivedfromdiscreteprogenitorcelltypesordidtheyhaveacommonmeso-dermally-derivedbipotentcellprogenitor,theso-calledhemangioblast,thattransientlygivesrisetovascularendothelialandbloodcells[29].
Indeed,endothelialandhematopoieticlineageshavebeenshowntosharemanycommonsurfacemarkersandtranscriptionfactorsthatareimplicatedthroughouttheirdifferentiation.
TheseincludemesodermalmarkersBrachyury(Bry),bonemorphogenicprotein4(BMP4),andvascularendothelialgrowthfactor2(VEGFR2orFlk-1)[36];sharedmarkersCD34,VE-cad-herin,andCD31;andcommontranscriptionfactorsRUNX1andGATAbindingprotein2(GATA2)[37],lendingcredibilitytothehemangioblastconcept.
However,todate,thereisalackofconvincingevidencetosuggestthatsuchanexclusivelybipotentmesodermalprogenitorexists[29].
Thebipotenthemangioblasthasbeendescribedasco-expressingmesodermalmarkerBryandFlk-1,butBryFlk-1cellshave,infact,beendemonstratedtogiverisetocardiac,skeletal,andvascularsmoothmuscle,aswellasendothelialcellsandbloodcells[38,39].
Padron-Bartheandcoworkersdemonstratedbyinvivoclonalanalysisofmurineembryosthattheearliestbloodandendotheliallineagesdonotarisefromaprimitivestreak-derivedbipotentialprecursor,butthattheselineagesarederivedfromindependentepiblastpopulations[40].
Theseresultsareconsistentwithpreviousmesodermalgraftingstudiesthatalsosuggestendothelialandbloodcelllineagesareindependentlyfatedduringprimitivehematopoiesis[41].
Itremainspossiblethattheremayexistabipotentmesodermalprogenitorgivingrisetoexclusivelyendothelialandbloodcells,butthishasnotbeendeni-tivelydemonstratedtodate[29].
AmiddlegroundtothehemangioblastdebatewasproposedbyLancrinandcoworkers,whereinthemesodermally-derivedheman-gioblastgivesrisetoanendothelialintermediate(hemogenicendothelium)thatthengivesrisetoHSPC[42].
HemogenicendotheliumDespitetheuncertaintyoftheexistenceofhemangioblastsduringprimitivehematopoiesis,severallandmarkstudiesoverthelasttwodecadeshaveprovidedstrongevidencethatduringdenitivehematopoiesisinvertebrates,multi-potentHSPCarisedirectlyfromtransientlyspecializedvascularendothelium(hemogenicendothelium)withinthedevelopingAGMbetweenE10.
0andE11.
5,priortoappearanceinotherintra-embryonichematopoieticorgans[6,23,24,34,35].
Theaforementionedearlyobservationsofbloodcellsbuddingfromvascularendotheliumhavebeencorrobo-ratedbydye-labeledfatetracingapproachesthatSpecicationandfunctionofhemogenicendotheliumduringembryogenesis1549123demonstrateacrossmultipleanimalmodelsthatdye-taggedvascularendotheliuminthedorsalaortagivesrisetodye-taggedcirculatingbloodcells[43,44].
SubsequentinvivofatetracingstudiesinmurineembryoshasfurtherdemonstratedemergenceofHSCfromendotheliumfromVE-cadcellsinthedorsalaortathatgoontocolonizeintra-embryonichematopoieticsitesincludingthebonemarrow,spleen,andthymus[45].
Hematopoieticstemand/orprogenitorcellemergencehasalsobeenshowntooccurwithinthevascularplexiwithintheextra-embryonicyolksac[13,46,47],placenta[18],aswellasthevitellineartery,umbilicalarteries[21,48,49],endocardium[50],andheadarteries[51].
Multiplereal-timeimagingstudiesdemonstratinghematopoieticcellemergencefromvascularendotheliumhavebeenperformedinmiceandzebrash[52–54].
SinglecelllineagetracingstudieshavedemonstratedmultipotentHSPCwithcellsurfacemarkersCD31(endothelialcellmarker),CD41(bloodcellmarker),c-Kit(stemcellgrowthfactorrecep-tor),andSCA-1(stemcellantigen,alsoknownasLy6A)arisingdirectlyfromtheventralwallofthemurinedorsalaortaethatcanbetracedtothefetalliver[53],andulti-matelytotheadulthematopoieticsysteminmice[45]andinzebrash[52,54].
Severalstudieshaveaddressedthequestionofwhethervascular-derivedhematopoiesistrulyoriginatesfromendothelialcellsandisnotmesenchymalinorigin.
In2002,deBruijnandcolleaguesdemonstratedusingaLy6A(SCA-1)-GFPtransgenicmousemodelthatallhematopoieticstemcellswithinthedevelopingaortaareLy6A-GFPandthatthesecellslocalizetotheendotheliallayerofthedorsalaorta,butnottotheunderlyingmesenchyme[55].
TofurthersupporttheassertionthatHSPCaregeneratedfromanendothelialintermediateandnottheunderlyingmesenchyme,ithasbeendemonstratedthatkeyhematopoieticregulatorssuchasthetranscriptionfactorRUNX1areexpressedathighlevelsbyendothelialcellsinhemogenicvascularsitesinvertebrates[56].
NorthandcolleaguesfurtherdemonstratedthatwhileRUNX1-ex-pressingHSCarefoundinbothendothelialandmesenchymalcellfractionsinthemouseembryo,thepresenceoftwofunctionalRunx1allelessegregatesHSCtotheendothelialfractiononly[57].
Morerecently,ithasbeenshownthatRunx1deletioninVE-cadherinexpressingendothelialcellsresultsinlossofintra-aortichematopoi-eticclusterformation,againcorroboratingthelinkbetweencellsofendothelialorigingivingrisetohematopoieticclustersviatheactionofknownhematopoieticmediatorssuchasRUNX1[58].
Additionally,murineAGM-associ-atedhemogenicendothelialcellsgiverisetoeitherhematopoieticorendotheliallineagesbutneverboth[59]andhumanpluripotentstemcell-derivedarterialendothe-lialcellsandhemogenicendothelialcellscanbedistinguishedonthebasisofCD184andCD73expression[60].
Thesestudiescollectivelydemonstrate,onafunctionalaswellasmorphologicallevel,astrongbodyofevidencefortheexistenceofhemogenicendothelialcellsofexclu-sivelyvascularoriginthatgiverisetomultilineageHSPCduringdenitivehematopoiesis.
However,muchlessisknownaboutthemechanismsunderlyinghemogenicspecicationandtheirsubsequentgenerationofHSPC.
CharacterizationofhemogenicendotheliumInordertocharacterizethemoleculareventsunderlyinghemogenicendothelialcellspecicationandtheirsubse-quentgenerationofHSPC,itisnecessarytodelineatethephenotypeofhemogenicvs.
non-bloodformingendothe-lium,sothattheycanbeeffectivelyisolatedandstudied.
Isolationofthesecellsprovestobeadifcultundertakingashemogenicendotheliumrepresentsasmall(*1–3%ofmurineyolksacandAGMendothelialcells)andtransientpopulationwithinhematopoietictissues[13,61].
Todate,nodenitivesinglemarkertodistinguishhemogenicfromnonhemogenicendothelialcellshasbeenidentied.
Buildinguponthebodyofevidencesupportingtheveryexistenceofhemogenicendothelium,severalgroupshaveusedowcytometrytechniquestoelucidatethephenotypicidentityofhemogenicendothelialcellswithintheyolksacandAGMtoaidintheirisolationandfurtherstudy.
In1997,KabrunandcolleaguesdescribedgenerationofHSPCfromFlk1endothelium[62].
Shortlythereafter,NishikawaandcolleaguesisolatedVE-cadCD45-Ter119-cellsfromtheyolksacandcaudalhalfofembryoproperofE9.
5mouseembryosanddemonstratedthatthiscellfractionwascapableofgivingrisetolymphohematopoieticcellsinculture.
ThisstudyconrmedthattheVE-cadcellfractionco-expressedvascularmarkersCD34,CD31,andFlk-1,conrmingthattheisolatedcellswereindeedendothelialinoriginandconrmingboththeexistenceandfunctionalcapabilityofhemogenicendotheliumtogiverisetobloodprogenitors[63].
TheneedforVE-cadherinexpressionwasfurthercorroboratedbyasubsequentstudybyFraserandcol-leaguesthatdemonstratedlongtermlyphohematopoieticreconstitutionpotentialofVE-cad/CD45-cellsinjectedintoirradiatedneonatalmouserecipients[30].
Hemogenicendothelialcellscanalsobedistinguishedfromnon-hemogenicendothelialcellsbasedondifferentialactivityofaregulatoryelementofaKDRpromoterenhancersuch1550E.
Gritz,K.
K.
Hirschi123thatonlynonhemogenicendothelialcellsactivatetheenhancer[64].
Otherstudieshavesinceshownthatcellsco-expressingCD31,CD34,andFlk-1frombothmurineandhumanyolksacandAGMhavedemonstratedlympho-andlymphomyelopoieticpotentialundercultureconditions[1,63,65].
Inaddition,cellsco-expressingFlk-1andVE-cadherinexhibitenhancedcolonyformingabilitywhencomparedtoFlk-1VE-cad-cells[30];however,VE-cadherinexpressionwasnotfoundtobenecessaryfortheblood-formingabilityofyolksachemogenicendothelialcellsinmice[13]orfortransitionofhemogenicendothelialcellstoHSCinzebrashandmice[66].
Ithasbeenshownaswellthathemogenicendothelialcellsmayactuallybedividedintofunctionallydistinctpopulationsthateithergenerateerythroidandmyeloidprogenitorcellsorexclu-sivelygenerateHSC[67].
Alpha4-integrin(a4-integrin)hasbeenidentiedasamarkerthatdistinguisheshemogenicVE-cadcellsfromnonhemogenicVE-cadcells[68].
Livecelltime-lapsedimagingofembryonicstemcell-derivedFlk1VE-cad-mesodermalcellsco-culturedwithOP9stromalcellsdemonstratedtransformationofVE-cadDI-acylLDLcellswithClaudin5mediated-tightjunctionsintosheetsofcellswithendothelialmorphologythatgaverisetonon-adherent,free-oatingroundCD45CD41he-matopoieticprogenitorcells[69].
Lossofendothelialmarkersandacquisitionofhematopoieticmarkerswasshowntoproceedinapatternedfashioninthismodel.
Morerecently,acriticalroleforStemcellleukemia(SCL)factorinmaintenanceofhemogeniccompetenceandpreventionofcardiomyocyteprogrammingofprimitivevascularendothelialcellshasbeenidentied[70].
Inotherrecentstudies,singlehemogenicandnon-hemogenicendothelialcellscouldbeisolatedfromRunx1enhancer-reportermice,whichwasbenecialfortranscriptionalprolingofthesecelltypes[59,69].
Furtherphenotypiccharacterizationofhemogenicendothelialcellsbyourgrouphasrevealedthatblood-formingactivityofbothyolksacandAGMtissuesiscon-tainedwithintheHoechstdyeefuxing,or''sidepopulation''(SP)fractionofcells[13,61,71],whichisnotsurprisinggiventhattheSPphenotypeisalsoacharacter-isticofHSCwithinadultbonemarrow[72].
SPcellswithintheyolksacandAGMwerefurtherfractionatedbasedonendothelialandhematopoieticcellsurfacemarkers,andthephenotypeofhemogenicendotheliumthereinhasbeendened,onaclonallevel,asFlk-1c-KitCD45-SPcells[13,61,71].
Inaddition,theFlk-1c-KitCD45-SPhemogenicendothelialcellsweredemonstratedtogiverisetomultilineageHSPCthatareFlk1-c-KitCD45SPcells[13],thatcanbedistinguishedfrommaturebloodcelltypeswithaFlk1-CD31±CD45non-SPphenotype.
SpecicationofhemogenicendotheliumDespitetheseknowledgegainsaboutthecharacteristicsofhemogenicendotheliumoverthelastdecade,littleisknownaboutthehierarchyofmoleculareventsthatgoverntheirspecicationfromnon-bloodformingendothelium,aswellastheeventsthatleadtotheirgenerationofHSPC.
However,thisbodyofknowledgeisgrowingandrecentadvancesinourunderstandingarediscussedbelow(andaresummarizedinFig.
1).
RetinoicacidsignalingRetinoicacid(RA)isknowntoregulatemurineendothelialcelldevelopmentandspecication[73,74].
Biologicallyactiveretinoicacid,knownasall-transretinoicacid(ATRA),isderivedfromretinol(VitaminA)viaoxidationbyretinaldehydedehydrogenases(RALDH1-3).
ATRAisthenreleased,takenupbytargetcells,andboundtomembersoftheretinoicacidreceptor(RAR)family(a,b,orc).
HeterodimerizationofRARfamilymemberswithrexinoidreceptors(RXR)a,b,andcformactivetran-scriptionfactorcomplexesthatbindtoretinoicacidresponseelementswithintargetgenestoinitiatetran-scription(reviewedinMarcelo[1]andChanda[75]).
Duringvasculogenesisinthemurineyolksac,activeRAisgeneratedbyRALDH2expressedinthevisceralendo-derm,whichthensignalswithinendothelialcellsintheadjacentmesodermthatselectivelyexpressRARa-1anda-2[73].
Raldh2-/-mutantembryosexhibitabnormalvasculardevelopment,duetohyperproliferativeendothe-lialcells[74],aswellasanemia,anddiearoundE10.
0[76].
OtherworkhasdemonstratedthatmicedecientforRAreceptorshaveimpairedfetalhepaticerythropoiesis[77]aswellasimpairedgenerationofmarrow-derivedHSC[78].
Becauseofitsessentialroleinendothelialcelldevelopment,aswellasembryonicandpostnatalhemato-poiesis,RAsignalingisofgreatinterestinthestudyofspecicationofendothelialcellstoahemogenicstate.
AlthoughRaldh1andRaldh3nullembryoshavenotbeenshowntoexhibithematologicdefects[79],embryoslackingRaldh2wereshowntoexhibitdefectsindenitive,butnotprimitivehematopoiesis[13,75].
Inaddition,wefoundthattheunderlyinghematopoieticdefectinRald-h2-/-mutantsislackofhemogenicendothelialcelldevelopment,whichcouldberescuedviaprovisionofbioactiveRAtoRaldh2-/-embryosinuteroorinculture[13,61].
RAsignalingiscriticalforthedevelopmentofhemogenicendothelialcellswithintheyolksac,aswellasAGM.
Inbothtissues,*90%ofendothelialcellswithactiveRAsignalingexhibitahemogenicphenotype;inaddition,*90%ofhemogenicendothelialcellsareSpecicationandfunctionofhemogenicendotheliumduringembryogenesis1551123undergoingactiveRAsignalingduringdenitivehemato-poiesisinthesetissues[61,75].
ThesendingsplaceRAatorverynearthetopofthesignalinghierarchygoverninghemogenicendothelialcellspecicationandfunctionduringdenitivehematopoiesis[13].
NotchTheNotchsignalingpathwayisevolutionarilyconservedandinvolvedinmanyaspectsofembryonicdevelopment,withnotablerolesinvascularandcardiacdevelopment.
MammalsexpressfourmembersoftheNotchfamilyofreceptors(Notch1-4)andveligands:Delta-like1,3,4(DLL)andJagged1and2(Jag).
TheinteractionsbetweenthereceptorsandligandsallowsignaltransductionbetweenneighboringcellsviaamultistepproteolyticcleavageoftheNotchreceptorandsubsequentreleaseoftheNotchintracellulardomain(NICD)(reviewedinHigh2008[80]).
Ac-secretasecomplexpowersthenalstepofreleaseofNICDintothecytoplasm,whereinNICDcanthenenterthenucleustoformactivetranscriptionalcomplexeswithRBPJ,andco-activatorMastermind-like(MAML)[80].
Thepathwayitselfappearsstraightforward,intheory,butisregulatedbyseveralpositiveandnegativefeedbackloopswhoseactionsaredeterminedbybothcellularcon-text,developmentaltiming,andlocalenvironment[80].
Notchsignalingiswellknowntobeinvolvedincellfatedecisionsandcelldifferentiation,particularlyinendothe-lialandbloodcells,andagrowingbodyofevidencealsopointstowarditsinvolvementinhemogenicspecication.
EmbryoslackingNotch1orNotch1andNotch4receptors,theonlyreceptorsexpressedbyendothelialcells[81,82],exhibitabnormalvasculardevelopmentsimilartoRaldh2-/-mutants[74,83,84],andtheexpressionofNotch1,anditsdownstreameffectorsHES1andHEY1,whichareknowntoregulatehematopoiesis[85]areupregulatedinendothelialcellsbyRA[61].
Inaddition,chemicalinhi-bitionofNotchsignalinginE8.
0wild-typemouseembryosviauseofc-secretaseinhibitorDAPTsuppressesyolksachemogenicendothelialcellspecication[61].
Notch1,specically,isexpressedintheventralwallofthedorsalaortawherehemogenicendotheliumforms(reviewedinJang2015[86]),andtheAGMofNotch1-/-mutantsexhibitdecreasedhematopoieticactivity(reviewedinZape2011[37,87]).
Conversely,Notch1inductioninmurineembryonicstemcellsleadstoanexpansionofVE-cadhemogenicendothelialcellswithenhancedhematopoieticpotential[86].
Thesedatacollectivelysug-gestthatNotch1receptorsignalingmayregulatehemogenicendothelialcellspecicationandfunction,andalsoplaceNotchdownstreamofRAinthesignalinghierarchygoverninghemogenicspecication.
c-Kitc-Kit(CD117)isagrowthfactorreceptorwithtyrosinekinaseactivityknowntobindstemcellfactor(SCF),whichleadstodimerizationofreceptorsandsubsequentactiva-tionorregulationofkinaseactivitythatmodulatesintracellularsignaltransductionpathwaysinvolvedincel-lularproliferation,maintenanceandmigration[1].
SuchpathwaysincludeSrckinase,PI3K,JAK-STAT,MAPK,andPLCc,aswellasregulatoryPTPases,phosphatidyli-nositolphosphatases,andproteinkinaseC[88].
SCFisknowntosupportmultilineagehematopoieticdevelopment[88]andc-KitmutationsareassociatedwithembryonicFig.
1Summaryofregulationofprimitivehematopoieticspecica-tionandgenerationofhematopoieticstemcellsduringembryonicdevelopment.
aSchematicrepresentationofendotheliallayerofdevelopingvascularwall(pink),listedareintra-andextraembryonicsourcesofvascularendothelialcellswithhemogenicpotential(bluebox).
bSchematicrepresentationofprogressionofeventsandmolecularsignalsgoverninghemogenicspecication(orangeboxes)andcendothelialtohematopoietictransition(greenboxes),endingwithgenerationofintra-vascularhematopoieticclustersandmulti-lineagehematopoieticstemandprogenitorcells(HSPC)1552E.
Gritz,K.
K.
Hirschi123lethalityatmidgestation,anemiaanddisruptedHSCdevelopment[88,89].
Aspreviouslynoted,theexpressionofc-Kitisadistinguishingfeatureofhemogenicendothelialcells,relativetonon-bloodformingendothelialcells.
Inaddition,Notch1expressioninendothelialcellsisupregulateddownstreamofc-Kit;thus,thispathwayappearstoplayacritical,yetstillundenedrole,inthesignalinghierarchythatgovernshemogenicendothelialcellspecication[61].
Cellcyclecontrol/p27Retinoicacid-decientandNotch-inhibitedembryossimi-larlyexhibitendothelialcellhyper-proliferation,andimpairedhemogenicendothelialcelldevelopment.
Wefoundthatdownregulationofcellcycleinhibitorp27,whichinducesG1arrest[73,74],tobetheunderlyingdefectinRA-decientembryos.
Furthermore,p27isupregulateddownstreamofNotchandc-Kit,andlentivirusmediatedre-expressionofp27inbothRA-andNotch-inhibitedmurineyolksacendothelialcellsrescuesendothelialcellcyclecontrol,hemogenicspecication,andthegenerationofHSPC[61].
GiventhatcellcyclestateanddurationofG1phasehavebeenshowntobedeter-minantsofstemcellfate[90–92],itispossiblethatendothelialcellsmustbearrestedinG1phaseinordertoundergohemogenicspecication.
Infact,severaltran-scriptionalregulatorsofdenitivehematopoiesisaredifferentiallyexpressedinG1phase(reviewedextensivelyin[93]).
Itisalsopossiblethatp27functionsasatran-scriptionalregulatortodirectlyalterendothelialcellphenotype,giventhatitcanrepressmultipotencygenesinstemcellpopulations[94].
Thus,theRA/c-Kit/Notchsig-nalingaxiswhichmediatesp27expressionmayregulatehemogenicspecicationinatleasttwoways:(1)viarepressionofgenesthatmaintainamultipotentstateinprimordialendothelialcellsorinductionofhemogenicgenes;and/or(2)elongationofG1phaseofcellcycletoenableexpressionandaccumulationoftranscriptionalregulatorsthatalterendothelialcellphenotype[61].
Generationofhematopoieticstem/progenitorcellsfromhemogenicendotheliumTheprocessbywhichHSCaregeneratedfromhemogenicendotheliumisreferredtoastheendothelial-to-he-matopoietictransition(EHT;depictedinFig.
1).
InordertobeabletoderiveHSCfrompluripotentstemcellsforclinicalandresearchapplications,anunderstandingoftheeventsthatleadtoHSCformationfromendothelialcellsinvivoisrequired.
TheeventsleadingtoHSCgenerationfromanendothelialintermediateatmultipleanatomicsites,includingtheyolksac,placenta,andAGM,involvesanincompletelycharacterizedcomplexinterplaybetweenmicroenvironment,developmentaltiming,andtranscrip-tionalregulationoffate.
TheAGMasasourceofHSCPriortotheonsetofcirculation,ithasbeenshownthatlymphocyteandmyeloidprogenitorsemergeasearlyasE7.
5withinthepara-aorticsplanchnopleura(pSp)[6]andthatexplantsofpSpdemonstratelong-termhematopoieticreconstitutionabilitywhereasyolksacexplantsdemon-strateonlyshorttermmyeloidreconstitutionability[7].
SimilarresultswerefoundinXenopusstudiesthatdemonstratedHSCemergencefromdorsalaortictissuethatderivedfromablastomereindependentoftheyolksac[95].
Theimplicationofthisisthatlong-termrepopulatingstemcells,orHSC,areintra-embryonicinorigin.
Workbyseveralgroupsledtothediscoveryofintra-aortichematopoieticclusters(IAHC)arisingfromtheendothelialliningofventralwallofthedorsalaortapriortotheirreleaseintocirculationandeventuallong-termcolonizationoffetalliverandmarrow,thuscorroboratingtheintra-embryonicoriginofHSC[43,53,55,57,96–101].
IAHChavebeenshowntoappeararoundE9.
5intheAGM,andpeakemergenceofHSCfromthemoccursbetweenE10.
5andE11.
5[21–23,96].
ThecellularcompositionandfunctionofIAHCbeforeandduringHSCdetectionhasbeeninvestigated,althoughtodateauniedcellsurfacemarkerproleofHSCgen-eratedwithintheembryohasnotbeenidentied,presentinganimportantroadblocktofurtheringourunderstandingofEHT.
IAHCatE10.
0werefoundtobephenotypicallyheterogeneousandcontainveryfewpro-genitors(averageof22),butnotablycontainpre-HSC(averageof12)capableoflong-termmultilineagehematopoieticreconstitutionpost-transplantation[102].
Acollectionofhematopoietic,stem,andendothelialmarkerssuchasc-Kit,CD31,CD34,SCA-1,MAC1,VE-cadherin,Tie2,Flk-1andCD45havebeenshowntobeexpressedbyHSCwithintheembryo,butthesearealsofoundonothercelltypes[47,57,99,103–106].
Intra-aortichematopoieticclustershavealsobeenshowntobecomposedofpre-HSCthatdifferentiallyexpressendothelialandhematopoieticsurfacemarkersincludingVE-cadherin,c-Kit,Ly6a,CD41andCD45,suggestingthatapost-hemogenicendothelialcellintermediatemayexistalongthetransitionfromendothelialcelltoHSPCwithintheseintra-aorticclusters[53,102,106–108].
TheremainingcelltypeswithinIAHCareyettobeidentied,butarehypothesizedtobecom-prisedoftheseimmaturepre-HSCthatwillmaturetowardaHSCfateviaEHT.
OncethehematopoieticclusterphaseofEHTiscomplete,datafromchickstudiesshowthattheSpecicationandfunctionofhemogenicendotheliumduringembryogenesis1553123splanchnopleuralendotheliumintheaorticoorisreplacedbysomiticendothelialcells,inpartofferinganexplanationfortheverybrieftimeframeinwhichvascularhemato-poiesisoccursduringdevelopment[109],althoughthishasnotbeenshowninmousemodels[110].
ThedorsoventralpolarityofIAHCemergenceappearstobecriticaltogoverningtheirultimatehematopoieticfate.
Thishasbeenshowninthechick[111]andmouse[112]tobeguidedbylocalpresenceofmesenchymallyderivedpro-hematopoieticventralizing(VEGF,bFGF,TGF-b,BMP4)oranti-hematopoieticdorsalizingfactors(EGFandTGF-a),thedownstreameffectsofeachimpacttheexpressionofcriticalhematopoietictranscriptionfactorsthatareinvolvedinEHT[14,111,112].
Importantly,sub-aorticmesenchymehasnotbeenshowntobeadirectsourceofhematopoieticcells[45],thuscorroboratingtheimportanceoftheselocallyderivedfactorsindrivinghematopoieticspecicationofvascularendothelialcells.
HSChavebeenfoundtohaveparticularenrichmentinthemiddlethirdoftheE11.
0dorsalaorta,immediatelyadjacenttooriginofthevitellineartery,suggestingthatadisturbanceinowatthejunctionofthesetwovesselsmayinteractwithmicroenvironmentalsignalstodriveHSCemergence[113].
ThepresenceofhematopoieticmediatorssuchasRUNX1intheventralaorticmesenchyme[56,57],andupregulationofgenesinvolvedincelldeath,adhesion,migration,aswellasvasculardevelopmentandhemato-poiesis[113],coupledwithrestrictionofdenitiveHSClocalizationtotheventralaorta[99]andevidencedemonstratingthatpara/peri-aorticsupportingcellsalsopromotehematopoiesis[111,112,114–116],suggeststhatwithintheAGMtherelikelyexistsaspecializedhematopoieticmicroenvironmentorniche[117]poweredbymastertranscriptionalregulators,theirdownstreameffectors,andextrinsicmodiersofthesesignalingcas-cadessuchasuidshearstress[118,119]thatpromoteinitialHSCdevelopmentfromhemogenicendothelium—thesearereviewedbelow.
RUNX1RUNX1(AML1)isasequence-specicDNAbindingproteinthatispartofafamilyoftranscriptionfactorscalledcorebindingfactors(CBF),andanessentialmasterregulatorofEHTduringaortichematopoiesis[58,120–122].
ConsistentwitharoleinEHT,RUNX1deciencyinembryonicstemcellspreventstheformationofbloodcellsfromhemogenicendothelium[42].
Itisexpressedinallsitesofdenitivehematopoiesisintheembryoandpre-cedesemergenceofHSPC.
Interestingly,thisisconservedacrossallvertebratespeciesstudied[123].
RUNX1isexpressedbymesenchymalcellsinthedorsalaortaandAGM,placenta,andinhematopoieticcellclustersinventral-dorsalaortaandvitellineandumbilicalarteries[56,57,123],butitsrequirement,whilecriticalfornormaldenitivehematopoieticdevelopment[124–126],aspre-viouslyreviewed[14],istransientinembryonicdevelopment,andisnotrequiredduringprimitivehema-topoiesis[42,121]orafterEHT[58].
RUNX1expressionhasbeenshowntorepresstheendothelialprogram,whileactivatingthehematopoieticprogram,asevidencedbysequentialemergenceofhematopoieticmarkersCD41andlaterCD45[42,106,108],atthetimeoftransitionfromhemogenicendothelialcellstoahematopoieticcellfate[120,123].
DeletionofRunx1doesnotpreventemergenceoftheCD41markeronVE-cadCD45-cells,buthasbeenshowntopreventtransitionofthesecellstoCD41CD45[127].
ThispatternedtransitionfromendothelialcellphenotypetoahematopoieticphenotypeisinpartcontrolledbybindingofmultiproteincomplexescontainingGATA,Ets(PU.
1)[128],andSCLfamilyfac-torstoRunx1enhancersknowntobeinvolvedinHSCemergence[14,129,130]andisalsomarkedbylossofexpressionofgenesassociatedwitharterialidentity,suchasSox17andNotch1[131],furthersupportingtheideaoftemporaltranscriptionalregulationgoverningcellfateasacentraltenetofEHT.
ProspectiveisolationandtranscriptionalanalysisofmurinehemogenicendothelialcellsusingatransgenicRunx1enhancer-GFPreportermodelhasdemonstratedthatbeginningatE9.
5,hemogenicendothelialcellscommittohematopoieticlineageinanorderedfashionmarkedbyanearlygraduallossofendothelialpotentialandincreaseinhematopoieticpotential.
Thisoccurswhilethehemogenicendothelialcellsstillremainpartoftheendothelialwall[59].
ThedifferentstagesofthetransitionfromendothelialtohematopoieticcellhavealsobeenshowntobeguidedbythetranscriptionalactivityofRunx1'stwo[132]promoterregions:theP1(distal)andP2(proximal)Runx1promoterscontrolexpressionofRunx1c(distal)andRunx1b(proxi-mal)isoforms[133,134].
RUNX1bisexpressedatlowlevelsinhemogenicendotheliumuntilE10.
5[135,136],whereasRUNX1cexpressionisinitiatedwithinHSPCandlossofendothelialphenotype[133,134,136].
TheP1promoterelementassociatedwithRUNX1cexpressionismorecomplexthantheP2promoterandcontainsmanybindingsitesforhematopoietictranscriptionfactors[132].
RUNX1btranscriptomeanalysisrevealsthatitactivatesgenesassociatedwithcelladhesion,ECMremodeling,integrinsignaling,andendothelialcellmigrationattheonsetoftransitionfromhemogenicendothelialcellstoHSPC[133].
RUNX1downstreamtargetssuchasGFI1/GFI1Barealsothoughttopromotedown-regulationofendothelialproteins,therebypromotingamorphologicchangefromattenedendothelialcellstoroundcells[137].
LackofGFI1Binembryosresultsinfailureofreleaseof1554E.
Gritz,K.
K.
Hirschi123hematopoieticcellsfromtheextraembryonicyolksacvasculatureintocirculation[137].
GenerationofP1andP2RUNX1-EGFPzebrashreporterlinesdemonstratedery-thromyeloidprogenitoremergencefromtheposteriorbloodislandat18hpfintheP1lineanddenitiveHSCemergenceintheAGMregionat22hpfintheP2line,furtherunderliningtheroleofalternativeRunx1promoterusageincellfatedeterminationviagenerationofspatiallysegregatedyettemporallysuccessiveHSPCemergence[138].
OtherworkfurtherdemonstratedthattheRUNX1cisoformwasindeedonlyexpressedatthetimeofemer-genceofdenitiveHSC(E10.
5-11.
5)inthemouseAGMandhuman(embryoidbodyday12),butretroviralover-expressionofbothRUNX1isoformsinmousemarrowandliverHSPCdemonstratednofunctionaldifferencebetweeneitherisoforminfurthergenerationofHSC,andinducedquiescenceinmouseHSCinvitroandinvivo.
Thissug-gestsadevelopmentallyimportanttimeframefortheRUNX1cisoforminspecicationofHSPCfromhemo-genicendothelialcellsatthetimeofEHT[139].
OtherstudieshaveidentiedaroleforbloodowinducedshearstressasaregulatorofRunx1expressionbytheendothe-lium[118,119].
StudiesutilizingconditionaldeletionofRunx1,drivenbyVav1promoterexpression,apan-hematopoieticgene,demonstratethatitshematopoieticrequirementonlyextendsthroughthetransitionfromendotheliumtoHSPC[58].
DependenceonRUNX1forgenerationofery-thromyeloidprogenitorcellsbeginsatE7.
5[140]andendsaroundE10.
5[141].
FurtherstudyofrequirementforRUNX1inhematopoieticdevelopmentutilizedtimedendothelial-specicdeletionofRUNX1activityshowedthatthetransitiontoRUNX1independentHSCformationoccursaroundE11.
5anddoesnotrequirefetallivercol-onization[141].
Tissue-specicrestorationofRUNX1functioninmurineTie-2-expressingcellsallowedforres-cueofembryonicdenitiveHSCpotential,allowingmutantstosurviveuntilbirthwithoutthepreviouslydescribedhemorrhagicphenotypeobservedinRunx1nullembryos.
TheseobservationssuggestthattheprimaryembryoniclethaldefectinRunx1mutantsisindeedhematovascularinnature[142].
Inadults,deletionofRunx1doesnotcauseareductioninHSPCnumbersinthemarrow;infact,itcausesanexpansionofthesecelltypes[123]andleadstohematologicabnormalities,suchasincreasedmyeloproliferationwithneutrophilia,thrombo-cytopenia,andincreasedextramedullaryhematopoiesis[143].
IntheabsenceofRUNX1duringdevelopment,primitiveerythropoiesisproceedsnormally,hemogenicendotheliumdevelops,butneithergenerationofmyeloidandlymphoidprogenitors,norHSCgenerationoccurs(reviewedin[14]),leadingtoanabsenceofIAHCandfetalliverHSC[54,56,57,144],andultimatelydeathbyE12.
5[144].
Interestingly,studiesofhematopoietictissuesfromRunx1haploinsufcientembryosyieldsvariabledegreesofHSCgenerationdependingonthetissuetypeisolated,suchthatculturedmutantAGMexplantsyieldfewerHSCthanwild-type,andyolksacandplacentaltissuesyieldincreasednumbersofHSC[145].
Ontheotherhand,AGM-derivedHSCfromRunx1haploinsufcientmicethataredirectlytransplantedintoirradiatedrecipientswithoutanintermediateculturestepdemonstratesincreasedgen-erationofHSC[57].
Collectively,thisbodyofevidencestronglysupportsaroleforRUNX1asacriticalregulatorofEHT,andthatmodicationofitsexpressionviainter-actionwithassociatingproteinswithinspecictissuemicroenvironmentsanddevelopmentaltimepoints,aswellasunderdifferentphysiologicconditions,impactsregula-tionofthehematopoietictransition[14,124,145].
SCL/LMO/GATATheregulatoryregionsofhematopoieticgenesareknowntobeboundbyRUNX1,asdiscussed,aswellasatran-scriptionfactorcomplexcomposedofstemcellleukemiaprotein(SCL)/Tcellacutelymphocyticleukemiaprotein-1(TAL-1),LIMdomainonly2(LMO2),GATA1,andGATA2([1,140,146–148],allofwhichhavebeenimplicatedinEHT.
LMO2isthoughttoactasabridgebetweenSCL/TAL-1andGATA-bindingproteinsinatranscriptionalactivatingcomplexthatdrivesvertebratehematopoieticspecication(reviewedin[1]).
StudiesofScl/Tal-1,Lmo2,andGata1/2mutantmouseembryosdemonstratethatdeletionofeachgeneresultsinmidgestationlethalityandimpaireddenitivehematopoi-esis[149–152].
SCLisahelix-loop-helixtranscriptionfactorthatfunctionsupstreamofRUNX1,andhasbeenshowntobeacriticalregulatorofhematopoiesisviagen-erationofTie-2hic-KitCD41-hemogenicendothelium[42].
SCLloss-of-functionstudiesshowthathematopoiesisisimpairedatboththelevelofstemcellformationandsubsequentdifferentiation[153].
Interestingly,multipleisoformsofSCL[SCLA(fulllength)andSCLB(N-ter-minaltruncated)]havebeenidentied[153],andmayplaydifferentialrolesindenitivehematopoiesis.
InvivotimelapseimagingstudiesdemonstratedselectiveSCLBiso-formexpressioninthedorsalaortaofhemogenicendotheliumjustpriortoEHT,andthisisoformmayactupstreamofRUNX1tomediateEHT.
SCLA,ontheotherhand,isexpressedinHSCaftertheEHTprocess,andiscriticalformaintenanceofthesenewlyborncellswithintheAGM[153].
GATA2isexpressedbythepara-aorticsplanchnopleuraandAGMregionsofthemouseembryo[154].
IthasbeenshowntohavearoleinproductionandexpansionofHSCSpecicationandfunctionofhemogenicendotheliumduringembryogenesis1555123intheAGMduringembryogenesisaswellasnormalexpansionoftheadultHSCpoolwithinthebonemarrow[155].
Gata2decientmicedieatE10.
5duetodefectiveprimitiveerythropoiesisandlackofHSPCgeneration[151].
ConditionaldeletionofaGata2cisregulatoryele-mentinmouseAGMresultsinreducedexpressionofhematopoietictranscriptionfactorsSCLandRUNX1,andhemogenicendothelialcellsofthemutantsfailtogenerateHSPC,leadingtoembryoniclethalitybyE13-14[156].
Additionally,VE-cadherin-drivendeletionofGata2pre-ventsgenerationofintra-aorticclustersinmousedorsalaortaandresultsinadeciencyoflong-termrepopulatingHSC[157].
Embryonicstemcellsderivedfromadultchi-mericmicedecientinLMO2alsofailtocontributetotheendotheliumoflargevessels[158,159]andbloodcellproduction[158,159].
MorpholinoknockdownofeitherScl[147]orLmo2[160]inzebrashresultsinsimilarlyimpairedexpressionofhematopoieticgenesandlossofIAHC.
Collectively,thesendingsimplicatethisgroupoftranscriptionfactorsashavingessentialrolesinEHTanddenitivehematopoiesis.
NotchInadditiontothepreviouslydiscussedroleforNotchsignalinginhemogenicspecication,NotchhasalsobeenshowninanumberofvertebratestudiestobeessentialfordenitiveHSCemergenceintheembryo[87,161,162].
ItisthoughtthatNotchsignalingmediatesHSCdevelopmentviaEHTbyinteractionsbetweenemergingHSPCexpressingNotchreceptorsandunderlyingendothelialcellsandstromaexpressingNotchligands[163,164].
Notch1andNotch4receptorsareexpressedspecicallyintheendothelialcelllayerofthedorsalaorta,andNotchsignalingpathwaycomponentssuchasDLL4,Jag1,Jag2,HES1,HRT1,HRT2,andGATA2areexpressedinboththeendothelialcelllayerofthedorsalaortaanditsemerginghematopoieticclustersbeginningbetweenE9.
5andE10.
5[165–167].
MouseandzebrashembryosthatlackNotchsignalingcomponentsdemonstratedefectiveorabsentdenitiveintra-embryonichematopoiesisandinabilitytoestablishpermanentself-renewingHSC(re-viewedin[1,165]).
In-vitroblockageofNotchsignalingusingDAPThasbeenshowntopreventEHTofculturedmurineE9.
5pSP/AGMcells[163].
ActivationofNotchsignalinginamodiedculturesystemofE11.
0pSp/AGMhemogenicendothelialcellsonimmobilizedchimerichumanDLL1resultsinemergenceofmultilineagehematopoieticprogenitorformationwithlong-termengraftmentcapability[163],furthersupportingthecriticalroleofNotchindrivingearlyhematopoiesis.
HSCgenerationinthehematopoieticclustersofthemurineAGMhasbeenshowntomostlydependonNotchligandJag1anditsregulationofGata2expression[167].
TheGata2promoterregioncontainstwoRBPJbindingsitesinvolvedinNotch-mediatedactivation[168]andnotsurprisingly,deletionofNotchtranscriptionalco-activatorRBPJleadstolossofHSPC,aswellaslossofGATA2expression,whichisnecessaryforcontinueddifferentiationofhematopoieticcells[166,169].
Notch-dependentGATA2bexpressionhasbeendemonstratedtoberequiredforRUNX1expressionwithinzebrashdorsalaortafromaveryearlydevelopmentalstage,anditsexpressionislim-itedtoemergingHSC[170].
EmbryosdecientforNotch1downstreamtargetsHES1andHES5havebeenshowntohaveintactarterialspecicationbuthavenotablehe-matopoieticdefectsmarkedbyabnormalproliferationofnonfunctionalHSPCandincreasedexpressionofhematopoieticregulatorsincludingGATA2,RUNX1,andc-Myb[168].
FurtherinterrogationoftheGata2promoterregioninthisstudyrevealedthatinadditiontocontainingRBPJbindingsitesessentialforinitiationofhematopoiesis,italsocontainedHESbindingsitesnecessaryforGata2downregulationinvolvedindrivingfunctionalhematopoi-esis[168].
ThishighlightsthecomplexityofNotchsignalinginthiscontext,asbothdrivingexpressionofandconcomitantlynegativelyregulatingakeyhematopoieticmediator.
PreviousworkshowingthatdifferentNotchligandsconferdifferentsignalstrengths[171,172]hasformedthebasisforrecentworksuggestingthatdeterminationofendothelialversushematopoieticfateinthedevelopingAGMismediatedbyligand-specicdifferencesinNotch1signalstrength.
UseofhighandlowsensitivityNotch1activationtrapmousemodelsdemonstratedthathematopoieticspecicationandrepressionoftheendothe-lialprogramisdrivenbylowlevelsofJag1mediatedNotchsignaling.
IntheabsenceofJag1,DLL4mediatedhighlevelsofNotchactivityinsteaddrivestheendothelial/ar-terialprogram[173].
TheauthorsofthisstudyproposeamodelwhereinJag1antagonizesDLL4-mediatedhighNotchsignalinginasubsetofendothelialcellstodrivethemtowardahematopoieticfateratherthananendothelialfate[173].
ThisfurtherhighlightsthecriticalroleofJag1,aspreviouslydiscussed,indrivingEHTandimportantlyalsoaddstothebodyofevidencethatendothelialandhematopoieticcellsrepresentdistinctlineages.
Inhumanembryonicstemcells,NotchactivationhasalsobeendemonstratedtobenecessaryforgenerationofCD45cells,andNotchsignalingviaHES1isnecessaryfortheirhematopoieticdifferentiation[174].
OtherstudiesinhumanembryonicstemcellsshowedthatligandDLL4isinducedviaNotchsignalinginasmallsubsetofendothelialprogenitorsduringhematopoieticdifferentiation,andthelevelofDLL4expressionappearstocorrelatewithhematopoieticversusendothelialfate.
Thatis,DLL4-high1556E.
Gritz,K.
K.
Hirschi123progenitorsareenrichedforendothelialpotential,whereasDLL4low/-coincideswithacquisitionofhematopoieticpotential[174].
Thus,amodelhasbeenproposed,whereinhemogenicendothelialcellsareDLL4low/-andareNotchactivatedvianeighboringDLL-highcellstopromotetransitionfromanendothelialstatetoCD45hematopoi-eticcellsthatclusterinafashionsimilartointra-aortichematopoieticclustersintheAGM[174].
RelatedstudiesalsodemonstratedafunctionalroleforDLL4inpromotingspecicationofhematopoieticcellsfromhematoendothe-lialprogenitors,whereinexpressionofDLL4increasednumbersofclonogenichematopoieticprogenitors,andinterestinglyskewedtheirfatetowardanerythroidlineage[174].
NocorrelationbetweenlevelsofJag1orJag2expressionwasnotedwithrespecttogenerationofhema-toendothelialprogenitorsorhematopoieticprecursorstherefrom,ashasbeennotedinothervertebratestudies,sug-gestingthathumanHSCdifferentiationmaybeaffectedbyotherNotchligands[174].
ArecentstudyinvestigatedNotch-regulatedelementsinvolvedincontrolofHSCgenerationinzebrash,mouse,andhumanembryonictissues.
ChIPonChIPanalysisagainstNotchco-activatorRBPJwasperformedandidentiedcandidatepromoterregionsofgenesregulatedbyNotchinhemaotpoietictissues.
ThemostsignicantresultwasenrichmentofCdca7,whichisshowntorecruitRBPJ,aswellasNotch1ICD.
CDCA7expressionwasshowntobeupregulatedinthehemogenicpopulationderivedfromhumanembryonicstemcellsinaNotch-dependentmanner.
Down-regulationofCdca7mRNAwasshowntoinducehematopoieticdifferentiationandconcomitantlydecreaseHSPCnumbers,suggestingthatitisaNotch-mediatedtargetinvolvedinemergenceofHSPC,butnotdifferenti-ationofthesecells[175].
Wnt/b-cateninThereisevidencethatNotch,Wnt,andBMPpathwaysinteracttogenerateHSCinthezebrashembryoandalsoareinvolvedindrivinghematopoieticdevelopmentfromembryonicstemcells[176,177].
Wntisawell-describedevolutionarilyconservedsignalingpathwayknowntomodulatemanyareasofembryonicdevelopment.
TheWntligandsareafamilyof19glycosylatedproteinsthatbindFrizzledreceptorsandLDLreceptorproteinco-receptorstotriggeravarietyofdownstreamresponsesincludingactivationofb-catenin(canonicalpathway)and/orJNKandPKC(noncanonicalpathway)thatmodulategeneexpressionprogramscriticalfornormalembryonicdevel-opment(reviewedin[176]).
EarlyevidencethatWnt/b-cateninhasaroleinembryonichematopoiesiscamefromzebrashstudiesshowingProstaglandinE2mediatesHSCformationintheAGMviab-catenin[177].
Recently,ithasbeenshownthatEMPcellsemergingfromvascularendotheliumintheyolksacdosoindependentofvascularidentityortheinuenceofcirculation,buttheiremergencerequiresintactWntsignaling[12].
IthasbeenshownthatWnt/b-cateninactivityistransientlyrequiredintheAGMofmouseembryosforemergenceandgenerationoflong-termHSC,aswellasproductionofhematopoieticcellsinvitrofromAGMendothelialprecursors[176].
Hemo-genicendothelialcellsfromAGMatE11.
5havealsobeenshowntohaveahighdegreeofactiveWntsignaling,asevidencedbythepresenceofhighlevelsofb-cateninincellsliningthedorsalaorta,closetoemerginghematopoieticclusters,butnotincellsbuddingoffofendotheliumorwithincirculatingplasma[75].
InhumanpluripotentstemcellmodelsofEHT,hemogenicendotheliumundergoesEHTtowardeitheraprimitiveordenitivehematopoieticfatedependingonpresenceofeitherinactive(primitive)oractive(denitive)Wntsig-naling[178].
Thisbodyofevidencesuggestsacontext-specicroleforWntsuchthatitisrequiredforthegen-erationofhemogenicendotheliumandlikelyinitiationofEHTbutgraduallybecomesdownregulatedasHSPCaregenerated[75].
HOX/SOXHomeoboxgenes,suchasHoxandSoxgenes,playakeyroleindeterminingcellidentityduringembryonicdevel-opment[179–182].
Hoxparaloguegroup3(HOXA3),specically,hasanimportantroleinendothelialandcar-diovasculardevelopment(reviewedin[183]).
Itsexpressionwasfoundtobehighinembryonicmesenchymaltissue,intermediateinthedorsalaortaandabsentfromtheyolksacatE8.
25andE8.
5whendenitivehematopoiesisisoccur-ringinthattissue.
Thisisconsistentwiththeideathatitpreventshematopoieticdifferentiationofendothelialpro-genitorsviadown-regulationofRUNX1,GATA1,GFI1b,IkarosandPU.
1.
Conversely,downregulationofHOXA3isconcomitantwithincreasedRUNX1expressionwithintheaorticendothelium,anditsre-expressioninembryonicstemcells,aswellasculturedmouseembryonictissues,causesretentionofanendothelialphenotype.
ThesedatasuggestanimportantroleforHOXA3inmaintenanceofanendothelialstatepriortohematopoietictransition[183].
EctopicexpressionofanotherHoxparalogue,HOXB4,inyolksacderivedhematopoieticprogenitorcellshasbeenshowntodriveconversiontoadenitiveHSCphenotypewithlong-termengraftmentpotential[184].
Additionally,severaltranscriptionalregulatorsofthedenitivehematopoieticprogramsuchasRUNX1,SCL/TAL1,GATA2,andGFI1havebeenshowntobedirecttargetsofHOXB4inembryonicstemcell-derivedhematopoieticprogenitors[185].
Specicationandfunctionofhemogenicendotheliumduringembryogenesis1557123SOX17isatranscriptionfactorexpressedinAGMhemogenicendotheliumdownstreamofHOXA3[183]atE8.
5–8.
75,andinadditiontoitsroleasacriticalfactorgoverningarterialidentity[186],ithasbeenshowntoberequiredforgenerationoffetalandneonatalHSC[187].
AlthoughSOX17isnotrequiredforthegenerationofadultHSC[120],itsoverexpressioninadulthematopoieticpro-genitorshasbeenshowntoconferfetalHSCcharacteristics[188].
Additionally,SOX17candriveexpansionofcellsthatexhibitdownregulationofendothelialmarkersandalsopossessanabilitytogeneratehematopoieticcells[120,187,189].
LossofSox17decreasesexpressionofNotch1inthemurineAGM,suggestingthatSOX17mediatesgen-erationofhemogenicendotheliumviaNotchsignalingduringdenitivehematopoiesis[187].
ConditionallossofSOX17mediatedrepressionofRunx1andGata2recentlyhasbeenshowntoresultinincreasedproductionofhematopoieticcellsfrommurineAGMendothelialcellsthatcanbedampenedbyanincreaseinNotchsignaling[131],suggestingthatfollowinghemogenicspecication,SOX17modulateshemogenicendotheliumbyactiverepressionofthehematopoieticprogrambytheSOX17/NotchaxisuntilinitiationofEHT.
Thishasbeencom-plementedbystudiesofmurineAGMhemogenicendothelialcellsundergoingEHTusingcombinedcorrelativescanningelectronmicroscopyandimmunou-orescencedemonstratinganincreaseinRUNX1levelsconcomitantwithdecreaseinnuclearSOX17,roundingofpreviouslyattenedAGMendothelialcells,andtheonsetofco-expressionofCD41andc-Kitonthesenewlyroun-dedcells[190].
SOX17hasalsorecentlybeenshowntobenecessaryforcommitmenttothedenitiveerythroidlin-eage[191].
OthercloselyrelatedSOXfamilymembers,SOX7andSOX18,havearoleinprimitivehematopoiesis.
SOX7andSOX18havetransientexpressioninhematopoieticprecursorsattheonsetofbloodspecicationandexpressionoftheseinearlyhematopoieticprecursorsfrommouseembryonicstemcellsandembryosenhancestheirproliferationwhileblockingtheirmaturation[189,192,193].
cMybThetranscriptionfactorcMybwasoriginallyidentiedasanuclearprotooncogeneinvolvedincertainaviancancersbutisalsoexpressedinHSPCpriortotheirdifferentiation.
MultiplemousestudiesutilizingcMybmutantsdemonstratethekeyroleplayedbycMybwithinavarietyofhematopoieticpathwayssuchaslymphoiddevelopment,HSPCmaintenance,andHSPCdifferentiation[194].
DeletionofcMybresultsinmurineembryoniclethalityatE15.
5duetolackoffetalliverhematopoiesis,specicallyimpairederythroidandmyeloiddevelopment[195].
AGMexplantsfromcMyb–/–mutantmicealsoyield100-foldfewerHSPC[196].
Lossoffunctionstudiesinzebrashhaveshownsimilarlyimpaireddenitivehematopoiesis,eveninthesettingofotherwisenormalprimitivehemato-poiesis[197,198].
ZebrashstudieshavealsodemonstratedaccumulationofHSPCwithintheventralwallofthedorsalaorta,theirsiteoforigination,andthatthisfailureofmigrationtoahematopoieticnichesuchasthezebrashcaudalhematopoietictissueandkidneymayinpartunderliethepreviouslydemonstratedfailureofdenitivehemato-poiesisincMybmutants[194].
OthermediatorsofHSPCgenerationfromhemogenicendotheliumG-proteincoupledreceptorsToidentifycandidateregulatorsofEHTonagloballevel,wholegenometranscriptomeanalysisofmurineaorticendothelialcells,hemogenicendothelialcellsandHSPCpopulationshasidentied530differentiallyexpressedgenesduringEHTwithparticularupregulationofthegeneencodingGproteincoupledreceptor56(Gpr56)andheptadtranscriptionfactorsSCL,LYL1,LMO2,GATA2,RUNX1,ERG,andFLI-1)[199,200].
TheheptadfactorswerebeenshowntobindtoGpr56enhancerregionsandregulateitsexpression,andknockdownofGpr56inzeb-rashresultedinhematopoieticdefectsthatcouldberescuedwitheithermouseorzebrashGpr56RNA,thusestablishingGPR56asanovelregulatorofEHTviaayettobeelucidatedmechanism[199].
AnotherGproteincoupledreceptor,GPR183,hasalsorecentlybeenshowntodampenNotchsignalinginzebrashmodelsviaitsrecruitmentofb-Arrestin-1andE3ligaseNEDD4,bothofwhichdegradeNotch1inhemogenicendothelialcellstopromoteEHT[201].
PurinesignalingPurines(suchasadenosine,ADP,andATP)exhibitextracellularsignalingactivitythatregulatesdiversephysiologicanddevelopmentalcellularfunctionsincludingautoregulationofbloodow,cellproliferationanddiffer-entiation,andstemcellregeneration,allviacellsurfacereceptors[202].
AdenosinesignalingatthelevelofthevascularendotheliumhasrecentlybeendemonstratedtoplayaroleinregulationofHSPCdevelopmentinbothzebrashandmice.
Inarecentstudy,elevatedadenosinelevelsinzebrashembryoswereshownincreasenumbersofRUNX1/cMybHSPCinthedorsalaortaviaincreasedexpressionofCXCL8(IL-8),whichhasbeenshowntotriggerproliferationofhematopoieticprogenitor1558E.
Gritz,K.
K.
Hirschi123cells[203].
Furthermore,inthesamestudy,alterationofadenosinesignalingviaknockdownoftheA2badenosinereceptorresultedindisruptionofboththegenerationofSCLhemogenicvascularendotheliumandtheendothe-lialtohematopoietictransition.
Theseresultsweremirroredinmouseembryonicstemcellcolonyformingassays,aswellasE10.
5AGMexplants,thatdemonstratedanincreaseinproductionofmultipotentprogenitorcolo-niesinthesettingofincreasedadenosinesignaling[202].
ChromatinremodelingTheroleofreprogrammingoftranscriptionalstatesinpromotinglineagecommitmentinHSCcontinuestobeofgreatinterestintheeld.
Theroleofchromatinmodi-cationasanimportantmediatoroftranscriptionalregulationofEHThasbeeninvestigated.
MajumderandcoworkersdemonstratedthatthehistonechaperoneHIRA(histonecellcycleregulation-defectivehomologA)regu-latesRUNX1activityduringEHT.
TheyshowedthatHIRAmediatedhistoneacetylationofRunx1activatesthedownstreamhematopoietictargetsofRUNX1andthatinHIRAdecientmutants,therewasnotonlyreducedexpressionofRunx1,butalsolackofchromatinreorgani-zationnecessaryforappropriateRUNX1bindingandtranscriptionalactivitytodrivehematopoiesis[204].
ChromodomainhelicaseDNA-bindingprotein1(CHD1),anATP-dependentchromatin-remodelingenzymewhoseactivationisassociatedwithanincreasedleveloftotalactivetranscriptioninmouseembryonicstemcells[205,206]hasalsorecentlybeenshowntobeessentialforsuccessfulEHT.
Endothelial-specicChd1mutants,whileabletoproduceintactE10.
5IAHC,thatshowintermediatemarkersofdifferentiationsuchasRUNX1andc-Kit,donotsuccessfullyinitiatedenitivehematopoiesisanddiebyE15.
5duetosevereanemiaandabsolutefailureofery-thropoiesis[207].
AnalysisofcellsfromthemutantIAHCdemonstratedthatthecellsintheclustersunderwentapoptosisratherthanhematopoieticspecication,asevi-dencedbyfailureofexpressionofmarkersofhematopoieticlineagesuchasCD45,andavefoldreductioninmyeloidcolonyformingpotential.
GlobalgeneexpressionanalysisofChd1mutantendotheliumatE10.
5inthisstudywasgenerallyfoundtobeunchangedwhencomparedtowild-typeendothelialcontrols,butnotablylackedactivationofasetof156genesimplicatedinhematopoiesisandgrowth.
Furthermore,hematopoieticprogenitorsunderwentaCHD-1dependentelevationinglobaltranscriptionalatthetimeofEHTthatwasneces-saryforinitialexpansionandsurvivalofHSPCbutnotfordifferentiationandmaintenanceofthedifferentiatedHSCpool[207].
CommittedhematopoieticprogenitorswithaVav-CreChd-1mutationdemonstratedperipheralbloodcompositioncomparabletowildtypemiceatoneyearofage.
Takentogether,theseresultssuggestapointedcriticalroleforCHD-1mediatedincreasedtranscriptionaloutputinordertosuccessfullycompleteEHTandestablishfunctionalhematopoiesis,butthatitisnotrequiredbeyondthepointofhematopoieticspecication[207].
HypoxiaandinammationTheintrauterineenvironmentisnotablyhypoxicandviatheactionofhypoxiainduciblefactortranscriptionfactors(HIF),transcriptionofgenesnecessaryforpromotingnormaldevelopmentinthisenvironmentisactivated(re-viewedin[208]).
ThemidgestationAGMandplacentahavebeenshowntoexhibitlocalizedareasofhypoxiaincludinghematopoieticclustersandsomeunderlyingendothelialcells.
TheroleofHIF1ainregulationofembryonichematopoiesiswasrecentlyshowntobenec-essaryforgenerationofHSPCfromtheAGMfromE9.
0toE11[208].
Recently,aninterestinglinkbetweenToll-likereceptor4(TLR4)inammatorysignaling,acascadepreviouslyassociatedwithstress-inducedhematopoiesisinadultmarrow,andembryonichematopoiesishasalsobeenestablished.
TLR4-NF-jBsignalingwasfoundtoregulatehemogenicendothelium-derivedHSPCdevelopmentinbothmiceandzebrashembryosviaactivationofNotchsignaling[209].
Thiscomplementsotherrecentstudiesinvestigatingtheroleofnon-infectious/sterilepro-inam-matorysignalingviaTNFaorinterferoninHSPCdevelopmentinzebrashandmice[210–212],suggestingthatalow-gradepro-inammatorystateisnecessaryfornormalHSPCemergenceevenunderlow-stressconditionsandmayinfactprimethehematopoieticsystemforreactivehematopoiesisinthesettingofexogenousstressorssuchasinfection[209].
SummaryandconclusionsInsummary,thedevelopmentalhierarchygoverninghematovasculardevelopmentiscomplexandmultifactorialandourunderstandingofitisstillinitsinfancy.
Overtimethestudyofhematologicdevelopmenthasfoundedmanyconceptscentraltotheeldofstemcellresearchasawhole[213].
Hematopoieticdevelopmentbeginsearlyinthemammalianembryointheextra-embryonicyolksacandplacentaandpeaksintheAGMregionbyE10.
5.
Itischaracterizedbyoverlappingwavesofgenerationofprimitivebloodcells,multilineagehematopoieticprogeni-torcells,andnallydenitivelong-termrepopulatingHSCviaahemogenicendothelialcellintermediate.
EmergenceofbloodcellsfromhemogenicendotheliumisknownasSpecicationandfunctionofhemogenicendotheliumduringembryogenesis1559123theendothelialtohematopoietictransition,whichisdrivenbyanincrediblycomplexandyettobefullyelucidatedinterplaybetweendevelopmentaltimingandtissuemicroenvironmentalfactors.
Thisinterplayisthoughttogovernatimedgraduallossofendothelialcharacteristics[105],accompaniedbychangesinlevelandtypeofexpressionofhematopoieticregulatorssuchasRUNX1[56,99,142]beginningintheextraembryonicyolksac,placentaandumbilicalvessels,aswellasthemidgestationaorta,andpossiblybeingcompletedinhematopoieticnichessuchasthefetalliver,andbonemarrow[18,19,99,102,105,106].
Still,thereremainanumberofunansweredquestionssurroundingtheprogressionfromembryonicmesodermtoendotheliumtoHSPCandadultHSC.
Ofparticularinter-est,asalreadymentioned,isstudyofthetissuespecicmicroenvironmentsinwhichtheseprogenitorcellsaregeneratedandmatureduringdevelopment,andtherolethatmicroenvironmentplaysindrivingtheformationofmul-tilineageHSPC[29].
Todate,thereislittleevidencetosupporttheexistenceofhemogenicendotheliuminlaterstagesofembryonicdevelopmentorpostnatally,buthumancordbloodhematopoieticprogenitorshavebeenshowntodifferentiateintoendothelialprecursorscapableofgeneratingfunctionalvasculatureinvivoandiffurtherinstructedbyhematopoieticgrowthfactors,rstswitchtotransitionalCD144CD45cellsandthentohematopoieticcellsperhapsduetotheinuenceoftheirtissuemicroenvironment[214].
Thisndingisofgreatinterest,asitsuggeststhathemogenicendotheliumisnotastransientinnatureaspreviouslythoughtandmayexistbeyondtheembryonicperiodasanuntappedreservoirofhematopoieticpotentialfortherapeuticapplications[214].
Efcientgenerationanddifferentiationofhematopoieticcellsinvitrotodatehasbeenfraughtwithtechnicaldif-cultyandthisdifcultyisalmostcertainlyexacerbatedbyaneedforamorecompleteunderstandingofinvivoendothelialandhematopoieticdevelopment(reviewedin[215]).
Furtherstudyoftheseprocesses,fromspecicationofhemogenicendotheliumtogenerationofHSPCviaEHT,andestablishmentoffunctionaldenitivehematopoiesisbothintheprenatalandpostnatalperiod,willfurtherourunderstandingofdevelopmentalhematopoiesis,aswellasadulthematopoiesisinbothhealthanddisease.
Itwillalsohighlightthecellularandmolecularunderpinningsoftheevolutionofapopulationofstemandprogenitorcellsthatholdgreatpromiseforuseinclinicaltherapiesforhema-tologic,oncologic,vascular,andimmune-mediatedpathologies.
OpenAccessThisarticleisdistributedunderthetermsoftheCreativeCommonsAttribution4.
0InternationalLicense(http://creativecommons.
org/licenses/by/4.
0/),whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedyougiveappropriatecredittotheoriginalauthor(s)andthesource,providealinktotheCreativeCommonslicense,andindicateifchangesweremade.
References1.
MarceloKL,GoldieLC,HirschiKK(2013)Regulationofendothelialcelldifferentiationandspecication.
CircRes112(9):1272–1287.
doi:10.
1161/circresaha.
113.
3005062.
LawsonKA,MenesesJJ,PedersenRA(1991)Clonalanalysisofepiblastfateduringgermlayerformationinthemouseembryo.
Development(Cambridge,England)113(3):891–9113.
PalisJ,RobertsonS,KennedyM,WallC,KellerG(1999)Developmentoferythroidandmyeloidprogenitorsintheyolksacandembryoproperofthemouse.
Development(Cambridge,England)126(22):5073–50844.
CorbelC,SalaunJ,Belo-DiabangouayaP,Dieterlen-LievreF(2007)Hematopoieticpotentialofthepre-fusionallantois.
DevBiol301(2):478–488.
doi:10.
1016/j.
ydbio.
2006.
08.
0695.
ZeiglerBM,SugiyamaD,ChenM,GuoY,DownsKM,SpeckNA(2006)Theallantoisandchorion,whenisolatedbeforecir-culationorchorio-allantoicfusion,havehematopoieticpotential.
Development(Cambridge,England)133(21):4183–4192.
doi:10.
1242/dev.
025966.
CumanoA,Dieterlen-LievreF,GodinI(1996)Lymphoidpotential,probedbeforecirculationinmouse,isrestrictedtocaudalintraembryonicsplanchnopleura.
Cell86(6):907–9167.
CumanoA,FerrazJC,KlaineM,DiSantoJP,GodinI(2001)Intraembryonic,butnotyolksachematopoieticprecursors,isolatedbeforecirculation,providelong-termmultilineagereconstitution.
Immunity15(3):477–4858.
HaarJL,AckermanGA(1971)Aphaseandelectronmicroscopicstudyofvasculogenesisanderythropoiesisintheyolksacofthemouse.
AnatRec170(2):199–223.
doi:10.
1002/ar.
10917002069.
LucittiJL,JonesEA,HuangC,ChenJ,FraserSE,DickinsonME(2007)Vascularremodelingofthemouseyolksacrequireshemodynamicforce.
Development(Cambridge,England)134(18):3317–3326.
doi:10.
1242/dev.
0288310.
GomezPerdigueroE,KlapprothK,SchulzC,BuschK,AzzoniE,CrozetL,GarnerH,TrouilletC,deBruijnMF,GeissmannF,RodewaldHR(2015)Tissue-residentmacrophagesoriginatefromyolk-sac-derivederythro-myeloidprogenitors.
Nature518(7540):547–551.
doi:10.
1038/nature1398911.
HoeffelG,ChenJ,LavinY,LowD,AlmeidaFF,SeeP,BeaudinAE,LumJ,LowI,ForsbergEC,PoidingerM,ZolezziF,LarbiA,NgLG,ChanJK,GreterM,BecherB,SamokhvalovIM,MeradM,GinhouxF(2015)C-Myb()erythro-myeloidprogenitor-derivedfetalmonocytesgiverisetoadulttissue-residentmacrophages.
Immunity42(4):665–678.
doi:10.
1016/j.
immuni.
2015.
03.
01112.
FrameJM,FeganKH,ConwaySJ,McGrathKE,PalisJ(2015)Denitivehematopoiesisintheyolksacemergesfromwnt-responsivehemogenicendotheliumindependentlyofcirculationandarterialidentity.
Stemcells(Dayton,Ohio).
doi:10.
1002/stem.
221313.
GoldieLC,LucittiJL,DickinsonME,HirschiKK(2008)Cellsignalingdirectingtheformationandfunctionofhemogenicendotheliumduringmurineembryogenesis.
Blood112(8):3194–3204.
doi:10.
1182/blood-2008-02-13905514.
DzierzakE,SpeckNA(2008)Oflineageandlegacy:thedevelopmentofmammalianhematopoieticstemcells.
NatImmunol9(2):129–1361560E.
Gritz,K.
K.
Hirschi12315.
AdamoL,Garcia-CardenaG(2012)Thevascularoriginofhematopoieticcells.
DevBiol362(1):1–10.
doi:10.
1016/j.
ydbio.
2011.
09.
00816.
KaimakisP,CrisanM,DzierzakE(2013)Thebiochemistryofhematopoieticstemcelldevelopment.
BiochimBiophysActa18302:2395–2403.
doi:10.
1016/j.
bbagen.
2012.
10.
00417.
Alvarez-SilvaM,Belo-DiabangouayaP,SalaunJ,Dieterlen-LievreF(2003)Mouseplacentaisamajorhematopoieticorgan.
Development(Cambridge,England)130(22):5437–5444.
doi:10.
1242/dev.
0075518.
GekasC,Dieterlen-LievreF,OrkinSH,MikkolaHK(2005)Theplacentaisanicheforhematopoieticstemcells.
DevCell8(3):365–375.
doi:10.
1016/j.
devcel.
2004.
12.
01619.
OttersbachK,DzierzakE(2005)Themurineplacentacontainshematopoieticstemcellswithinthevascularlabyrinthregion.
DevCell8(3):377–387.
doi:10.
1016/j.
devcel.
2005.
02.
00120.
RhodesKE,GekasC,WangY,LuxCT,FrancisCS,ChanDN,ConwayS,OrkinSH,YoderMC,MikkolaHK(2008)Theemergenceofhematopoieticstemcellsisinitiatedinthepla-centalvasculatureintheabsenceofcirculation.
CellStemCell2(3):252–263.
doi:10.
1016/j.
stem.
2008.
01.
00121.
deBruijnMF,SpeckNA,PeetersMC,DzierzakE(2000)Denitivehematopoieticstemcellsrstdevelopwithinthemajorarterialregionsofthemouseembryo.
EMBOJ19(11):2465–2474.
doi:10.
1093/emboj/19.
11.
246522.
MullerAM,MedvinskyA,StrouboulisJ,GrosveldF,DzierzakE(1994)Developmentofhematopoieticstemcellactivityinthemouseembryo.
Immunity1(4):291–30123.
MedvinskyA,DzierzakE(1996)DenitivehematopoiesisisautonomouslyinitiatedbytheAGMregion.
Cell86(6):897–90624.
MedvinskyAL,SamoylinaNL,MullerAM,DzierzakEA(1993)Anearlypre-liverintraembryonicsourceofCFU-Sinthedevelopingmouse.
Nature364(6432):64–67.
doi:10.
1038/364064a025.
MorrisonSJ,HemmatiHD,WandyczAM,WeissmanIL(1995)Thepuricationandcharacterizationoffetalliverhematopoieticstemcells.
ProcNatlAcadSciUSA92(22):10302–1030626.
KumaraveluP,HookL,MorrisonAM,UreJ,ZhaoS,ZuyevS,AnsellJ,MedvinskyA(2002)Quantitativedevelopmentalanatomyofdenitivehaematopoieticstemcells/long-termrepopulatingunits(HSC/RUs):roleoftheaorta-gonad-meso-nephros(AGM)regionandtheyolksacincolonisationofthemouseembryonicliver.
Development(Cambridge,England)129(21):4891–489927.
CoskunS,ChaoH,VasavadaH,HeydariK,GonzalesN,ZhouX,deCrombruggheB,HirschiKK(2014)DevelopmentofthefetalbonemarrownicheandregulationofHSCquiescenceandhomingabilitybyemergingosteolineagecells.
Cellreports9(2):581–590.
doi:10.
1016/j.
celrep.
2014.
09.
01328.
TakeuchiM,SekiguchiT,HaraT,KinoshitaT,MiyajimaA(2002)Cultivationofaorta-gonad-mesonephros-derivedhematopoieticstemcellsinthefetallivermicroenvironmentamplieslong-termrepopulatingactivityandenhancesengraftmenttothebonemarrow.
Blood99(4):1190–119629.
HirschiKK(2012)Hemogenicendotheliumduringdevelopmentandbeyond.
Blood119(21):4823–4827.
doi:10.
1182/blood-2011-12-35346630.
FraserST,OgawaM,YuRT,NishikawaS,YoderMC,Nishi-kawaS(2002)Denitivehematopoieticcommitmentwithintheembryonicvascularendothelial-cadherin()population.
ExpHematol30(9):1070–107831.
SabinFR(2002)Preliminarynoteonthedifferentiationofangioblastsandthemethodbywhichtheyproduceblood-ves-sels,blood-plasmaandredblood-cellsasseeninthelivingchick.
1917.
JHematotherStemCellRes11(1):5–7.
doi:10.
1089/15258160275344849632.
MurrayPDF(1932)TheDevelopmentinvitrooftheBloodoftheEarlyChickEmbryo,vol111.
vol773.
doi:10.
1098/rspb.
1932.
007033.
Dieterlen-LievreF(1975)Ontheoriginofhaemopoieticstemcellsintheavianembryo:anexperimentalapproach.
JEmbryolExpMorphol33(3):607–61934.
GodinIE,Garcia-PorreroJA,CoutinhoA,Dieterlen-LievreF,MarcosMA(1993)Para-aorticsplanchnopleurafromearlymouseembryoscontainsB1acellprogenitors.
Nature364(6432):67–70.
doi:10.
1038/364067a035.
Garcia-PorreroJA,GodinIE,Dieterlen-LievreF(1995)Poten-tialintraembryonichemogenicsitesatpre-liverstagesinthemouse.
AnatEmbryol192(5):425–43536.
ShalabyF,HoJ,StanfordWL,FischerKD,SchuhAC,SchwartzL,BernsteinA,RossantJ(1997)ArequirementforFlk1inprimitiveanddenitivehematopoiesisandvasculogen-esis.
Cell89(6):981–99037.
ZapeJP,ZoveinAC(2011)Hemogenicendothelium:origins,regulation,andimplicationsforvascularbiology.
SeminCellDevBiol22(9):1036–1047.
doi:10.
1016/j.
semcdb.
2011.
10.
00338.
MotoikeT,MarkhamDW,RossantJ,SatoTN(2003)EvidencefornovelfateofFlk1progenitor:contributiontomusclelin-eage.
Genesis(NewYork,NY:2000)35(3):153–159.
doi:10.
1002/gene.
1017539.
HuberTL,KouskoffV,FehlingHJ,PalisJ,KellerG(2004)Haemangioblastcommitmentisinitiatedintheprimitivestreakofthemouseembryo.
Nature432(7017):625–630.
doi:10.
1038/nature0312240.
Padron-BartheL,TeminoS,VilladelCampoC,CarramolinoL,IsernJ,TorresM(2014)Clonalanalysisidentieshemogenicendotheliumasthesourceoftheblood-endothelialcommonlineageinthemouseembryo.
Blood124(16):2523–2532.
doi:10.
1182/blood-2013-12-54593941.
KinderSJ,TsangTE,QuinlanGA,HadjantonakisAK,NagyA,TamPP(1999)Theorderlyallocationofmesodermalcellstotheextraembryonicstructuresandtheanteroposterioraxisdur-inggastrulationofthemouseembryo.
Development(Cambridge,England)126(21):4691–470142.
LancrinC,SroczynskaP,StephensonC,AllenT,KouskoffV,LacaudG(2009)Thehaemangioblastgenerateshaematopoieticcellsthroughahaemogenicendotheliumstage.
Nature457(7231):892–895.
doi:10.
1038/nature0767943.
JaffredoT,GautierR,EichmannA,Dieterlen-LievreF(1998)Intraaortichemopoieticcellsarederivedfromendothelialcellsduringontogeny.
Development(Cambridge,England)125(22):4575–458344.
SugiyamaD,OgawaM,HiroseI,JaffredoT,AraiK,TsujiK(2003)ErythropoiesisfromacetylLDLincorporatingendothe-lialcellsatthepreliverstage.
Blood101(12):4733–4738.
doi:10.
1182/blood-2002-09-279945.
ZoveinAC,HofmannJJ,LynchM,FrenchWJ,TurloKA,YangY,BeckerMS,ZanettaL,DejanaE,GassonJC,TallquistMD,Iruela-ArispeML(2008)Fatetracingrevealstheendothelialoriginofhematopoieticstemcells.
CellStemCell3(6):625–636.
doi:10.
1016/j.
stem.
2008.
09.
01846.
SamokhvalovIM,SamokhvalovaNI,NishikawaS(2007)Celltracingshowsthecontributionoftheyolksactoadulthaemato-poiesis.
Nature446(7139):1056–1061.
doi:10.
1038/nature0572547.
YoderMC,HiattK,DuttP,MukherjeeP,BodineDM,OrlicD(1997)Characterizationofdenitivelymphohematopoieticstemcellsintheday9murineyolksac.
Immunity7(3):335–34448.
ZoveinAC,TurloKA,PonecRM,LynchMR,ChenKC,HofmannJJ,CoxTC,GassonJC,Iruela-ArispeML(2010)Vascularremodelingofthevitellinearteryinitiatesextravas-cularemergenceofhematopoieticclusters.
Blood116(18):3435–3444.
doi:10.
1182/blood-2010-04-279497Specicationandfunctionofhemogenicendotheliumduringembryogenesis156112349.
Gordon-KeylockS,SobiesiakM,RybtsovS,MooreK,Med-vinskyA(2013)MouseextraembryonicarterialvesselsharborprecursorscapableofmaturingintodenitiveHSCs.
Blood122(14):2338–2345.
doi:10.
1182/blood-2012-12-47097150.
NakanoH,LiuX,ArshiA,NakashimaY,vanHandelB,SasidharanR,HarmonAW,ShinJH,SchwartzRJ,ConwaySJ,HarveyRP,PashmforoushM,MikkolaHK,NakanoA(2013)Haemogenicendocardiumcontributestotransientdenitivehaematopoiesis.
NatCommun4:1564.
doi:10.
1038/ncomms256951.
LiZ,LanY,HeW,ChenD,WangJ,ZhouF,WangY,SunH,ChenX,XuC,LiS,PangY,ZhangG,YangL,ZhuL,FanM,ShangA,JuZ,LuoL,DingY,GuoW,YuanW,YangX,LiuB(2012)Mouseembryonicheadasasiteforhematopoieticstemcelldevelopment.
CellStemCell11(5):663–675.
doi:10.
1016/j.
stem.
2012.
07.
00452.
BertrandJY,ChiNC,SantosoB,TengS,StainierDY,TraverD(2010)Haematopoieticstemcellsderivedirectlyfromaorticendotheliumduringdevelopment.
Nature464(7285):108–111.
doi:10.
1038/nature0873853.
BoissetJC,vanCappellenW,Andrieu-SolerC,GaljartN,DzierzakE,RobinC(2010)Invivoimagingofhaematopoieticcellsemergingfromthemouseaorticendothelium.
Nature464(7285):116–120.
doi:10.
1038/nature0876454.
KissaK,HerbomelP(2010)Bloodstemcellsemergefromaorticendotheliumbyanoveltypeofcelltransition.
Nature464(7285):112–115.
doi:10.
1038/nature0876155.
deBruijnMF,MaX,RobinC,OttersbachK,SanchezMJ,DzierzakE(2002)Hematopoieticstemcellslocalizetotheendothelialcelllayerinthemidgestationmouseaorta.
Immunity16(5):673–68356.
NorthT,GuTL,StacyT,WangQ,HowardL,BinderM,Marn-PadillaM,SpeckNA(1999)Cbfa2isrequiredfortheformationofintra-aortichematopoieticclusters.
Development(Cambridge,England)126(11):2563–257557.
NorthTE,deBruijnMF,StacyT,TalebianL,LindE,RobinC,BinderM,DzierzakE,SpeckNA(2002)Runx1expressionmarkslong-termrepopulatinghematopoieticstemcellsinthemidgestationmouseembryo.
Immunity16(5):661–67258.
ChenMJ,YokomizoT,ZeiglerBM,DzierzakE,SpeckNA(2009)Runx1isrequiredfortheendothelialtohaematopoieticcelltransitionbutnotthereafter.
Nature457(7231):887–891.
doi:10.
1038/nature0761959.
SwiersG,BaumannC,O'RourkeJ,GiannoulatouE,TaylorS,JoshiA,MoignardV,PinaC,BeeT,KokkaliarisKD,Yoshi-motoM,YoderMC,FramptonJ,SchroederT,EnverT,GottgensB,deBruijnMF(2013)Earlydynamicfatechangesinhaemogenicendotheliumcharacterizedatthesingle-celllevel.
NatCommun4:2924.
doi:10.
1038/ncomms392460.
DitadiA,SturgeonCM,ToberJ,AwongG,KennedyM,Yza-guirreAD,AzzolaL,NgES,StanleyEG,FrenchDL,ChengX,GadueP,SpeckNA,ElefantyAG,KellerG(2015)Humandenitivehaemogenicendotheliumandarterialvascularendotheliumrepresentdistinctlineages.
NatCellBiol17(5):580–591.
doi:10.
1038/ncb316161.
MarceloKL,SillsTM,CoskunS,VasavadaH,SanglikarS,GoldieLC,HirschiKK(2013)Hemogenicendothelialcellspecicationrequiresc-Kit,Notchsignaling,andp27-mediatedcell-cyclecontrol.
DevCell27(5):504–515.
doi:10.
1016/j.
devcel.
2013.
11.
00462.
KabrunN,BuhringHJ,ChoiK,UllrichA,RisauW,KellerG(1997)Flk-1expressiondenesapopulationofearlyembryonichematopoieticprecursors.
Development(Cambridge,England)124(10):2039–204863.
NishikawaSI,NishikawaS,KawamotoH,YoshidaH,Kizu-motoM,KataokaH,KatsuraY(1998)Invitrogenerationoflymphohematopoieticcellsfromendothelialcellspuriedfrommurineembryos.
Immunity8(6):761–76964.
HiraiH,OgawaM,SuzukiN,YamamotoM,BreierG,MazdaO,ImanishiJ,NishikawaS(2003)Hemogenicandnon-hemogenicendotheliumcanbedistinguishedbytheactivityoffetalliverkinase(Flk)-1promoter/enhancerduringmouseembryogenesis.
Blood101(3):886–893.
doi:10.
1182/blood-2002-02-065565.
OberlinE,TavianM,BlazsekI,PeaultB(2002)Blood-formingpotentialofvascularendotheliuminthehumanembryo.
Development(Cambridge,England)129(17):4147–415766.
AndersonH,PatchTC,ReddyPN,HagedornEJ,KimPG,SoltisKA,ChenMJ,TamplinOJ,FryeM,MacLeanGA,HubnerK,BauerDE,KankiJP,VoginG,HustonNC,NguyenM,FujiwaraY,PawBH,VestweberD,ZonLI,OrkinSH,DaleyGQ,ShahDI(2015)Hematopoieticstemcellsdevelopintheabsenceofendothelialcadherin5expression.
Blood.
doi:10.
1182/blood-2015-07-65927667.
ChenMichaelJ,LiY,DeObaldiaMariaE,YangQ,YzaguirreAmandaD,Yamada-InagawaT,VinkChrisS,BhandoolaA,DzierzakE,SpeckNancyA(2011)Erythroid/myeloidprogen-itorsandhematopoieticstemcellsoriginatefromdistinctpopulationsofendothelialcells.
CellStemCell9(6):541–552.
doi:10.
1016/j.
stem.
2011.
10.
00368.
OgawaM,KizumotoM,NishikawaS,FujimotoT,KodamaH,NishikawaSI(1999)Expressionofalpha4-integrindenestheearliestprecursorofhematopoieticcelllineagedivergedfromendothelialcells.
Blood93(4):1168–117769.
EilkenHM,NishikawaS-I,SchroederT(2009)Continuoussingle-cellimagingofbloodgenerationfromhaemogenicendothelium.
Nature457(7231):896–900.
doi:http://www.
nature.
com/nature/journal/v457/n7231/suppinfo/nature07760_S1.
html70.
VanHandelB,Montel-HagenA,SasidharanR,NakanoH,FerrariR,BoogerdCJ,SchredelsekerJ,WangY,HunterS,OrgT,ZhouJ,LiX,PellegriniM,ChenJN,OrkinSH,KurdistaniSK,EvansSM,NakanoA,MikkolaHK(2012)Sclrepressescardiomyogenesisinprospectivehemogenicendotheliumandendocardium.
Cell150(3):590–605.
doi:10.
1016/j.
cell.
2012.
06.
02671.
NadinBM,GoodellMA,HirschiKK(2003)Phenotypeandhematopoieticpotentialofsidepopulationcellsthroughoutembryonicdevelopment.
Blood102(7):2436–2443.
doi:10.
1182/blood-2003-01-011872.
GoodellMA,BroseK,ParadisG,ConnerAS,MulliganRC(1996)Isolationandfunctionalpropertiesofmurinehematopoieticstemcellsthatarereplicatinginvivo.
JExpMed183(4):1797–180673.
BohnsackBL,LaiL,DolleP,HirschiKK(2004)Signalinghierarchydownstreamofretinoicacidthatindependentlyregu-latesvascularremodelingandendothelialcellproliferation.
GenesDev18(11):1345–1358.
doi:10.
1101/gad.
118490474.
LaiL,BohnsackBL,NiederreitherK,HirschiKK(2003)Retinoicacidregulatesendothelialcellproliferationduringvasculogenesis.
Development(Cambridge,England)130(26):6465–6474.
doi:10.
1242/dev.
0088775.
ChandaB,DitadiA,IscoveNN,KellerG(2013)Retinoicacidsignalingisessentialforembryonichematopoieticstemcelldevelopment.
Cell155(1):215–227.
doi:10.
1016/j.
cell.
2013.
08.
05576.
NiederreitherK,SubbarayanV,DolleP,ChambonP(1999)Embryonicretinoicacidsynthesisisessentialforearlymousepost-implantationdevelopment.
NatGenet21(4):444–448.
doi:10.
1038/778877.
MakitaT,DuncanSA,SucovHM(2005)Retinoicacid,hypoxia,andGATAfactorscooperativelycontroltheonsetof1562E.
Gritz,K.
K.
Hirschi123fetallivererythropoietinexpressionanderythropoieticdiffer-entiation.
DevBiol280(1):59–72.
doi:10.
1016/j.
ydbio.
2005.
01.
00178.
PurtonLE,DworkinS,OlsenGH,WalkleyCR,FabbSA,CollinsSJ,ChambonP(2006)RARgammaiscriticalformaintainingabalancebetweenhematopoieticstemcellself-renewalanddifferentiation.
JExpMed203(5):1283–1293.
doi:10.
1084/jem.
2005210579.
KumarS,SandellLL,TrainorPA,KoentgenF,DuesterG(2012)Alcoholandaldehydedehydrogenases:retinoidmeta-boliceffectsinmouseknockoutmodels.
BiochimBiophysActa18211:198–205.
doi:10.
1016/j.
bbalip.
2011.
04.
00480.
HighFA,EpsteinJA(2008)ThemultifacetedroleofNotchincardiacdevelopmentanddisease.
NatRevGenet9(1):49–6181.
LiuZJ,XiaoM,BalintK,SomaA,PinnixCC,CapobiancoAJ,VelazquezOC,HerlynM(2006)InhibitionofendothelialcellproliferationbyNotch1signalingismediatedbyrepressingMAPKandPI3K/AktpathwaysandrequiresMAML1.
FASEBJOffPublFedAmSocExpBiol20(7):1009–1011.
doi:10.
1096/fj.
05-4880fje82.
UyttendaeleH,MarazziG,WuG,YanQ,SassoonD,Kita-jewskiJ(1996)Notch4/int-3,amammaryproto-oncogene,isanendothelialcell-specicmammalianNotchgene.
Development(Cambridge,England)122(7):2251–225983.
LimbourgFP,TakeshitaK,RadtkeF,BronsonRT,ChinMT,LiaoJK(2005)EssentialroleofendothelialNotch1inangio-genesis.
Circulation111(14):1826–1832.
doi:10.
1161/01.
cir.
0000160870.
93058.
dd84.
KrebsLT,XueY,NortonCR,ShutterJR,MaguireM,SundbergJP,GallahanD,ClossonV,KitajewskiJ,CallahanR,SmithGH,StarkKL,GridleyT(2000)Notchsignalingisessentialforvascularmorphogenesisinmice.
GenesDev14(11):1343–135285.
SchwanbeckR,SchroederT,HenningK,KohlhofH,RieberN,ErfurthML,JustU(2008)Notchsignalinginembryonicandadultmyelopoiesis.
CellsTissuesOrgans188(1–2):91–102.
doi:10.
1159/00011353186.
JangIH,LuYF,ZhaoL,WenzelPL,KumeT,DattaSM,AroraN,GuiuJ,LaghaM,KimPG,DoEK,KimJH,SchlaegerTM,ZonLI,BigasA,BurnsCE,DaleyGQ(2015)Notch1actsviaFoxc2topromotedenitivehematopoiesisviaeffectsonhemogenicendothelium.
Blood125(9):1418–1426.
doi:10.
1182/blood-2014-04-56817087.
KumanoK,ChibaS,KunisatoA,SataM,SaitoT,Nakagami-YamaguchiE,YamaguchiT,MasudaS,ShimizuK,TakahashiT,OgawaS,HamadaY,HiraiH(2003)Notch1butnotNotch2isessentialforgeneratinghematopoieticstemcellsfromendothelialcells.
Immunity18(5):699–71188.
SattlerM,SalgiaR(2004)Targetingc-Kitmutations:basicsciencetonoveltherapies.
LeukRes28(Suppl1):S11–S20.
doi:10.
1016/j.
leukres.
2003.
10.
00489.
ChabotB,StephensonDA,ChapmanVM,BesmerP,BernsteinA(1988)Theproto-oncogenec-kitencodingatransmembranetyrosinekinasereceptormapstothemouseWlocus.
Nature335(6185):88–89.
doi:10.
1038/335088a090.
PauklinS,VallierL(2013)Thecell-cyclestateofstemcellsdeterminescellfatepropensity.
Cell155(1):135–147.
doi:10.
1016/j.
cell.
2013.
08.
03191.
HindleyC,PhilpottA(2013)Thecellcycleandpluripotency.
BiochemJ451(2):135–143.
doi:10.
1042/bj2012162792.
KuehHY,ChamphekarA,NuttSL,ElowitzMB,RothenbergEV(2013)PositivefeedbackbetweenPU.
1andthecellcyclecontrolsmyeloiddifferentiation.
Science(NewYork,NY)341(6146):670–673.
doi:10.
1126/science.
124083193.
AggarwalR,LuJ,PompiliVJ,DasH(2012)Hematopoieticstemcells:transcriptionalregulation,exvivoexpansionandclinicalapplication.
CurrMolMed12(1):34–4994.
LiH,ColladoM,VillasanteA,MatheuA,LynchCJ,CanameroM,RizzotiK,CarneiroC,MartinezG,VidalA,Lovell-BadgeR,SerranoM(2012)p27(Kip1)directlyrepressesSox2duringembryonicstemcelldifferentiation.
CellStemCell11(6):845–852.
doi:10.
1016/j.
stem.
2012.
09.
01495.
Ciau-UitzA,WalmsleyM,PatientR(2000)DistinctoriginsofadultandembryonicbloodinXenopus.
Cell102(6):787–79696.
YokomizoT,DzierzakE(2010)Three-dimensionalcartographyofhematopoieticclustersinthevasculatureofwholemouseembryos.
Development(Cambridge,England)137(21):3651–3661.
doi:10.
1242/dev.
05109497.
JaffredoT,GautierR,BrajeulV,Dieterlen-LievreF(2000)Tracingtheprogenyoftheaortichemangioblastintheavianembryo.
DevBiol224(2):204–214.
doi:10.
1006/dbio.
2000.
979998.
TavianM,HallaisMF,PeaultB(1999)Emergenceofintraembryonichematopoieticprecursorsinthepre-liverhumanembryo.
Development(Cambridge,England)126(4):793–80399.
TaoudiS,MedvinskyA(2007)Functionalidenticationofthehematopoieticstemcellnicheintheventraldomainoftheembryonicdorsalaorta.
ProcNatlAcadSciUSA104(22):9399–9403.
doi:10.
1073/pnas.
0700984104100.
SmithRA,GlomskiCA(1982)''Hemogenicendothelium''oftheembryonicaorta:doesitexistDevCompImmunol6(2):359–368101.
TavianM,CoulombelL,LutonD,ClementeHS,Dieterlen-LievreF,PeaultB(1996)Aorta-associatedCD34he-matopoieticcellsintheearlyhumanembryo.
Blood87(1):67–72102.
BoissetJC,ClapesT,KlausA,PapazianN,OnderwaterJ,Mommaas-KienhuisM,CupedoT,RobinC(2015)Progressivematurationtowardhematopoieticstemcellsinthemouseembryoaorta.
Blood125(3):465–469.
doi:10.
1182/blood-2014-07-588954103.
MedvinskyA,RybtsovS,TaoudiS(2011)Embryonicoriginoftheadulthematopoieticsystem:advancesandquestions.
Development(Cambridge,England)138(6):1017-1031.
doi:10.
1242/dev.
040998104.
SanchezMJ,HolmesA,MilesC,DzierzakE(1996)Charac-terizationoftherstdenitivehematopoieticstemcellsintheAGMandliverofthemouseembryo.
Immunity5(6):513–525105.
TaoudiS,MorrisonAM,InoueH,GribiR,UreJ,MedvinskyA(2005)Progressivedivergenceofdenitivehaematopoieticstemcellsfromtheendothelialcompartmentdoesnotdependoncontactwiththefoetalliver.
DevelopmentCambridge,England)132(18):4179–4191.
doi:10.
1242/dev.
01974106.
TaoudiS,GonneauC,MooreK,SheridanJM,BlackburnCC,TaylorE,MedvinskyA(2008)ExtensivehematopoieticstemcellgenerationintheAGMregionviamaturationofVE-cad-herinCD45pre-denitiveHSCs.
CellStemCell3(1):99–108.
doi:10.
1016/j.
stem.
2008.
06.
004107.
MizuochiC,FraserST,BiaschK,HorioY,KikushigeY,TaniK,AkashiK,TavianM,SugiyamaD(2012)Intra-aorticclustersundergoendothelialtohematopoieticphenotypictransitionduringearlyembryogenesis.
PLoSONE7(4):e35763.
doi:10.
1371/journal.
pone.
0035763108.
RybtsovS,SobiesiakM,TaoudiS,SouilholC,SenserrichJ,LiakhovitskaiaA,IvanovsA,FramptonJ,ZhaoS,MedvinskyA(2011)Hierarchicalorganizationandearlyhematopoieticspec-icationofthedevelopingHSClineageintheAGMregion.
JExpMed208(6):1305–1315.
doi:10.
1084/jem.
20102419109.
PougetC,GautierR,TeilletM-A,JaffredoT(2006)Somite-derivedcellsreplaceventralaortichemangioblastsandprovideaorticsmoothmusclecellsofthetrunk.
Development(Cam-bridge,England)133(6):1013–1022.
doi:10.
1242/dev.
02269110.
EsnerM,MeilhacSM,RelaixF,NicolasJF,CossuG,Buck-inghamME(2006)Smoothmuscleofthedorsalaortasharesacommonclonaloriginwithskeletalmuscleofthemyotome.
Specicationandfunctionofhemogenicendotheliumduringembryogenesis1563123Development(Cambridge,England)133(4):737–749.
doi:10.
1242/dev.
02226111.
PardanaudL,Dieterlen-LievreF(1999)Manipulationoftheangiopoietic/hemangiopoieticcommitmentintheavianembryo.
Development(Cambridge,England)126(4):617–627112.
PeetersM,OttersbachK,BollerotK,OrelioC,deBruijnM,WijgerdeM,DzierzakE(2009)VentralembryonictissuesandHedgehogproteinsinduceearlyAGMhematopoieticstemcelldevelopment.
Development(Cambridge,England)136(15):2613–2621.
doi:10.
1242/dev.
034728113.
MascarenhasMI,ParkerA,DzierzakE,OttersbachK(2009)Identicationofnovelregulatorsofhematopoieticstemcelldevelopmentthroughrenementofstemcelllocalizationandexpressionproling.
Blood114(21):4645–4653.
doi:10.
1182/blood-2009-06-230037114.
MarshallCJ,KinnonC,ThrasherAJ(2000)Polarizedexpres-sionofbonemorphogeneticprotein-4inthehumanaorta-gonad-mesonephrosregion.
Blood96(4):1591–1593115.
OostendorpRA,HarveyKN,KusadasiN,deBruijnMF,SarisC,PloemacherRE,MedvinskyAL,DzierzakEA(2002)Stro-malcelllinesfrommouseaorta-gonads-mesonephrossubregionsarepotentsupportersofhematopoieticstemcellactivity.
Blood99(4):1183–1189116.
Mirshekar-SyahkalB,HaakE,KimberGM,vanLeusdenK,HarveyK,O'RourkeJ,LabordaJ,BauerSR,deBruijnMF,Ferguson-SmithAC,DzierzakE,OttersbachK(2013)Dlk1isanegativeregulatorofemerginghematopoieticstemandpro-genitorcells.
Haematologica98(2):163–171.
doi:10.
3324/haematol.
2012.
070789117.
RichardC,DrevonC,CantoPY,VillainG,BollerotK,Lem-pereurA,TeilletMA,VincentC,RosselloCastilloC,TorresM,PiwarzykE,SpeckNA,SouyriM,JaffredoT(2013)Endothe-lio-mesenchymalinteractioncontrolsrunx1expressionandmodulatesthenotchpathwaytoinitiateaortichematopoiesis.
DevCell24(6):600–611.
doi:10.
1016/j.
devcel.
2013.
02.
011118.
AdamoL,NaveirasO,WenzelPL,McKinney-FreemanS,MackPJ,Gracia-SanchoJ,Suchy-DiceyA,YoshimotoM,LenschMW,YoderMC,Garcia-CardenaG,DaleyGQ(2009)Biome-chanicalforcespromoteembryonichaematopoiesis.
Nature459(7250):1131–1135.
doi:http://www.
nature.
com/nature/journal/v459/n7250/suppinfo/nature08073_S1.
html119.
NorthTE,GoesslingW,PeetersM,LiP,CeolC,LordAM,WeberGJ,HarrisJ,CuttingCC,HuangP,DzierzakE,ZonLI(2009)Hematopoieticstemcelldevelopmentisdependentonbloodow.
Cell137(4):736–748.
doi:10.
1016/j.
cell.
2009.
04.
023120.
SwiersG,RodeC,AzzoniE,deBruijnMF(2013)Ashorthistoryofhemogenicendothelium.
BloodCellsMolDis51(4):206–212.
doi:10.
1016/j.
bcmd.
2013.
09.
005121.
LacaudG,GoreL,KennedyM,KouskoffV,KingsleyP,HoganC,CarlssonL,SpeckN,PalisJ,KellerG(2002)Runx1isessentialforhematopoieticcommitmentatthehemangioblaststageofdevelopmentinvitro.
Blood100(2):458–466.
doi:10.
1182/blood-2001-12-0321122.
YokomizoT,OgawaM,OsatoM,KannoT,YoshidaH,Fuji-motoT,FraserS,NishikawaS,OkadaH,SatakeM,NodaT,NishikawaS,ItoY(2001)RequirementofRunx1/AML1/PEBP2alphaBforthegenerationofhaematopoieticcellsfromendothelialcells.
GenesCellsDevotedMolCellMech6(1):13–23123.
SwiersG,deBruijnM,SpeckNA(2010)HematopoieticstemcellemergenceintheconceptusandtheroleofRunx1.
IntJDevBiol54(6–7):1151–1163.
doi:10.
1387/ijdb.
103106gs124.
CaiZ,deBruijnM,MaX,DortlandB,LuteijnT,DowningRJ,DzierzakE(2000)HaploinsufciencyofAML1affectsthetemporalandspatialgenerationofhematopoieticstemcellsinthemouseembryo.
Immunity13(4):423–431125.
OkudaT,vanDeursenJ,HiebertSW,GrosveldG,DowningJR(1996)AML1,thetargetofmultiplechromosomaltransloca-tionsinhumanleukemia,isessentialfornormalfetalliverhematopoiesis.
Cell84(2):321–330126.
WangQ,StacyT,MillerJD,LewisAF,GuTL,HuangX,BushwellerJH,BoriesJC,AltFW,RyanG,LiuPP,Wynshaw-BorisA,BinderM,Marin-PadillaM,SharpeAH,SpeckNA(1996)TheCBFbetasubunitisessentialforCBFalpha2(AML1)functioninvivo.
Cell87(4):697–708127.
LiakhovitskaiaA,RybtsovS,SmithT,BatsivariA,RybtsovaN,RodeC,deBruijnM,BuchholzF,Gordon-KeylockS,ZhaoS,MedvinskyA(2014)Runx1isrequiredforprogressionofCD41embryonicprecursorsintoHSCsbutnotpriortothis.
Development(Cambridge,England)141(17):3319–3323.
doi:10.
1242/dev.
110841128.
HuangG,ZhangP,HiraiH,ElfS,YanX,ChenZ,KoschmiederS,OkunoY,DayaramT,GrowneyJD,ShivdasaniRA,GillilandDG,SpeckNA,NimerSD,TenenDG(2008)PU.
1isamajordownstreamtargetofAML1(RUNX1)inadultmousehema-topoiesis.
NatGenet40(1):51–60.
doi:10.
1038/ng.
2007.
7129.
GottgensB,NastosA,KinstonS,PiltzS,DelabesseEC,StanleyM,SanchezMJ,Ciau-UitzA,PatientR,GreenAR(2002)Establishingthetranscriptionalprogrammeforblood:theSCLstemcellenhancerisregulatedbyamultiproteincomplexcontainingEtsandGATAfactors.
EMBOJ21(12):3039–3050.
doi:10.
1093/emboj/cdf286130.
NottinghamWT,JarrattA,BurgessM,SpeckCL,ChengJF,PrabhakarS,RubinEM,LiPS,Sloane-StanleyJ,KongASJ,deBruijnMF(2007)Runx1-mediatedhematopoieticstem-cellemergenceiscontrolledbyaGata/Ets/SCL-regulatedenhancer.
Blood110(13):4188–4197.
doi:10.
1182/blood-2007-07-100883131.
LizamaCO,HawkinsJS,SchmittCE,BosFL,ZapeJP,CautivoKM,BorgesPintoH,RhynerAM,YuH,DonohoeME,WytheJD,ZoveinAC(2015)Repressionofarterialgenesinhemo-genicendotheliumissufcientforhaematopoieticfateacquisition.
NatCommun6:7739.
doi:10.
1038/ncomms8739132.
GhoziMC,BernsteinY,NegreanuV,LevanonD,GronerY(1996)ExpressionofthehumanacutemyeloidleukemiageneAML1isregulatedbytwopromoterregions.
ProcNatlAcadSciUSA93(5):1935–1940133.
LieALM,MarinopoulouE,LiY,PatelR,StefanskaM,BoniferC,MillerC,KouskoffV,LacaudG(2014)RUNX1positivelyregulatesacelladhesionandmigrationprograminmurinehemogenicendotheliumpriortobloodemergence.
124(11):e11–20.
doi:10.
1182/blood-2014-04-572958134.
SroczynskaP,LancrinC,KouskoffV,LacaudG(2009)ThedifferentialactivitiesofRunx1promotersdenemilestonesduringembryonichematopoiesis.
Blood114(26):5279–5289.
doi:10.
1182/blood-2009-05-222307135.
TelferJC,RothenbergEV(2001)ExpressionandfunctionofastemcellpromoterforthemurineCBFalpha2gene:distinctrolesandregulationinnaturalkillerandTcelldevelopment.
DevBiol229(2):363–382.
doi:10.
1006/dbio.
2000.
9991136.
BeeT,AshleyEL,BickleySR,JarrattA,LiPS,Sloane-StanleyJ,GottgensB,deBruijnMF(2009)ThemouseRunx123hematopoieticstemcellenhancerconfershematopoieticspeci-citytobothRunx1promoters.
Blood113(21):5121–5124.
doi:10.
1182/blood-2008-12-193003137.
LancrinC,MazanM,StefanskaM,PatelR,LichtingerM,CostaG,VargelO¨,WilsonNK,Mo¨ro¨yT,BoniferC,Go¨ttgensB,KouskoffV,LacaudG(2012)GFI1andGFI1Bcontrolthelossofendothelialidentityofhemogenicendotheliumduringhematopoieticcommitment,vol120.
vol2.
doi:10.
1182/blood-2011-10-386094138.
LamEY,ChauJY,Kalev-ZylinskaML,FountaineTM,MeadRS,HallCJ,CrosierPS,CrosierKE,FloresMV(2009)1564E.
Gritz,K.
K.
Hirschi123Zebrashrunx1promoter-EGFPtransgenicsmarkdiscretesitesofdenitivebloodprogenitors.
Blood113(6):1241–1249.
doi:10.
1182/blood-2008-04-149898139.
ChallenGA,GoodellMA(2010)Runx1isoformsshowdiffer-entialexpressionpatternsduringhematopoieticdevelopmentbuthavesimilarfunctionaleffectsinadulthematopoieticstemcells.
ExpHematol38(5):403–416.
doi:10.
1016/j.
exphem.
2010.
02.
011140.
TanakaY,JoshiA,WilsonNK,KinstonS,NishikawaS,GottgensB(2012)ThetranscriptionalprogrammecontrolledbyRunx1duringearlyembryonicblooddevelopment.
DevBiol366(2):404–419.
doi:10.
1016/j.
ydbio.
2012.
03.
024141.
ToberJ,YzaguirreAD,PiwarzykE,SpeckNA(2013)DistincttemporalrequirementsforRunx1inhematopoieticprogenitorsandstemcells.
Development(Cambridge,England)140(18):3765–3776.
doi:10.
1242/dev.
094961142.
LiakhovitskaiaA,GribiR,StamaterisE,VillainG,JaffredoT,WilkieR,GilchristD,YangJ,UreJ,MedvinskyA(2009)RestorationofRunx1expressionintheTie2cellcompartmentrescuesdenitivehematopoieticstemcellsandextendslifeofRunx1knockoutanimalsuntilbirth.
StemCells(Dayton,Ohio)27(7):1616–1624.
doi:10.
1002/stem.
71143.
GrowneyJD,ShigematsuH,LiZ,LeeBH,AdelspergerJ,RowanR,CurleyDP,KutokJL,AkashiK,WilliamsIR,SpeckNA,GillilandDG(2005)LossofRunx1perturbsadulthema-topoiesisandisassociatedwithamyeloproliferativephenotype.
Blood106(2):494–504.
doi:10.
1182/blood-2004-08-3280144.
DrevonC,JaffredoT(2014)Cellinteractionsandcellsignalingduringhematopoieticdevelopment.
ExpCellRes329(2):200–206.
doi:10.
1016/j.
yexcr.
2014.
10.
009145.
RobinC,OttersbachK,DurandC,PeetersM,VanesL,Tybu-lewiczV,DzierzakE(2006)AnunexpectedroleforIL-3intheembryonicdevelopmentofhematopoieticstemcells.
DevCell11(2):171–180.
doi:10.
1016/j.
devcel.
2006.
07.
002146.
TijssenMR,CvejicA,JoshiA,HannahRL,FerreiraR,ForraiA,BellissimoDC,OramSH,SmethurstPA,WilsonNK,WangX,OttersbachK,StempleDL,GreenAR,OuwehandWH,GottgensB(2011)Genome-wideanalysisofsimultaneousGATA1/2,RUNX1,FLI1,andSCLbindinginmegakaryocytesidentieshematopoieticregulators.
DevCell20(5):597–609.
doi:10.
1016/j.
devcel.
2011.
04.
008147.
PattersonLJ,GeringM,PatientR(2005)Sclisrequiredfordorsalaortaaswellasbloodformationinzebrashembryos.
Blood105(9):3502–3511.
doi:10.
1182/blood-2004-09-3547148.
Ciau-UitzA,MonteiroR,KirmizitasA,PatientR(2014)Developmentalhematopoiesis:ontogeny,geneticprogrammingandconservation.
ExpHematol42(8):669–683.
doi:10.
1016/j.
exphem.
2014.
06.
001149.
RobbL,LyonsI,LiR,HartleyL,KontgenF,HarveyRP,MetcalfD,BegleyCG(1995)Absenceofyolksachematopoi-esisfrommicewithatargeteddisruptionofthesclgene.
ProcNatlAcadSciUSA92(15):7075–7079150.
WarrenAJ,ColledgeWH,CarltonMB,EvansMJ,SmithAJ,RabbittsTH(1994)Theoncogeniccysteine-richLIMdomainproteinrbtn2isessentialforerythroiddevelopment.
Cell78(1):45–57151.
TsaiFY,KellerG,KuoFC,WeissM,ChenJ,RosenblattM,AltFW,OrkinSH(1994)AnearlyhaematopoieticdefectinmicelackingthetranscriptionfactorGATA-2.
Nature371(6494):221–226.
doi:10.
1038/371221a0152.
PevnyL,SimonMC,RobertsonE,KleinWH,TsaiSF,D'AgatiV,OrkinSH,CostantiniF(1991)ErythroiddifferentiationinchimaericmiceblockedbyatargetedmutationinthegenefortranscriptionfactorGATA-1.
Nature349(6306):257–260.
doi:10.
1038/349257a0153.
ZhenF,LanY,YanB,ZhangW,WenZ(2013)HemogenicendotheliumspecicationandhematopoieticstemcellmaintenanceemploydistinctSclisoforms.
Development(Cambridge,England)140(19):3977–3985.
doi:10.
1242/dev.
097071154.
MinegishiN,OhtaJ,YamagiwaH,SuzukiN,KawauchiS,ZhouY,TakahashiS,HayashiN,EngelJD,YamamotoM(1999)ThemouseGATA-2geneisexpressedinthepara-aorticsplanchnopleuraandaorta-gonadsandmesonephrosregion.
Blood93(12):4196–4207155.
LingKW,OttersbachK,vanHamburgJP,OziemlakA,TsaiFY,OrkinSH,PloemacherR,HendriksRW,DzierzakE(2004)GATA-2playstwofunctionallydistinctrolesduringtheonto-genyofhematopoieticstemcells.
JExpMed200(7):871–882.
doi:10.
1084/jem.
20031556156.
GaoX,JohnsonKD,ChangYI,BoyerME,DeweyCN,ZhangJ,BresnickEH(2013)Gata2cis-elementisrequiredforhematopoieticstemcellgenerationinthemammalianembryo.
JExpMed210(13):2833–2842.
doi:10.
1084/jem.
20130733157.
dePaterE,KaimakisP,VinkCS,YokomizoT,Yamada-Ina-gawaT,vanderLindenR,KartalaeiPS,CamperSA,SpeckN,DzierzakE(2013)Gata2isrequiredforHSCgenerationandsurvival.
JExpMed210(13):2843–2850.
doi:10.
1084/jem.
20130751158.
YamadaY,WarrenAJ,DobsonC,ForsterA,PannellR,Rab-bittsTH(1998)TheTcellleukemiaLIMproteinLmo2isnecessaryforadultmousehematopoiesis.
ProcNatlAcadSciUSA95(7):3890–3895159.
YamadaY,PannellR,ForsterA,RabbittsTH(2000)TheoncogenicLIM-onlytranscriptionfactorLmo2regulatesangiogenesisbutnotvasculogenesisinmice.
ProcNatlAcadSciUSA97(1):320–324160.
PattersonLJ,GeringM,EckfeldtCE,GreenAR,VerfaillieCM,EkkerSC,PatientR(2007)ThetranscriptionfactorsSclandLmo2acttogetherduringdevelopmentofthehemangioblastinzebrash.
Blood109(6):2389–2398.
doi:10.
1182/blood-2006-02-003087161.
BigasA,Robert-MorenoA,EspinosaL(2010)TheNotchpathwayinthedevelopinghematopoieticsystem.
IntJDevBiol54(6–7):1175–1188.
doi:10.
1387/ijdb.
093049ab162.
HadlandBK,HuppertSS,KanungoJ,XueY,JiangR,GridleyT,ConlonRA,ChengAM,KopanR,LongmoreGD(2004)ArequirementforNotch1distinguishes2phasesofdenitivehematopoiesisduringdevelopment.
Blood104(10):3097–3105.
doi:10.
1182/blood-2004-03-1224163.
HadlandBK,Varnum-FinneyB,PoulosMG,MoonRT,ButlerJM,RaiS,BernsteinID(2015)EndotheliumandNOTCHspecifyandamplifyaorta-gonad-mesonephros-derivedhematopoieticstemcells.
JClinInvestig125(5):2032–2045.
doi:10.
1172/jci80137164.
BigasA,D'AltriT,EspinosaL(2012)TheNotchpathwayinhematopoieticstemcells.
CurrTopMicrobiolImmunol360:1–18.
doi:10.
1007/82_2012_229165.
BigasA,GuiuJ,Gama-NortonL(2013)NotchandWntsig-nalingintheemergenceofhematopoieticstemcells.
BloodCellsMolDis51(4):264–270.
doi:10.
1016/j.
bcmd.
2013.
07.
005166.
Robert-MorenoA,EspinosaL,delaPompaJL,BigasA(2005)RBPjkappa-dependentNotchfunctionregulatesGata2andisessentialfortheformationofintra-embryonichematopoieticcells.
Development(Cambridge,England)132(5):1117–1126.
doi:10.
1242/dev.
01660167.
RobertMorenoA`,GuiuJ,RuizHerguidoC,LopezME,InglesEsteveJ,RieraL,TippingA,EnverT,DzierzakE,GridleyT,EspinosaL,BigasA(2008)ImpairedembryonichaematopoiesisyetnormalarterialdevelopmentintheabsenceoftheNotchligandJagged1,vol27.
vol13.
doi:10.
1038/emboj.
2008.
113168.
GuiuJ,ShimizuR,D'AltriT,FraserST,HatakeyamaJ,Bres-nickEH,KageyamaR,DzierzakE,YamamotoM,EspinosaL,Specicationandfunctionofhemogenicendotheliumduringembryogenesis1565123BigasA(2013)HesrepressorsareessentialregulatorsofhematopoieticstemcelldevelopmentdownstreamofNotchsignaling.
JExpMed210(1):71–84.
doi:10.
1084/jem.
20120993169.
OkaC,NakanoT,WakehamA,delaPompaJL,MoriC,SakaiT,OkazakiS,KawaichiM,ShiotaK,MakTW,HonjoT(1995)DisruptionofthemouseRBP-Jkappageneresultsinearlyembryonicdeath.
Development(Cambridge,England)121(10):3291–3301170.
ButkoE,DistelM,PougetC,WeijtsB,KobayashiI,NgK,MosimannC,PoulainFE,McPhersonA,NiCW,StachuraDL,DelCidN,Espin-PalazonR,LawsonND,DorskyR,ClementsWK,TraverD(2015)Gata2bisarestrictedearlyregulatorofhemogenicendotheliuminthezebrashembryo.
Development(Cambridge,England)142(6):1050–1061.
doi:10.
1242/dev.
119180171.
VandeWalleI,WaegemansE,DeMedtsJ,DeSmetG,DeSmedtM,SnauwaertS,VandekerckhoveB,KerreT,LeclercqG,PlumJ,GridleyT,WangT,KochU,RadtkeF,TaghonT(2013)SpecicNotchreceptor-ligandinteractionscontrolhumanTCR-alphabeta/gammadeltadevelopmentbyinducingdifferentialNotchsignalstrength.
JExpMed210(4):683–697.
doi:10.
1084/jem.
20121798172.
PetrovicJ,Formosa-JordanP,Luna-EscalanteJC,AbelloG,IbanesM,NevesJ,GiraldezF(2014)Ligand-dependentNotchsignalingstrengthorchestrateslateralinductionandlateralinhibitioninthedevelopinginnerear.
Development(Cam-bridge,England)141(11):2313–2324.
doi:10.
1242/dev.
108100173.
Gama-NortonL,FerrandoE,Ruiz-HerguidoC,LiuZ,GuiuJ,IslamAB,LeeSU,YanM,GuidosCJ,Lopez-BigasN,MaedaT,EspinosaL,KopanR,BigasA(2015)Notchsignalstrengthcontrolscellfateinthehaemogenicendothelium.
NatCommun6:8510.
doi:10.
1038/ncomms9510174.
AyllonV,BuenoC,Ramos-MejiaV,Navarro-MonteroO,Pri-etoC,RealPJ,RomeroT,Garcia-LeonMJ,ToribioML,BigasA,MenendezP(2015)TheNotchligandDLL4specicallymarkshumanhematoendothelialprogenitorsandregulatestheirhematopoieticfate.
Leukemia.
doi:10.
1038/leu.
2015.
74175.
GuiuJ,BergenDJ,DePaterE,IslamAB,AyllonV,Gama-NortonL,Ruiz-HerguidoC,GonzalezJ,Lopez-BigasN,MenendezP,DzierzakE,EspinosaL,BigasA(2014)Identi-cationofCdca7asanovelNotchtranscriptionaltargetinvolvedinhematopoieticstemcellemergence.
JExpMed211(12):2411–2423.
doi:10.
1084/jem.
20131857176.
Ruiz-HerguidoC,GuiuJ,D'AltriT,Ingles-EsteveJ,DzierzakE,EspinosaL,BigasA(2012)Hematopoieticstemcelldevel-opmentrequirestransientWnt/beta-cateninactivity.
JExpMed209(8):1457–1468.
doi:10.
1084/jem.
20120225177.
GoesslingW,NorthTE,LoewerS,LordAM,LeeS,Stoick-CooperCL,WeidingerG,PuderM,DaleyGQ,MoonRT,ZonLI(2009)GeneticinteractionofPGE2andWntsignalingregulatesdevelopmentalspecicationofstemcellsandregeneration.
Cell136(6):1136–1147.
doi:10.
1016/j.
cell.
2009.
01.
015178.
SturgeonCM,DitadiA,AwongG,KennedyM,KellerG(2014)Wntsignalingcontrolsthespecicationofdenitiveandprim-itivehematopoiesisfromhumanpluripotentstemcells.
NatBiotechnol32(6):554–561.
doi:10.
1038/nbt.
2915179.
IvanovaNB,DimosJT,SchanielC,HackneyJA,MooreKA,LemischkaIR(2002)Astemcellmolecularsignature.
Science(NewYork,NY)298(5593):601–604.
doi:10.
1126/science.
1073823180.
TaghonT,ThysK,DeSmedtM,WeerkampF,StaalFJ,PlumJ,LeclercqG(2003)HomeoboxgeneexpressionproleinhumanhematopoieticmultipotentstemcellsandT-cellprogenitors:implicationsforhumanT-celldevelopment.
Leukemia17(6):1157–1163.
doi:10.
1038/sj.
leu.
2402947181.
ForsbergEC,ProhaskaSS,KatzmanS,HeffnerGC,StuartJM,WeissmanIL(2005)Differentialexpressionofnovelpotentialregulatorsinhematopoieticstemcells.
PLoSGenet1(3):e28.
doi:10.
1371/journal.
pgen.
0010028182.
SauvageauG,LansdorpPM,EavesCJ,HoggeDE,DragowskaWH,ReidDS,LargmanC,LawrenceHJ,HumphriesRK(1994)Differentialexpressionofhomeoboxgenesinfunctionallydis-tinctCD34subpopulationsofhumanbonemarrowcells.
ProcNatlAcadSciUSA91(25):12223–12227183.
IacovinoM,ChongD,SzatmariI,HartweckL,RuxD,CaprioliA,CleaverO,KybaM(2011)HoxA3isanapicalregulatorofhaemogenicendothelium.
NatCellBiol13(1):72–78.
doi:10.
1038/ncb2137184.
KybaM,PerlingeiroRC,DaleyGQ(2002)HoxB4confersdenitivelymphoid-myeloidengraftmentpotentialonembry-onicstemcellandyolksachematopoieticprogenitors.
Cell109(1):29–37185.
OshimaM,EndohM,EndoTA,ToyodaT,Nakajima-TakagiY,SugiyamaF,KosekiH,KybaM,IwamaA,OsawaM(2011)Genome-wideanalysisoftargetgenesregulatedbyHoxB4inhematopoieticstemandprogenitorcellsdevelopingfromembryonicstemcells.
Blood117(15):e142–e150.
doi:10.
1182/blood-2010-12-323212186.
CoradaM,OrsenigoF,MoriniMF,PitulescuME,BhatG,NyqvistD,BreviarioF,ContiV,BriotA,Iruela-ArispeML,AdamsRH,DejanaE(2013)Sox17isindispensableforacquisitionandmaintenanceofarterialidentity.
Naturecom-munications4:2609.
doi:10.
1038/ncomms3609187.
ClarkeRL,YzaguirreAD,Yashiro-OhtaniY,BondueA,BlanpainC,PearWS,SpeckNA,KellerG(2013)TheexpressionofSox17identiesandregulateshaemogenicendothelium.
NatCellBiol15(5):502–510.
doi:10.
1038/ncb2724188.
HeS,KimI,LimMS,MorrisonSJ(2011)Sox17expressionconfersself-renewalpotentialandfetalstemcellcharacteristicsuponadulthematopoieticprogenitors.
GenesDev25(15):1613–1627.
doi:10.
1101/gad.
2052911189.
Nakajima-TakagiY,OsawaM,OshimaM,TakagiH,MiyagiS,EndohM,EndoTA,TakayamaN,EtoK,ToyodaT,KosekiH,NakauchiH,IwamaA(2013)RoleofSOX17inhematopoieticdevelopmentfromhumanembryonicstemcells,vol121.
vol3.
doi:10.
1182/blood-2012-05-431403190.
BosFL,HawkinsJS,ZoveinAC(2015)Single-cellresolutionofmorphologicalchangesinhemogenicendothelium.
Develop-ment(Cambridge,England)142(15):2719-2724.
doi:10.
1242/dev.
121350191.
ClarkeRL,RobitailleAM,MoonRT,KellerG(2015)AQuantitativeproteomicanalysisofhemogenicendotheliumrevealsdifferentialregulationofhematopoiesisbySOX17.
StemcellRep5(2):291–304.
doi:10.
1016/j.
stemcr.
2015.
07.
008192.
GandilletA,SerranoAG,PearsonS,LieALM,LacaudG,KouskoffV(2009)Sox7-sustainedexpressionaltersthebalancebetweenproliferationanddifferentiationofhematopoieticpro-genitorsattheonsetofbloodspecication.
Blood114(23):4813–4822.
doi:10.
1182/blood-2009-06-226290193.
SerranoAG,GandilletA,PearsonS,LacaudG,KouskoffV(2010)ContrastingeffectsofSox17-andSox18-sustainedexpressionattheonsetofbloodspecication,vol115.
vol19.
doi:10.
1182/blood-2009-10-247395194.
ZhangY,JinH,LiL,QinFX,WenZ(2011)cMybregulateshematopoieticstem/progenitorcellmobilizationduringzebra-shhematopoiesis.
Blood118(15):4093–4101.
doi:10.
1182/blood-2011-03-342501195.
MucenskiML,McLainK,KierAB,SwerdlowSH,SchreinerCM,MillerTA,PietrygaDW,ScottWJJr,PotterSS(1991)A1566E.
Gritz,K.
K.
Hirschi123functionalc-mybgeneisrequiredfornormalmurinefetalhepatichematopoiesis.
Cell65(4):677–689196.
TakakuraN,WatanabeT,SuenobuS,YamadaY,NodaT,ItoY,SatakeM,SudaT(2000)Aroleforhematopoieticstemcellsinpromotingangiogenesis.
Cell102(2):199–209197.
Soza-RiedC,HessI,NetuschilN,SchorppM,BoehmT(2010)Essentialroleofc-mybindenitivehematopoiesisisevolu-tionarilyconserved.
ProcNatlAcadSciUSA107(40):17304–17308.
doi:10.
1073/pnas.
1004640107198.
MoriyamaA,InohayaK,MaruyamaK,KudoA(2010)Befmedakamutantrevealstheessentialroleofc-mybinbothprimitiveanddenitivehematopoiesis.
DevBiol345(2):133–143.
doi:10.
1016/j.
ydbio.
2010.
06.
031199.
SolaimaniKartalaeiP,Yamada-InagawaT,VinkCS,dePaterE,vanderLindenR,Marks-BluthJ,vanderSlootA,vandenHoutM,YokomizoT,vanSchaick-SolernoML,DelwelR,PimandaJE,vanIWF,DzierzakE(2015)Whole-transcriptomeanalysisofendothelialtohematopoieticstemcelltransitionrevealsarequirementforGpr56inHSCgeneration.
TheJournalofexperimentalmedicine212(1):93–106.
doi:10.
1084/jem.
20140767200.
WilsonNK,FosterSD,WangX,KnezevicK,Schu¨tteJ,Kai-makisP,ChilarskaPM,KinstonS,OuwehandWH,DzierzakE,PimandaJE,deBruijnMFTR,Go¨ttgensB(2010)Combinatorialtranscriptionalcontrolinbloodstem/progenitorcells:genome-wideanalysisoftenmajortranscriptionalregulators.
CellStemCell7(4):532–544.
doi:10.
1016/j.
stem.
2010.
07.
016201.
ZhangP,HeQ,ChenD,LiuW,WangL,ZhangC,MaD,LiW,LiuB,LiuF(2015)Gprotein-coupledreceptor183facilitatesendothelial-to-hematopoietictransitionviaNotch1inhibition.
CellRes25(10):1093–1107.
doi:10.
1038/cr.
2015.
109202.
JingL,TamplinOJ,ChenMJ,DengQ,PattersonS,KimPG,DurandEM,McNeilA,GreenJM,MatsuuraS,AblainJ,BrandtMK,SchlaegerTM,HuttenlocherA,DaleyGQ,RavidK,ZonLI(2015)Adenosinesignalingpromoteshematopoieticstemandprogenitorcellemergence.
JExpMed212(5):649–663.
doi:10.
1084/jem.
20141528203.
HermouetS,CorreI,LippertE(2000)Interleukin-8andotheragonistsofGi2proteins:autocrineparacrinegrowthfactorsforhumanhematopoieticprogenitorsactinginsynergywithcolonystimulatingfactors.
LeukLymphoma38(1–2):39–48.
doi:10.
3109/10428190009060317204.
MajumderA,SyedKM,JosephS,ScamblerPJ,DuttaD(2015)HistonechaperoneHIRAinregulationoftranscriptionfactorRUNX1.
JBiolChem290(21):13053–13063.
doi:10.
1074/jbc.
M114.
615492205.
Ramalho-SantosM,YoonS,MatsuzakiY,MulliganRC,MeltonDA(2002)''Stemness'':transcriptionalprolingofembryonicandadultstemcells.
Science(NewYork,NY)298(5593):597–600.
doi:10.
1126/science.
1072530206.
GrskovicM,ChaivorapolC,Gaspar-MaiaA,LiH,Ramalho-SantosM(2007)Systematicidenticationofcis-regulatorysequencesactiveinmouseandhumanembryonicstemcells.
PLoSGenet3(8):e145.
doi:10.
1371/journal.
pgen.
0030145207.
KohFM,LizamaCO,WongP,HawkinsJS,ZoveinAC(2015)EmergenceofhematopoieticstemandprogenitorcellsinvolvesaChd1-dependentincreaseintotalnascenttranscription.
112(14):E1734–1743.
doi:10.
1073/pnas.
1424850112208.
ImaniradP,SolaimaniKartalaeiP,CrisanM,VinkC,Yamada-InagawaT,dePaterE,KurekD,KaimakisP,vanderLindenR,SpeckN,DzierzakE(2014)HIF1alphaisaregulatorofhematopoieticprogenitorandstemcelldevelopmentinhypoxicsitesofthemouseembryo.
Stemcellresearch12(1):24–35.
doi:10.
1016/j.
scr.
2013.
09.
006209.
HeQ,ZhangC,WangL,ZhangP,MaD,LvJ,LiuF(2015)Inammatorysignalingregulateshematopoieticstemandpro-genitorcellemergenceinvertebrates.
Blood125(7):1098–1106.
doi:10.
1182/blood-2014-09-601542210.
SawamiphakS,KontarakisZ,StainierDY(2014)Interferongammasignalingpositivelyregulateshematopoieticstemcellemergence.
DevCell31(5):640–653.
doi:10.
1016/j.
devcel.
2014.
11.
007211.
LiY,EsainV,TengL,XuJ,KwanW,FrostIM,YzaguirreAD,CaiX,CortesM,MaijenburgMW,ToberJ,DzierzakE,OrkinSH,TanK,NorthTE,SpeckNA(2014)Inammatorysignalingregulatesembryonichematopoieticstemandprogenitorcellproduction.
GenesDev28(23):2597–2612.
doi:10.
1101/gad.
253302.
114212.
Espin-PalazonR,StachuraDL,CampbellCA,Garcia-MorenoD,DelCidN,KimAD,CandelS,MeseguerJ,MuleroV,TraverD(2014)Proinammatorysignalingregulateshematopoieticstemcellemergence.
Cell159(5):1070–1085.
doi:10.
1016/j.
cell.
2014.
10.
031213.
Dieterlen-LievreF,JaffredoT(2009)Decodingthehemogenicendotheliuminmammals.
CellStemCell4(3):189–190.
doi:10.
1016/j.
stem.
2009.
02.
006214.
PelosiE,CastelliG,Martin-PaduraI,BordoniV,SantoroS,ConigliaroA,CerioAM,DeSantisPuzzoniaM,MarighettiP,BiffoniM,AlonziT,AmiconeL,AlcalayM,BertoliniF,TestaU,TripodiM(2012)Humanhaemato-endothelialprecursors:cordbloodCD34cellsproducehaemogenicendothelium.
PLoSOne7(12):e51109.
doi:10.
1371/journal.
pone.
0051109215.
ChenT,WangF,WuM,WangZZ(2015)Developmentofhematopoieticstemandprogenitorcellsfromhumanpluripotentstemcells.
JCellBiochem116(7):1179–1189.
doi:10.
1002/jcb.
25097Specicationandfunctionofhemogenicendotheliumduringembryogenesis1567123

酷番云78元台湾精品CN2 2核 1G 60G SSD硬盘

酷番云怎么样?酷番云就不讲太多了,介绍过很多次,老牌商家完事,最近有不少小伙伴,一直问我台湾VPS,比较难找好的商家,台湾VPS本来就比较少,也介绍了不少商家,线路都不是很好,有些需求支持Windows是比较少的,这里我们就给大家测评下 酷番云的台湾VPS,支持多个版本Linux和Windows操作系统,提供了CN2线路,并且还是原生IP,更惊喜的是提供的是无限流量。有需求的可以试试。可以看到回程...

搬瓦工VPS:高端线路,助力企业运营,10Gbps美国 cn2 gia,1Gbps香港cn2 gia,10Gbps日本软银

搬瓦工vps(bandwagonhost)现在面向中国大陆有3条顶级线路:美国 cn2 gia,香港 cn2 gia,日本软银(softbank)。详细带宽是:美国cn2 gia、日本软银,都是2.5Gbps~10Gbps带宽,香港 cn2 gia为1Gbps带宽,搬瓦工是目前为止,全球所有提供这三种带宽的VPS(云服务器)商家里面带宽最大的,成本最高的,没有第二家了! 官方网站:https...

提速啦:美国多IP站群云服务器 8核8G 10M带宽 7IP 88元/月

提速啦(www.tisula.com)是赣州王成璟网络科技有限公司旗下云服务器品牌,目前拥有在籍员工40人左右,社保在籍员工30人+,是正规的国内拥有IDC ICP ISP CDN 云牌照资质商家,2018-2021年连续4年获得CTG机房顶级金牌代理商荣誉 2021年赣州市于都县创业大赛三等奖,2020年于都电子商务示范企业,2021年于都县电子商务融合推广大使。资源优势介绍:Ceranetwo...

7788kk.com为你推荐
乐划锁屏乐视手机屏幕锁怎么自己就变了微信回应封杀钉钉微信发过来的钉钉链接打不开?商标注册流程及费用注册商标的程序及费用?rawtoolsTF卡被写保护了怎么办?百度指数词百度指数是指,词不管通过什么样的搜索引擎进行搜索,都会被算成百度指数吗?m88.comm88.com现在的官方网址是哪个啊 ?m88.com分析软件?bbs2.99nets.com西安论坛、西安茶馆网、西安社区、西安bbs 的网址是多少?baqizi.cc讲讲曾子杀猪的主要内容!dadi.tv海信电视机上出现英文tvservice是什么意思?www.toutoulu.com老板强大的外包装还是被快递弄断了
cn域名 中文域名交易中心 怎么申请域名 新网域名管理 5折 vpsio 国外服务器 godaddy域名转出 realvnc parseerror 论坛空间 52测评网 架设服务器 大容量存储器 支付宝扫码领红包 linux使用教程 卡巴斯基免费试用版 yundun 我的世界服务器ip 云服务器比较 更多