activationwww.580hu.com

www.580hu.com  时间:2021-03-21  阅读:()
NANOEXPRESSOpenAccessThinningandfunctionalizationoffew-layergraphenesheetsbyCF4plasmatreatmentChaoShen1,GaoshanHuang1*,YingchunCheng2*,RonggenCao1,FeiDing3,UdoSchwingenschlgl2andYongfengMei1*Abstract:Structuralchangesoffew-layergraphenesheetsinducedbyCF4plasmatreatmentarestudiedbyopticalmicroscopyandRamanspectroscopy,togetherwiththeoreticalsimulation.
Experimentalresultssuggestathicknessreductionoffew-layergraphenesheetssubjectedtoprolongedCF4plasmatreatmentwhileplasmatreatmentwithshorttimeonlyleadstofluorinefunctionalizationonthesurfacelayerbyformationofcovalentbonds.
Ramanspectrarevealanincreaseindisorderbyphysicaldisruptionofthegraphenelatticeaswellasfunctionalizationduringtheplasmatreatment.
TheF/CF3adsorptionandthelatticedistortionproducedareprovedbytheoreticalsimulationusingdensityfunctionaltheory,whichalsopredictsp-typedopingandDiracconesplittinginCF4plasma-treatedgraphenesheetsthatmayhavepotentialinfuturegraphene-basedmicro/nanodevices.
PACS:81.
05.
ue;73.
22.
Pr;52.
40.
Hf.
Keywords:Graphenesheets,Plasma,Thinning,Functionalization,Ramanspectroscopy,Densityfunctionaltheory,DiracconesplittingBackgroundGrapheneisonelayerofCatoms,arrangedinahex-agonallattice[1-3].
Sinceitwasfirstproducedbymech-anicalexfoliationin2004[4],graphenehasbeenstudiedboththeoreticallyandexperimentally,anddemonstrateshighlyattractiveproperties[5-10].
Especially,theDiracequationpredictsthatuniqueelectronicpropertiesshouldarisefromthehexagonalhoneycomblatticestructure,makingtheelectronsbehaveasmasslessrela-tivisticfermions[1,5,9].
Thecorrespondinghighmobilityandvelocityhavegreatpotentialinfutureelectronics[11,12].
However,severalproblemsneedtobesolvedbe-foreitcanbeultimatelyemployedinpracticalapplica-tions.
Forinstance,thezerobandgapaswellasbadwettabilityofgraphenemightcauseproblemsindevicefabrication[13-15].
Undersuchcircumstances,plasmatreatmentisconsideredtobeoneofthetrickstoover-comethedifficulties.
Thecorrespondingsurfacefunctio-nalizationchangesnotonlythesurfacestatus,butalsothestructureofgraphenesheets[16,17].
Previousresearcheshavealreadydemonstratedthatoxygenplasmahastheabilitytotunethepropertiesofgraphenesheets[14,17].
Ontheotherhand,fluorineplasma,whichmayprovideadditionaladvantages[16,18],issel-domexperimentallyinvestigatedindetail,althoughastrongp-dopingbehaviorwaspredicted[19,20].
Inthiswork,structuralchangesoffew-layergraphenesheetsinducedbyCF4plasmatreatmentarestudiedbyopticalmicroscopyandRamanspectroscopy.
Ourresultssug-gestanobviousthicknessreductioneffectinfew-layergraphenesheetstreatedwithCF4plasmaaswellassur-facefluorinefunctionalizationbyformationofcovalentbondsbetweenthetopgraphenelayerandtheions.
TheproduceddisorderingraphenelatticeiswellreflectedintheRamanspectra,andthecorrespondingmechanismisstudiedtheoretically.
Theresultspresentedinthisworkprovideapossibledirectiontoobtaingiantsingle-layergraphenesheetswithnecessarysurfacefunctionalizationtorealizethep-typedopinglevelandtoopentheDiracconeforfuturegraphene-basedmicro/nanodevices.
MethodsThefew-layergraphenesheetsusedinthecurrentstudywereproducedbymechanicalexfoliationfromhighly*Correspondence:gshuang@fudan.
edu.
cn;yingchun.
cheng@kaust.
edu.
sa;yfm@fudan.
edu.
cn1DepartmentofMaterialsScience,FudanUniversity,Shanghai200433,People'sRepublicofChina2PSEDivision,KingAbdullahUniversityofScienceandTechnology(KAUST),Thuwal23955-6900,KingdomofSaudiArabiaFulllistofauthorinformationisavailableattheendofthearticle2012Shenetal.
;licenseeSpringer.
ThisisanOpenAccessarticledistributedunderthetermsoftheCreativeCommonsAttributionLicense(http://creativecommons.
org/licenses/by/2.
0),whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalworkisproperlycited.
Shenetal.
NanoscaleResearchLetters2012,7:268http://www.
nanoscalereslett.
com/7/1/268orderedpyrolyticgraphiteandtransferredonasiliconsubstratecoveredwith300-nmSiO2.
Thesampleswerethencleanedbyultrasonicationinacetonefor30store-movetheresidualofthescotchtapeandunattachedgraphitepieces.
TheCF4plasmatreatmentwascarriedoutinthereactionchamberofaJupiterIIIreactive-ionetchingsetup.
Thesampleswereexposedto0.
8-TorrCF4underradio-frequencyplasma(20W)withdifferenttimesrangingfrom1to5swithastepof1s.
Inourex-periment,thenumberoflayersinthefew-layergraphenesheetscanbeestimatedbyacombinationofopticalmi-croscopyandRamanspectroscopy.
RamanspectraweretakenonaRenishawinViamicro-Ramanspectrometerwiththe514-nmlineofanAr+laseraslightsource(Shanghai,China).
Allthemeasurementswerecarriedoutatroomtemperature.
ResultsanddiscussionAsweknow,morphologyobtainedbyopticalmicroscopyisadirectandconvenientwaytoidentifythefew-layergraphenesheets.
OpticalimagesinFigure1demonstratethesurfacemorphologiesofthesamplesbeforeandafterCF4plasmatreatmentofdifferenttimes.
Forashortplasmatreatment(e.
g.
,2s,seeFigure1a,b),noobviouschangecanbenoticedatleastintheopticalimages.
However,withprolongedplasmatreatmentofupto5s,athinningeffectisobviousasthecolorcontrastofthesamplesurfacechangessignificantly.
OnecanseeinFigure1c,dthatdarkpurpleregionsappearlighteraftertreatmentandsomethinsheetscanhardlyberecordedbythecamera(althoughtheycanbeobservedthrougheyepiecelens).
Duringtheprocessofplasmatreatment,ionsproducedbyanelectromagneticfieldattackedthesamplesurfaceandreactedwithit.
Therefore,thetoplayerofthesheetcanberemovedinlongertreatment,whichsuggestsanaccumulationeffectoftheionetch-ingforsuchalowplasmapowerof20W.
However,astructuralmodificationorsurfacefunctio-nalizationmayexistduringCF4plasmatreatment[14,16,17],eventhoughtheycannotbedetectedbynor-malopticalmicroscopy.
Previousresearchesrevealedthatthestructuralmodificationmayinduceashiftofthephononfrequenciesingraphenesheetswhichcanbeop-ticallyprobedbyRamanspectroscopy[10,21,22].
Inordertoguaranteethereproducibilityofourexperiment,theRamansignalwascollectedfromthesamespotwiththeassistanceofopticalmicroscopy.
Figure2adisplaystheRamanspectraofagraphenesheetbeforeandafter2sofCF4plasmatreatment,and,aspreviouslydis-cussed,theopticalmicroscopyshowsnochange.
ThelowerpanelinFigure2aistheRamanspectrumofthesamplebeforeplasmatreatment,wheretwostrongpeaksarenoticeable.
TheGbandlocatedatapproximately1,580cm1iscorrespondingtoopticalE2gphononsattheBrillouinzonecenter.
Thesharp2Dband,whichistheovertoneoftheDpeakandthesumoftwophononswithoppositemomentum,appearsatapproximately2,680cm1[23].
Theintensityratiobetweenthe2DandGbands(I2D/IG=3.
2)andthesmallfullwidthathalfmaximum(FWHM)ofthe2Dband(26cm1)indicateFigure1OpticalimagesofsamplesbeforeandafterCF4plasmatreatment.
(a,c)Opticalimagesdemonstratingthemorphologiesofas-preparedsamplesbeforeCF4plasmatreatment.
(b)Opticalimageofthesamplein(a)after3sofCF4plasmatreatment.
(d)Opticalimageofthesamplein(c)after5sofCF4plasmatreatment.
Shenetal.
NanoscaleResearchLetters2012,7:268Page2of8http://www.
nanoscalereslett.
com/7/1/268thatthegraphenesheetmeasuredcontainsonlyonelayer(i.
e.
,single-layergraphene)[14,23].
Besides,aweakDbandisdetectedatapproximately1,350cm1andisconnectedtotransverseopticalphononsneartheKpointwhichrequiredefectsorlatticedisorder(e.
g.
,non-sp2composition)fortheiractivationviaaninter-valleydouble-resonanceRamanprocess[24].
Therefore,theweakDbandinthesamplebeforeplasmatreatmentsuggeststhatthesingle-layergraphenesheetinourex-perimentisofhighquality.
ItisinterestingtonotethatobviouschangesexistintheRamanspectraofthesam-pleafter2sofplasmatreatment(asshownintheupperpanelofFigure2a):(1)TheDpeakatapproximately1,350cm1isremarkablyintensified,suggestinganintroductionoflatticedisorderinthegraphenesheet[24];(2)theGpeakisbroadenedandashoulderD'bandarises,whichoriginatesfromintra-valleyresonantRamanscattering[24,25];(3)anewbandoccursatap-proximately2,941cm1whichisbelievedtobeacom-binationofDandD'bands[17]orGandDbands[26,27].
ThesefeaturesintheRamanspectraarereportedinthegraphenesheettreatedwithoxygenplasma[14]andarethesymbolsofsurfacefunctionaliza-tion[14,16].
However,iftheplasmatreatmentiselon-gated,thefew-layergraphenesheetcanbethinnedandtheevolutionofRamanspectrabecomescomplicated.
Inourexperiment,wefoundthatsingle-layergraphenecannotsurvivethe5sofCF4plasmatreatment.
Thus,theRamanmeasurementwascarriedoutonafew-layergraphenesheetwhichcontainsmorethanonelayerbe-foreplasmatreatment.
Theobtainedspectrumwasplot-tedinthelowerpanelofFigure2b.
TheFWHMofthe2Dpeakisbroadenedto53cm1andtheratioofI2D/IGis1.
1,elucidatingthatthissheetconsistsofafewlayers.
After5sofplasmatreatment,theRamanspectrumintheupperpanelofFigure2bshowsthattheFWHMofthe2Dbandisreducedto32cm1andtheratioofI2D/IGisincreasedto2.
5.
Thespectralevolutionisdifferentfromthatin2sofplasmatreatmentandindicatesthatthefew-layergraphenelayeristhinnedtooneortwolayers[14,23,28],ascanbeobservedbyopticalmicroscopy.
TheevolutionoftheDbandisthemostimportantconcernofmanyresearches.
Theincreaseofitsintensityisgenerallyconsideredtobeevidencethatlatticedis-orderexistsinthegraphenesheet[14].
AninterestingphenomenonariseswhenwelookclosetotheintensityoftheDbandinafew-layergraphenesheetsubjectedtoCF4plasmafordifferenttimes.
TherelativeintensityoftheDband(ID/IG)inthesampletreatedfor5sissmal-lerthanthatfor2s,implyingthatthedisorderisevenremarkableforshortertreatment.
Tounderstandthispeculiarbehavior,wemustfirstmakeclearthemechan-ismofdisorderproductionduringplasmatreatment.
ThedisorderandthecorrespondingemergenceofDandD'bandsinoursamplesmayarisefromtwoFigure2RamanspectraofgraphenesheetsbeforeandafterCF4plasmatreatment.
(a)Ramanspectraofasingle-layergraphenesheetbefore(lowerpanel)andafter(upperpanel)2sofCF4plasmatreatment.
(b)Ramanspectraofafew-layergraphenesheetbefore(lowerpanel)andafter(upperpanel)5sofCF4plasmatreatment.
Athinningeffectisobvious.
Shenetal.
NanoscaleResearchLetters2012,7:268Page3of8http://www.
nanoscalereslett.
com/7/1/268processes:(1)physically,theorderofpristineCatomsingrapheneisdisruptedbytheCF4plasmaandsomeoftheCatomsmaybesputteredout,whichisnamedasionbombardmenteffect[29,30];and(2)chemically,co-valentbondsoffluorine-relatedspeciestothegraphenelatticeformduringplasmatreatment,leadingtocorre-spondingsurfacemodificationandfunctionalization.
Bothprocessescontributetotheincreaseofthedis-order.
Asforthechemicalprocess,thebondenergiesneedtobeconsidered.
ItwasdisclosedthattheC-Cbondingrapheneownshigherbondenergy(607kJ/mol)thantheC-Fbond(485kJ/mol).
Thus,theC-Cbondcanbehardlybroken,andhenceCFn(n=1to3)orFspecieswereonlyadsorbedonthetopgraphenelayerbyformationofcovalentbonds,whichwillbecomesatu-ratedbecausethenumberofavailableactiveCatomsdecreaseswithtime.
Itisworthnotingthattheforma-tionofcovalentbondscanbeevidencedbytheupshiftof2Dpeakfrom2,685to2,691cm1[31].
Onemayinferthatthefew-layergraphenesheetsubjectedtoCF4plasmatreatmentthereforepossessesdisorderfeaturesfromboththephysicalandchemicalinteractions.
Thechemicalinteractiontakesplaceonlyonthetopmostlayer,whilethephysicalinteractionaccumulatedwithtimeandalongtreatmentcanremovethetoplayer(i.
e.
,thinningeffect,asisreflectedintheopticalFigure3Ramanspectraofplasma-thinnedfew-layergraphenesheetswithdifferentthicknesses.
Thethreespectrawerecollectedfromthreedifferentspotsrespectively.
Thepositionsofthethreespotsarelabeledintheinsetopticalimageofasamplesubjectedto5sofCF4plasmatreatment.
Scalebar,5μm.
Shenetal.
NanoscaleResearchLetters2012,7:268Page4of8http://www.
nanoscalereslett.
com/7/1/268microscopyandRamanspectroscopy),exposingthebe-neathlayer.
TheemergenceandintensificationoftheDandD'bandsinthesamplesubjectedto5softreatmentthusoriginatesfromthedisordercreatedinthisnewtoplayerandshouldincreasegradually.
Consequently,thedis-orderprobedbyRamanspectroscopyisevensmallerinthesampletreatedbyCF4plasmafor5sthaninthesampletreatedfor2s(seeFigure2a,b).
SincetheintensityoftheDbandreflectsthedisorderinthetoplayerofthefew-layergraphenesheet,therela-tiveintensityoftheDbandmaygiveusaclueaboutthethicknessofthesample.
Toprovethis,wemeasuredRamanspectraofplasma-thinnedfew-layergraphenesheetswithdifferentthicknesses.
ThethreespectrainFigure3wererespectivelycollectedfromthreespotsla-beledintheinsetopticalimage.
ThecolorcontrastamongthethreespotsindicatesthattheirthicknessesareratherdifferentandincreasefromAtoC,whilenoneofthemconsistasinglelayer.
OnecanseethattheID/IGisobviouslyrelevanttothethicknessoffew-layergraphenesheet.
Forathickersheet,theweightofthetopmostlayerwithremarkabledisorderissmaller,andthusID/IGshouldbecorrespondinglysmaller.
Therefore,therationofID/IGprovestobeaneffectiveRamanfactortocom-parethethicknessesofplasma-treatedfew-layergra-phenesheets.
Therefore,theID/IGprovestobeanothereffectivefactortoestimatethethicknessesofplasma-treatedfew-layergraphenesheetsotherthanI2D/IG.
Althoughadetailedexperimentalinvestigationissofardifficult,wemanagedtosimulatetheionadsorptiondur-ingtheplasmatreatmentbyemployingdensityfunc-tionaltheoryandthegeneralizedgradientapproximationoftheexchangecorrelationfunctionalwithultrasoftpseudopotentials[32,33]torevealthedisorderproducedbyfluorinefunctionalizationandtheunderneathmech-anism.
Ahighcutoffenergyof800eVandak-pointsam-plingwithan8*8*1meshareemployedtoachievehighaccuracyinthecalculations.
Structuraloptimizationiscarriedoutonallsystemsuntiltheresidualforcesareconvergedto0.
003eV/.
Inordertoavoidanydrawbackoftheperiodicboundaryconditions,anover20--thickvacuumlayerisincluded.
Weestimatethatintheplasma,thereareF,CF,CF2,andCF3ions.
Theenergybarrieriscalculatedbytheclimbing-imagenudgedelas-ticbandmethod[34],whichenablesustofindthemini-mumenergypathbetweenthegiveninitialandfinalstatesofatransition.
Bycalculatingthestructuresofionsonthegraphenesheet(seeFigure4),wefindthatCFandCF2canhardlybeadsorbed,formingcovalentbonds,whileFandCF3ionscanbeadsorbed.
Thecorrespond-ingadsorptionenergiesare2.
2and0.
4eV,respectively.
Thedifferentabsorptionbehaviorscanbeunderstoodasfollows:Becauseofthesp3hybridizationnatureforCatomsinCF,CF2,andCF3,therearetwoun-bondedelectronsinCF2andonlyoneinCF3,whiletheCatomsingraphenearesp2hybridizedandthereisonlyoneun-bondedelectronforeachCatom.
Thus,itiseasierforCF3tobeadsorbedontopoftheCatomviaacovalentbond(seeFigure4d).
However,itisdifficultforCF2toformtwocovalentbondswithtwonearbyCatomsinthegraphenesheet.
Wecheckeddifferentabsorptionconfig-urationsbystructurerelaxationandfindthatforallcases,theCF2willleaveawayfromthegraphene,asshowninFigure4c.
Fordifferentartificialabsorptionconfigurations,therewouldbelargestrain/stressaroundtheabsorptionsite,indicatingthatthedifficultyofform-ingtwocovalentbondsbetweenCF2andgrapheneismainlyduetothelargestrain/stress.
AsimilarsituationisalsonotedintheCFcase.
Inaddition,thecalculatedenergybarrierfortheCF3adsorbedonthegraphenesur-faceisonly0.
04eV,whichdemonstratesthattheCF3ad-sorptionisenergeticallyfavorable.
DuetotheexistenceofcovalentbondsbetweenF/CF3andConthegraphenesheet,thereisdistortionaroundtheadsorptionposition,Figure4Atomicstructuresof(a)F,(b)CF,(c)CF2,and(d)CF3ionsongraphenesheets.
CandFatomsareindicatedbyyellowandgrayballs,respectively.
TheoreticalsimulationindicatesthatCFandCF2canhardlybeadsorbed.
Shenetal.
NanoscaleResearchLetters2012,7:268Page5of8http://www.
nanoscalereslett.
com/7/1/268whichgivesbirthtotheappearanceofDandD'bandsintheRamanspectraoftheplasma-treatedsamples.
Here,wewouldliketobrieflydiscussthepotentialapplicationsofthisfluorinefunctionalization.
Wecalcu-latedthebandstructuresanddensitiesofstatesofgra-phenesheetsfluorinatedwithFandCF3withcoverageof5.
6%,asshowninFigure5.
DuetotheBrillouinzonefolding[20],theDiracpointislocatedattheΓpointintheelectronicbandstructure.
Itisworthnotingthatduetothesymmetrybreaking,theDiracconesplitswithasmallgap(approximately0.
1eV).
Moreover,theDiracconeshiftsto0.
5/0.
1eVabovetheFermilevelafterF/CF3functionalizationduetoelectrontransferfromtheCatomsinthegraphenesheettoF/CF3,indicatingthatthegraphenesheetscanbep-typedopedbyfluorinatingwithbothFandCF3.
However,itcanbefoundthatFismuchmoreefficienttointroducep-typedopingingraphenesheetsthanCF3.
Inaddition,theadsorptionoftheF/CF3ongraphenesheetsalsointroducespin-ningstatesaroundtheFermilevels,asdemonstratedinFigure5.
Detailedexperimentalverificationisrequiredinthefuture,whilethepresentedcalculationhasalreadyproventheapplicationpotentialsofgraphenesheetsfunctionalizedbyCF4plasmainmicro/nanoelectronics.
Figure5BandstructuresanddensitiesofstatesofF-andCF3-functionalizedgraphenesheets.
(a)Bandstructureand(b)densityofstatesofaF-functionalizedgraphenesheet.
(c)Bandstructureand(d)densityofstatesofaCF3-functionalizedgraphenesheet.
TheFermilevelissetat0eV.
Shenetal.
NanoscaleResearchLetters2012,7:268Page6of8http://www.
nanoscalereslett.
com/7/1/268ConclusionInconclusion,few-layergraphenesheetswerepreparedbymechanicalexfoliationandthestructuralevolutionduringCF4plasmatreatmentwasstudiedindetailbyop-ticalmicroscopyandRamanspectroscopy.
Theexperimen-talresultsindicateathicknessreductionunderprolongedplasmatreatmentwhileshorttreatmentleadsonlytofluorinefunctionalizationonthesurfacelayer.
Thecom-binationofbothphysicalandchemicalreactionsintheplasmatreatmentleadstostructuralmodificationswhichcanbewellprobedinRamanspectra.
Theoreticalsimula-tionsuggestsaF/CF3functionalizationbyformationofcovalentbondsandalsopredictsacorrespondingp-typedopingandDiracconeopeningaftertheF/CF3adsorp-tion.
Althoughfurthercharacterizationsareneededtoevaluatetheelectronicpropertiesoftreatedsamples,thecurrentworkofthinningandfunctionalizingfew-layergraphenesheetsbyCF4plasmaundercontrolrepresentsanintegrativepathwaytoindustrialfabricationofgra-phene-basedmicro/nanodevices.
CompetinginterestsTheauthorsdeclarethattheyhavenocompetinginterests.
Authors'contributionsCS,GH,FD,andYMdesignedthestudy.
CSperformedtheexperimentswithhelpfromRC.
YCandUScarriedoutthetheoreticalstudy.
CS,GH,YC,andYMcontributedindraftingthemanuscript.
Alltheauthorstookpartinthediscussionoftheresults,andeditedandapprovedthemanuscript.
AcknowledgmentsThisworkissupportedbytheNaturalScienceFoundationofChina(Nos.
61008029and51102049),ProgramforNewCenturyExcellentTalentsinUniversity(No.
NCET-10-0345),andShanghaiPujiangProgram(No.
11PJ1400900).
Authordetails1DepartmentofMaterialsScience,FudanUniversity,Shanghai200433,People'sRepublicofChina.
2PSEDivision,KingAbdullahUniversityofScienceandTechnology(KAUST),Thuwal23955-6900,KingdomofSaudiArabia.
3IBMResearchZürich,Sumerstrasse4,RüschlikonCH-8803,Switzerland.
Received:27February2012Accepted:25April2012Published:24May2012References1.
ZhangYB,TanYW,StormerHL,KimP:ExperimentalobservationofthequantumHalleffectandBerry'sphaseingraphene.
Nature2005,438(7065):201–204.
2.
PeresNM:Thetransportpropertiesofgraphene:anintroduction.
RevModPhys2010,82(3):2673–2700.
3.
BeenakkerCWJ:AndreevreflectionandKleintunnelingingraphene.
RevModPhys2008,80(4):1337–1354.
4.
NovoselovKS,GeimAK,MorozovSV,JiangD,ZhangY,DubonosSV,GrigorievaIV,FirsovAA:Electricfieldeffectinatomicallythincarbonfilms.
Science2004,306(5696):666–669.
5.
NovoselovKS,GeimAK,MorozovSV,JiangD,KatsnelsonMI,GrigorievaIV,DubonosSV,FirsovAA:Two-dimensionalgasofmasslessDiracfermionsingraphene.
Nature2005,438(7065):197–200.
6.
NovoselovKS:Graphenecrackingbilayers.
NatPhys2009,5(12):862–863.
7.
HerbutIF,JuricicV,VafekO:Coulombinteraction,ripples,andtheminimalconductivityofgraphene.
PhysRevLett2008,100(4):046403.
8.
JuricicV,HerbutIF,SemenoffGW:Coulombinteractionatthemetal-insulatorcriticalpointingraphene.
PhysRevB2009,80(8):081405.
9.
ChengYC,ZhuZY,HuangGS,SchwingenschlglU:GruneisenparameteroftheGmodeofstrainedmonolayergraphene.
PhysRevB2011,83(11):115449.
10.
DingF,JiHX,ChenYH,HerklotzA,DrrK,MeiYF,RastelliA,SchmidtOG:Stretchablegraphene:acloselookatfundamentalparametersthroughbiaxialstraining.
NanoLett2010,10(9):3453–3458.
11.
AvourisP,ChenZ,PerebeinosV:Carbon-basedelectronics.
NatNanotechnol2007,2(10):605–615.
12.
SemenovYG,KimKW,ZavadaJM:Spinfieldeffecttransistorwithagraphenechannel.
ApplPhysLett2007,91(15):153105.
13.
SofoJO,SuarezAM,UsajG,CornagliaPS,Hernandez-NievesAD,BalseiroCA:Electricalcontrolofthechemicalbondingoffluorineongraphene.
PhysRevB2011,83(8):081411.
14.
NourbakhshA,CantoroM,VoschT,PourtoisG,ClementeF,vanderVeenMH,HofkensJ,HeynsMM,DeGendtS,SelsBF:Bandgapopeninginoxygenplasma-treatedgraphene.
Nanotechnology2010,21(43):435203.
15.
ShinYJ,WangY,HuangH,KalonG,WeeATS,ShenZ,BhatiaCS,YangH:Surface-energyengineeringofgraphene.
Langmuir2010,26(6):3798–3802.
16.
BaraketM,WaltonSG,LockEH,RobinsonJT,PerkinsFK:Thefunctionalizationofgrapheneusingelectron-beamgeneratedplasmas.
ApplPhysLett2010,96(23):231501.
17.
GokusT,NairRR,BonettiA,BoehmlerM,LombardoA,NovoselovKS,GeimAK,FerrariAC,HartschuhA:Makinggrapheneluminescentbyoxygenplasmatreatment.
ACSNano2009,3(12):3963–3968.
18.
HauertR,MullerU,FranczG,BirchlerF,SchroederA,MayerJ,WintermantelE:SurfaceanalysisandbioreactionsofFandSicontaininga-C:H.
ThinSolidFilms1997,308:191–194.
19.
WalterAL,JeonK-J,BostwickA,SpeckF,OstlerM,SeyllerT,MoreschiniL,KimYS,ChangYJ,HornK,RotenbergE:Highlyp-dopedepitaxialgrapheneobtainedbyfluorineintercalation.
ApplPhysLett2011,98(18):184102.
20.
ChengYC,KaloniTP,HuangGS,SchwingenschlglU:Originofthehighp-dopinginFintercalatedgrapheneonSiC.
ApplPhysLett2011,99(5):053117.
21.
FrankO,TsoukleriG,PartheniosJ,PapagelisK,RiazI,JalilR,NovoselovKS,GaliotisC:Compressionbehaviorofsingle-layergraphenes.
ACSNano2010,4(6):3131–3138.
22.
HuangM,YanH,ChenC,SongD,HeinzTF,HoneJ:PhononsofteningandcrystallographicorientationofstrainedgraphenestudiedbyRamanspectroscopy.
ProcNatlAcadSciUSA2009,106(18):7304–7308.
23.
FerrariAC,MeyerJC,ScardaciV,CasiraghiC,LazzeriM,MauriF,PiscanecS,JiangD,NovoselovKS,RothS,GeimAK:Ramanspectrumofgrapheneandgraphenelayers.
PhysRevLett2006,97(18):187401.
24.
PimentaMA,DresselhausG,DresselhausMS,CancadoLG,JorioA,SaitoR:Studyingdisorderingraphite-basedsystemsbyRamanspectroscopy.
PhysChemChemPhys2007,9(11):1276–1291.
25.
CancadoLG,PimentaMA,NevesBRA,DantasMSS,JorioA:InfluenceoftheatomicstructureontheRamanspectraofgraphiteedges.
PhysRevLett2004,93(24):247401.
26.
CuongTV,PhamVH,TranQT,ChungJS,ShinEW,KimJS,KimEJ:Optoelectronicpropertiesofgraphenethinfilmspreparedbythermalreductionofgrapheneoxide.
MaterLett2010,64(6):765–767.
27.
CuongTV,PhamVH,TranQT,HahnSH,ChungJS,ShinEW,KimEJ:PhotoluminescenceandRamanstudiesofgraphenethinfilmspreparedbyreductionofgrapheneoxide.
MaterLett2010,64(3):399–401.
28.
CalizoI,BejenariI,RahmanM,LiuG,BalandinAA:UltravioletRamanmicroscopyofsingleandmultilayergraphene.
JApplPhys2009,106(4):043509.
29.
LuoZ,VoraPM,MeleEJ,JohnsonATC,KikkawaJM:Photoluminescenceandbandgapmodulationingrapheneoxide.
ApplPhysLett2009,94(11):111909.
30.
SherpaSD,PaniaguaSA,LevitinG,MarderSR,WilliamsMD,HessDW:Photoelectronspectroscopystudiesofplasma-fluorinatedepitaxialgraphene.
JVacSciTechnolB2012,30(3):03D102.
31.
TangB,HuGX,GaoHY:Ramanspectroscopiccharacterizationofgraphene.
ApplSpectroscRev2010,45(5):369–407.
32.
VanderbiltD:Softself-consistentpseduopotentialsinageneralizedeigenvalueformalism.
PhysRevB1990,41(11):7892–7895.
33.
GiannozziP,BaroniS,BoniniN,CalandraM,CarR,CavazzoniC,CeresoliD,ChiarottiGL,CococcioniM,DaboI,DalCorsoA,FabrisS,FratesiG,DeGironcoliS,GebauerR,GerstmannU,GougoussisC,KokaljA,LazzeriM,Martin-SamosL,MarzariN,MauriF,MazzarelloR,PaoliniS,PasquarelloA,Shenetal.
NanoscaleResearchLetters2012,7:268Page7of8http://www.
nanoscalereslett.
com/7/1/268PaulattoL,SbracciaC,ScandoloS,SclauzeroG,SeitsonenAP,SmogunovA,UmariP,WentzcovitchRM:Quantumespresso:amodularandopen-sourcesoftwareprojectforquantumsimulationsofmaterials.
JPhys:CondensMater2009,21(39):395502.
34.
HenkelmanG,JonssonH:Improvedtangentestimateinthenudgedelasticbandmethodforfindingminimumenergypathsandsaddlepoints.
JChemPhys2000,113(22):9978–9985.
doi:10.
1186/1556-276X-7-268Citethisarticleas:Shenetal.
:Thinningandfunctionalizationoffew-layergraphenesheetsbyCF4plasmatreatment.
NanoscaleResearchLetters20127:268.
Submityourmanuscripttoajournalandbenetfrom:7Convenientonlinesubmission7Rigorouspeerreview7Immediatepublicationonacceptance7Openaccess:articlesfreelyavailableonline7Highvisibilitywithintheeld7RetainingthecopyrighttoyourarticleSubmityournextmanuscriptat7springeropen.
comShenetal.
NanoscaleResearchLetters2012,7:268Page8of8http://www.
nanoscalereslett.
com/7/1/268

iON Cloud:新加坡cn2 gia vps/1核/2G内存/25G SSD/250G流量/10M带宽,$35/月

iON Cloud怎么样?iON Cloud升级了新加坡CN2 VPS的带宽和流量最低配的原先带宽5M现在升级为10M,流量也从原先的150G升级为250G。注意,流量也仅计算出站方向。iON Cloud是Krypt旗下的云服务器品牌,成立于2019年,是美国老牌机房(1998~)krypt旗下的VPS云服务器品牌,主打国外VPS云服务器业务,均采用KVM架构,整体性能配置较高,云服务器产品质量靠...

LOCVPS新上日本软银线路VPS,原生IP,8折优惠促销

LOCVPS在农历新年之后新上架了日本大阪机房软银线路VPS主机,基于KVM架构,配备原生IP,适用全场8折优惠码,最低2GB内存套餐优惠后每月仅76元起。LOCVPS是一家成立于2012年的国人VPS服务商,提供中国香港、韩国、美国、日本、新加坡、德国、荷兰、俄罗斯等地区VPS服务器,基于KVM或XEN架构(推荐选择KVM),线路方面均选择国内直连或优化方案,访问延迟低,适合建站或远程办公使用。...

美国Cera 2核4G 20元/45天 香港CN2 E5 20M物理机服务器 150元 日本CN2 E5 20M物理机服务器 150元 提速啦

提速啦 成立于2012年,作为互联网老兵我们一直为用户提供 稳定 高速 高质量的产品。成立至今一直深受用户的喜爱 荣获 “2021年赣州安全大赛第三名” “2020创新企业入围奖” 等殊荣。目前我司在美国拥有4.6万G总内存云服务器资源,香港拥有2.2万G总内存云服务器资源,阿里云香港机房拥有8000G总内存云服务器资源,国内多地区拥有1.6万G总内存云服务器资源,绝非1 2台宿主机的小商家可比。...

www.580hu.com为你推荐
嘀动网在炫动网买鞋怎么样,是真的吗百度关键词分析百度竞价关键词分析需要从哪些数据入手?789se.comwuwu8.com这个站长是谁?www.gogo.comNEO春之色直径?pp43.com登录www.bdnpxzl.com怎么进入网站后台啊www.qqq147.comhttp://www.qq鹤城勿扰非诚勿扰 怀化小伙 杨荣是哪一期月风随笔写风的作文xyq.cbg.163.com梦幻西游藏宝阁怎么开通怎么用新广告法新广告法正式实施,具体修订了哪些内容
西安域名注册 高防直连vps z.com 美国主机论坛 好看的桌面背景图片 牛人与腾讯客服对话 合肥鹏博士 数字域名 河南m值兑换 中国电信测网速 gtt 上海电信测速网站 深圳主机托管 广州主机托管 服务器托管价格 七十九刀 香港ip 以下 饭桶 文件传输 更多