NANOEXPRESSOpenAccessTheroleofdislocation-inducedscatteringinelectronictransportinGaxIn1-xNalloysOmerDonmez1,MustafaGunes1,AyseErol1,CetinMArikan1*,NaciBalkan2andWilliamJSchaff3AbstractElectronictransportinunintentionallydopedGaxIn1-xNalloyswithvariousGaconcentrations(x=0.
06,0.
32and0.
52)isstudied.
Halleffectmeasurementsareperformedattemperaturesbetween77and300K.
Temperaturedependenceofcarriermobilityisanalysedbyananalyticalformulabasedontwo-dimensionaldegeneratestatisticsbytakingintoaccountallmajorscatteringmechanismsforatwo-dimensionalelectrongasconfinedinatriangularquantumwellbetweenGaxIn1-xNepilayerandGaNbuffer.
ExperimentalresultsshowthatastheGaconcentrationincreases,mobilitynotonlydecreasesdrasticallybutalsobecomeslesstemperaturedependent.
CarrierdensityisalmosttemperatureindependentandtendstoincreasewithincreasingGaconcentration.
Theweaktemperaturedependenceofthemobilitymaybeattributedtoscreeningofpolaropticalphononscatteringathightemperaturesbythehighfreecarrierconcentration,whichisattheorderof1014cm2.
Inouranalyticalmodel,thedislocationdensityisusedasanadjustableparameterforthebestfittotheexperimentalresults.
OurresultsrevealthatinthesampleswithlowerGacompositionsandcarrierconcentrations,alloyandinterfaceroughnessscatteringarethedominantscatteringmechanismsatlowtemperatures,whileathightemperatures,opticalphononscatteringisthedominantmechanism.
InthesampleswithhigherGacompositionsandcarrierconcentrations,however,dislocationscatteringbecomesmoresignificantandsuppressestheeffectoflongitudinalopticalphononscatteringathightemperatures,leadingtoanalmosttemperature-independentbehaviour.
Keywords:GaxIn1-xN,In-richGaxIn1-xN,Mobility,ElectronictransportPACS:72.
10.
Fk,72.
20.
FrBackgroundInthelastdecade,aftertherevisionofthebandgapenergyfrom1.
9toapproximately0.
7eV[1],intensiveresearchhasbeencarriedoutonInNandIn-richGaxIn1-xNalloysinordertore-determinethefundamen-talproperties[2-4].
DespitemuchinterestontheopticalpropertiesofInNandGaxIn1-xN[5,6],therehasbeenarelativelysmallnumberofinvestigationstoexplaintemperature-dependentelectronictransportpropertiesinGaxIn1-xNalloys[7,8].
Inthisarticle,wereporttheelectronictransportprop-ertiesofnominallyundopedGaxIn1-xNalloyswithdiffer-entGaconcentrations(x=0.
06,0.
32and0.
52).
Halleffectresultsshowthatallthealloysarehighlyn-type,andthefreecarrierconcentrationsareindependentoftemperature.
MethodsExperimentaldetailsThesampleswithdifferentGaconcentrations(x=0.
06,0.
32and0.
52)weregrownbyaVarianGEN-IIgassourcemolecularbeamepitaxychamberon(0001)c-sapphiresubstrateswitha200-nm-thickGaNbufferlayer.
ThegrowthtemperaturewasvariedfromlowtohighwithincreasingGacomposition[9,10].
Thethick-nessoftheGaxIn1-xNlayerwasdeterminedfromthegrowthparametersandverifiedbybackscatteringspec-trometryatnearly500nm.
TheGaxIn1-xNsampleswerefabricatedinHall-bargeometry,andohmiccontactswereformedbydiffusingAu/Nialloy.
Halleffectmea-surementswerecarriedoutattemperaturesbetween77and300K.
*Correspondence:arikan@istanbul.
edu.
tr1ScienceFaculty,DepartmentofPhysics,IstanbulUniversity,Vezneciler,Istanbul34134,TurkeyFulllistofauthorinformationisavailableattheendofthearticle2012Donmezetal.
;licenseeSpringer.
ThisisanOpenAccessarticledistributedunderthetermsoftheCreativeCommonsAttributionLicense(http://creativecommons.
org/licenses/by/2.
0),whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalworkisproperlycited.
Donmezetal.
NanoscaleResearchLetters2012,7:490http://www.
nanoscalereslett.
com/content/7/1/490ModellingofcarriermobilityThetemperaturedependenceofcarriermobilityisanalysedusingananalyticmodelwhereallpossiblescatteringmechanismsareindividuallycalculatedusingthematerialparametersgiveninTable1.
Experimentalmobilitycurvesarefittedwiththetheoreticalmobilitycurvesthatareobtainedusingtheanalyticalexpressionsforthemajorscat-teringmechanismsgiveninTable2.
AlthoughGaxIn1-xNlayeristhickenough(500nm)nottobetwo-dimensional(2D),theanalyticmodelconsiderstransportina2Delec-trongas(2DEG).
ThisisbecausetheelectronictransporttakesplaceattheinterfaceofGaxIn1-xN/GaN[11]andon2DGaxIn1-xNsurfacelayer[12].
ResultsanddiscussionsExperimentalresultsFigure1showsthetemperaturedependenceofthecar-rierconcentrationandtheelectronmobilitybetween77and300Kforallthesamplesinvestigated.
Althoughthesamplesarenotintentionallydoped,theHalleffectresultsshowthatallthesampleshaven-typeconductiv-ity,andthefreecarrierdensitiesareindependentofthetemperature;therefore,samplescanberegardedasmetallic-likeoverthewholetemperaturerangeascom-monlyreportedbyusandbyotherresearchgroups[7,8,24-28].
ItisclearfromFigure1athatthefreecarrierconcentrationincreasesbyaboutafactorof3whentheGacompositionincreasesfromx=0.
06to0.
52.
Also,asseeninFigure1b,whenGaconcentrationincreasesfromx=0.
06to0.
52,electronmobilityhasasharpdecreasefrom1,035cm2/VsforGa0.
06In0.
94Nto30cm2/VsforGa0.
52In0.
48Nat77Kthatmaybeassociatedwiththecontributionofbothdislocationsandpointdefectsinthestructure,whichareactingasasourceofdonor-likedefects,inducinghighelectronconcentration.
Inthelow-temperatureregion(≤100K),themobilityisalmostindependentoftemperatureforallthesamples.
How-ever,forthesamplewiththelowestGaconcentration,Ga0.
06In0.
94N,itdecreasesfrom1,035to890cm2/Vswithincreasingtemperaturefrom100to300Kbutdoesnotshowanysignificantchangeintheothertwosam-ples,whichisacharacteristicfeatureofmetallic-likesemiconductors[7,26,27].
Theinsensitivityofcarriermobilitytotemperatureiscommonlyobservedinpolarmaterialswithelevatedcarrierdensitieswherethepolarinteractionsarescreened[19,25,29-33].
ModellingoftemperaturedependenceofmobilityInordertounderstandfullythetemperaturedepend-enceofelectronmobility,wecomparedtheexperimentalmobilityresultswithanalyticaltheoreticalmodelsbytakingintoaccountallthepossiblescatteringmechan-isms.
Atlowtemperatures,thedominantscatteringmechanisminbulksemiconductorsisionizedimpurityscatteringthatchangeswithtemperatureasT3/2.
How-ever,thiskindoftemperaturedependencehasnotbeenobservedinoursamples.
Thesampleshavemetallic-likecharacteristics,confirmingtheformationofahigh-density2DEGatboththeGaN/GaxIn1-xNinterfaceandontheGaxIn1-xNsurface[26,27].
Thedominantmo-mentumrelaxationmechanismistheelectron-opticalphononscatteringinGaxIn1-xNsinceitisahighlypolarmaterialaboveT>150K[34-36].
Inthetheoreticalcalculation,interfaceroughness,alloy,dislocation,opticalandacousticphononscatteringmechanismswiththeappropriateexpressionsgiveninTable2wereconsidered.
ThelateralsizeoftheinterfaceroughnessΔ,correlationlengthΛbetweeninterfacefluctuationsandthedislocationdensityareusedasad-justablefittingparameters,andthevaluesforthebestfitTable1Thematerialparametersusedinscatteringcalculations(adoptedfrom[10,13-15])ParameterInNGaNGaxIn1-xNHigh-frequencydielectricconstantE18:4E15:5E18:42:9xStaticdielectricconstantEs15:3Es8:9Es15:36:4xElectroneffectivemassm0:11m0m0:22m0m0:10:12xm0LO-phononenergy73meV92meV7311:3x12x2meVLA-phononvelocityvs5:17:103ms1vs6:59:103ms1vs5:171:42x:103ms1Densityofcrystalρ6:81:103kgm3ρ6:15:103kgm3ρ6:810:7x:103kgm3ElectronwavevectoratFermilevelkF4:61:108m1kF7:3:108m1kF7:32:69x:108m1TheelectromechanicalcouplingcoefficientK20:028K20:038K20:0280:01xLatticeconstantsa3:5331010mc5:6931010ma3:189:1010mc5:185:1010ma3:5330:344x:1010mc5:6930:508x:1010mOccupiedvolumebyanatomΩ03p.
4a2cΩ03p.
4a2cΩ03p.
4a2cDeformationpotentialΞ7:1eVΞ8:3eVΞ7:11:2xeVAlloypotentialUA2:72x1019VLA-phonon,longitudinalacousticphonon;LO-phonon,longitudinalopticalphonon.
Donmezetal.
NanoscaleResearchLetters2012,7:490Page2of6http://www.
nanoscalereslett.
com/content/7/1/490aregiveninTable3.
Thevaluesthatweusedforthedis-locationdensitiesareingoodagreementwiththetrans-missionelectronmicroscopy(TEM)resultstakenfromGa0.
34In0.
66N[9,25].
Looketal.
[25]determinedthedis-locationdensityforbothInNandGa0.
34In0.
66NusingTEMandfoundthatdislocationdensityinGa0.
34In0.
66NisactuallyhigherthanthatofInN.
ItcanbeseenthatthetrendofthedislocationdensitydependingonGaconcentrationfollowsthecarrierconcentration,whichmeansthatthereisacorrelationbetweendislocationdensityandthecorrespondingcarrierconcentration.
ItisclearfromFigure2thatatlowtemperatures,elec-tronmobilitiesinGa0.
06In0.
94NandGa0.
32In0.
68Naredeterminedbyalloypotential-inducedscattering,interfaceTable2Theformulasofmajorscatteringmechanismsusedin2DEGmobilitycalculationsScatteringmechanismFormulaDefinitionofvariablesAcousticphonon:piezoelectric[15-17]μPEπEs3keK2kBTm21JPEkK,electromagneticcouplingcoefficient;JPE(k),electronwavevectordependentintegral.
JPEkZ2k0F11q4k2qqs21q=2k2qq3dqK2E2LAEscLAE2TAEscTAAcousticphonon:deformation[11,18]potentialμDP16ρev2s33Ξ2kBTm2b1JDPkρ,crystaldensity;vs,longitudinalacousticphononvelocity;Ξ,deformationpotentialconstant;m*,electroneffectivemass;JDP(k),electronwavevectordependentintegral.
b,Fang-Howardexpression;qs,reciprocalscreeninglength;f(0),occupationprobability;F11(q),ground-stateFang-Howardwavefunction.
JDPkZ2k012kπ3qqs21q=2k2qq4dqqse2m2π2EsF11qf0b33e2mn2D8Es21=3Fqb8b29qb3q2=8bq3Polaropticalphonon[17-19]μPO4πEs2eωm2Z0eωLO=kBT1ωLO,polaropticalphononenergy;E1andEs,high-andlow-frequencydielectricconstant;Z0,effectivewidthoftriangularwellformedattheGaxIn1-xN/GaNinterfaceandisgivenintermsofFermiwavevector.
1EP1E11EsZ02πkF2πn2DqInterfaceroughness[11,15,20]μIFR2Esn2DΔΛ23e3m21JIFRkΔ,lateralsizeoftheroughness;Λ,correlationlengthbetweenfluctuations;JIFR(k),correlationlengthandthelateralsize-dependentintegral;n2D,2Delectrondensity.
JIFRkZ2k0expq2Λ2=42k3qqs21q=2k2qq4dqq2ksinθ=2qse2m2πEs2FqAlloydisorder[20]μAlloy16e33bx1xm2Ω0U2Ax,Gafraction;Ω0,thevolumeoccupiedbyoneatom;UA,alloypotential.
Dislocation[21-23]μDis302πpE2c2kBT3=2e3NDisf2λDmpNDis,dislocationdensityperunitareawhichistakenasafittingparameter;λD,Debyescreeninglength;c,latticeconstantofGaxIn1-xN.
f,thefractionoffilledtrapsthatareassumedfullyoccupied.
λDEskBT=e2n2D1=2Donmezetal.
NanoscaleResearchLetters2012,7:490Page3of6http://www.
nanoscalereslett.
com/content/7/1/490roughnessscatteringanddislocationscatteringmechan-isms.
Opticalphononscatteringsbecomesignificantathightemperatures,asdescribedabove.
Figure3showsex-perimentalandcalculatedtemperature-dependentmobil-ityoftheGa0.
52In0.
48N.
ThedislocationdensityincreaseswithGaconcentration;therefore,itseffectonthemobilitybecomesmorepronouncedinthissample.
Atlowtem-peratures,mobilityislimitedbythesamescatteringmechanismsasintheothersamples.
Athightempera-tures,however,interfaceroughnessandalloypotentialre-strictthemobility,buteffectofthedislocationscatteringbecomeslessdominantasaresultofshorteningDebyescreeninglengthduetohighercarrierdensity.
Further-more,inthehigh-carrier-concentrationregime,electron–phononscatteringisheavilyscreened,asdescribedaboveandinreferences[19,25,29-33].
ConclusionsInthispaper,wehaveinvestigatedelectronictransportpropertiesofnominallyundopedIn-richGaxIn1-xNstructureswithdifferentGaconcentrations.
Halleffectresultsshowthat2DEGmobilityinGaxIn1-xNdecreasesandbecomestemperatureinsensitivewithincreasingGaconcentrations.
Thesamplesarenotintentionallydoped,buttheyallhaven-typeconductivity.
ElectrondensityincreaseswithincreasingGacomposition.
Thetemperaturedependenceofelectronmobilityisdeter-minedbytakingintoaccountallthemajorscatteringmechanisms.
ThedecreaseoftheelectronmobilitywithGaconcentrationisexplainedintermsofincreaseddis-locationscattering.
Theweaktemperaturedependence10015020025030012x=0.
06x=0.
32x=0.
52n2D(x1014cm-2)Temperature(K)(a)10015020025030005010090010001100x=0.
06x=0.
32x=0.
52(cm2/Vs)Temperature(K)(b)Figure1Temperaturedependenceof(a)carrierdensityand(b)electronmobility.
Table3ThevaluesoftheparametersusedinthecalculationsSampleΔ(nm)Λ(nm)Dislocationdensity(*1010cm2)Ga0.
06In0.
94N3.
61.
4(fourmonolayer)0.
1Ga0.
32In0.
68N6.
43.
4(tenmonolayer)0.
3Ga0.
52In0.
48N6.
73.
4(tenmonolayer)3.
8(a)1001502002503008x1021x1031x1031x1041x105POACIFRDisAlloyTotalExp.
(cm2/V.
s)Temperature(K)Ga0.
06In0.
94N(b)1001502002503006x1018x101102103104105106IFRAlloyACDisPOTotalExp(cm2/V.
s)Temperature(K)Ga0.
32In0.
68NFigure2Experimentalandcalculatedtemperaturedependenceofmobilitycurvesfor(a)Ga0.
06In0.
94Nand(b)Ga0.
32In0.
68N.
Donmezetal.
NanoscaleResearchLetters2012,7:490Page4of6http://www.
nanoscalereslett.
com/content/7/1/490ofthemobilityathightemperaturesmightbeassociatedwithreducedelectron-opticalphononscatterings.
Alloyandinterfaceroughnessscatteringmechanismsaredom-inantatlowtemperatures.
InsampleswithhigherGafractions,dislocationscatteringbecomesmoresignifi-cant,andathightemperatures,phononscatteringisrestrictedduetoincreaseofdislocationdensity.
Athightemperatures,phononscatteringisonlypronouncedinthesampleswithlowelectrondensities.
AbbreviationsLO-phonon,longitudinalopticalphonon;LA-phonon,longitudinalacousticphonon;2DEG,two-dimensionalelectrongas;TEM,transmissionelectronmicroscopy;IFR,interfaceroughness.
CompetinginterestsTheauthorsdeclarethattheyhavenocompetinginterest.
Authors'contributionsODandMGcarriedouttheexperimentsandfittedtheHallmobilitydatawithAEandMCA.
OD,MG,AEandMCAwrotethemanuscriptinconjunctionwithNB.
WJSgrewtheinvestigatedsamples.
Allauthorsreadandapprovedthefinalmanuscript.
AcknowledgmentsThisworkwassupportedbyScientificProjectsCoordinationUnitofIstanbulUniversitywithProjectNumberBYP25027.
WealsoacknowledgethepartialsupportfromRepublicofTurkey,MinistryofDevelopment.
(ProjectNumber:2010K121050).
Authordetails1ScienceFaculty,DepartmentofPhysics,IstanbulUniversity,Vezneciler,Istanbul34134,Turkey.
2SchoolofComputerScienceandElectronicEngineering,UniversityofEssex,Colchester,EssexCO43SQ,UnitedKingdom.
3DepartmentofElectricalandComputerEngineering,CornellUniversity,Ithaca,NY14853,USA.
Received:16July2012Accepted:21August2012Published:31August2012References1.
WuJ,WalukiewiczW,YuKM,AgerJWIII,AllerEE,LuH,SchaffWJ,SaitoY,NanishiN:UnusualpropertiesofthefundamentalbandgapofInN.
ApplPhysLett2002,80:3967–3969.
2.
WuJ,WalukiewiczW:BandgapsofInNandgroupIIInitridealloys.
SuperlatticesMicrostruct2003,34:63–75.
3.
BechstedtF,FurthmüllerJ,FerhatM,TelesLK,ScolfaroLMR,LeiteJR,DavydovVY,AmbacherO,GoldhahnR:EnergygapandopticalpropertiesofInxGa1–xN.
PhysStatusSolidiA2003,195:628–633.
4.
MonemarB,PaskovaPP,KasicA:OpticalpropertiesofInN—thebandgapquestion.
SuperlatticesMicrostruct2005,38:38–56.
5.
WalukiewiczW,LiSX,WuJ,YuKM,AgerJWIII,HallerEE,LuH,SchaffWJ:OpticalpropertiesandelectronicstructureofInNandIn-richgroupIII-nitridealloys.
JCrystGrowth2004,269:119–127.
6.
HsuL,JonesRE,LiSX,YuKM,WalukiewiczW:ElectronmobilityinInNandIII-Nalloys.
JApplPhys2007,102:073705–073710.
7.
LinSK,WuKT,HuangCP,LiangCT,ChangYH,ChenYF,ChangPH,ChenNC,ChangCA,PengHC,ShihCF,LiuKS,LinTY:ElectrontransportinIn-richInxGa1xNfilms.
JApplPhys2005,97:046101.
8.
GunesM,BalkanN,ZanatoD,SchaffWJ:AcomparativestudyofelectricalandopticalpropertiesofInNandIn0.
48Ga0.
52N.
MicroelectronJ2009,40:872–874.
9.
Liliental-WeberZ,ZakharovDN,YuKM,AgerJWIII,WalukiewiczW,HallerEE,LuH,SchaffWJ:CompositionalmodulationinInxGa1xN:TEMandX-raystudies.
JElectronMicrosc2005,54:243–250.
10.
TirasE,GunesM,BalkanN,SchaffWJ:InrichIn1xGaxN:compositiondependenceoflongitudinalopticalphononenergy.
PhysStatusSolidiB2010,247:189–193.
11.
ZanatoD,GokdenS,BalkanN,RidleyBK,SchaffWJ:Theeffectofinterface-roughnessanddislocationscatteringonlowtemperaturemobilityof2DelectrongasinGaN/AlGaN.
SemicondSciTechnol2004,19:427–432.
12.
VealTD,PiperLFJ,PhillipsMR,ZareieMH,LuH,SchaffWJ,McConvilleCF:ScanningtunnellingspectroscopyofquantizedelectronaccumulationatInxGa1xNsurfaces.
PhysStatusSolidiA2006,203:85–92.
13.
MorkocH:CarrierTransport.
HandbookofNitrideSemiconductorsandDevices.
Weinheim:Wiley;2008:165–395.
14.
LevinshteinM,RumyantsevS,ShurM:PropertiesofAdvancedSemiconductorMaterials:GaN,AlN,InN,BN,SiC,SiGe.
Canada:Wiley;2001.
15.
RidleyBK,FoutzBE,EastmanLF:MobilityofelectronsinbulkGaNandAlxGa1-xN/GaNheterostructures.
PhysRevB2000,61:16862–16869.
16.
HutsonAR:PiezoelectricscatteringandphonondraginZnOandCdS.
JApplPhys1961,32:2287–2292.
17.
RidleyBK:Theelectron–phononinteractioninquasi-two-dimensionalsemiconductorquantum-wellstructures.
JPhysC:SolidStatePhys1982,15:5899–5917.
18.
HirakawaK,SakakiH:Mobilityofthetwo-dimensionalelectrongasatselectivelydopedn-typeAlxGa1-xAs/GaAsheterojunctionswithcontrolledelectronconcentrations.
PhyRevB1986,33:8291–8303.
19.
SunY,BalkanN,AslanM,LisesivdinSB,CarrereH,ArikanMC,MarieX:Electronictransportinn-andp-typemodulationdopedGaxIn1xNyAs1y/GaAsquantumwells.
JPhysCondensMatter2009,21:174210–174217.
20.
KearneyMJ,HorrellAI:Theeffectofalloyscatteringonthemobilityofholesinaquantumwell.
SemicondSciTechnol1998,13:174–180.
21.
NgHM,DoppalapudiD,MoustakasTD,WeimannNG,EastmanLF:Theroleofdislocationscatteringinn-typeGaNfilms.
ApplPhysLett1998,73:821–823.
22.
Abdel-MotalebIM,KorotkovRY:ModelingofelectronmobilityinGaNmaterials.
JApplPhys2005,97:093715–093721.
23.
KunduJ,SarkarCK,MallickPS:CalculationofelectronmobilityandeffectofdislocationscatteringinGaN.
SemicondPhys,QuantumElect&Optoelect2007,10:1–3.
24.
DonmezO,YilmazM,ErolA,UlugB,ArikanMC,UlugA,AjagunnaAO,IliopoulosE,GeorgakilasA:InfluenceofhighelectronconcentrationonbandgapandeffectiveelectronmassofInN.
PhysStatusSolidiB2011,248:1172–1175.
25.
LookDC,LuH,SchaffWJ,JasinskiJ,Liliental-WeberZ:DonorandacceptorconcentrationsindegenerateInN.
ApplPhysLett2002,80:258–261.
26.
WangCX,TsubakiK,KobayashiN,MakimotoT,MaedaN:ElectrontransportpropertiesinAlGaN/InGaN/GaNdoubleheterostructuresgrownbymetalorganicvaporphaseepitaxy.
ApplPhysLett2004,84:2313–2315.
27.
ThakurJS,NaikR,NaikVM,HaddadD,AunerGW,LuH,SchaffWJ:ElectrontransportpropertiesinAlGaN/InGaN/GaNdoubleheterostructuresgrownbymetalorganicvaporphaseepitaxy.
JApplPhys2006,99:023504–023508.
1001502002503002x1014x1013x1026x102IFRDisAlloyTotalExp.
(cm/Vs)Temperature(K)Ga0.
52In0.
48NFigure3MeasuredandcalculatedmobilityversustemperatureGa0.
52In0.
48N.
Donmezetal.
NanoscaleResearchLetters2012,7:490Page5of6http://www.
nanoscalereslett.
com/content/7/1/49028.
DonmezO,GunesM,ErolA,ArikanMC,BalkanN:HighcarrierconcentrationinducedeffectsonthebowingparameterandthetemperaturedependenceofthebandgapofGaxIn1xN.
JApplPhys2011,110:103506–103511.
29.
ZanatoD,TirasE,BalkanN,Boland-ThomsA,WahJY,HillG:MomentumrelaxationofelectronsinInN.
PhysStatusSolidiC2005,2:3077–3081.
30.
RidleyBK:QuantumProcessesinSemiconductors.
NewYork:OxfordUniversityPress;1999.
31.
SunY,VaughanM,AgarwalA,YilmazM,UlugB,UlugA,BalkanN,SopanenM,ReentilO,MattilaM,FontaineC,ArnoultA:Inhibitionofnegativedifferentialresistanceinmodulation-dopedn-typeGaxIn1xNyAs1y/GaAsquantumwells.
PhysRevB2007,75:205306–205316.
32.
SuY,WenY,HongY,LeeHM,GwoS,LinYT,TuLW,LuiHL,SunCK:Usingholescreeningeffectonhole–phononinteractiontoestimateholedensityinMg-dopedInN.
ApplPhysLett2011,98:252106–252108.
33.
KirillovD,LeeH,HarrisJS:RamanscatteringstudyofGaNfilms.
JApplPhys1996,80:4058–4062.
34.
ThomsenM,JnenH,RossowU,HangleiterA:SpontaneouspolarizationfieldinpolarandnonpolarGaInN/GaNquantumwellstructures.
PhysStatusSolidiB2001,248:627–631.
35.
FenebergM,ThonkeK,WundererT,LipskiF,ScholzF:PiezoelectricpolarizationofsemipolarandpolarGaInNquantumwellsgrownonstrainedGaNtemplates.
JApplPhys2010,107:103517–103522.
36.
LuCJ,BenderskyLA,LuH,SchaffWJ:ThreadingdislocationsinepitaxialInNthinfilmsgrownon(0001)sapphirewithaGaNbufferlayer.
ApplPhysLett2003,83:2817–2819.
doi:10.
1186/1556-276X-7-490Citethisarticleas:Donmezetal.
:Theroleofdislocation-inducedscatteringinelectronictransportinGaxIn1-xNalloys.
NanoscaleResearchLetters20127:490.
Submityourmanuscripttoajournalandbenetfrom:7Convenientonlinesubmission7Rigorouspeerreview7Immediatepublicationonacceptance7Openaccess:articlesfreelyavailableonline7Highvisibilitywithintheeld7RetainingthecopyrighttoyourarticleSubmityournextmanuscriptat7springeropen.
comDonmezetal.
NanoscaleResearchLetters2012,7:490Page6of6http://www.
nanoscalereslett.
com/content/7/1/490
A400互联是一家成立于2020年的商家,主要推行洛杉矶服务器采用kvm架构,线路优质,延迟低,稳定性高!全场产品对标腾讯云轻量,服务器线路有有美国洛杉矶cn2_gia、香港cn2+cmi,目前推行的vps服务器均为精心挑选的优质线路机房,A400互联推出了夏季优惠洛杉矶5折、香港7折促销活动,质量可靠,价格实惠!二:优惠码洛杉矶五折优惠码:20210620香港cn2七折优惠码:0710三、优惠方...
最近我们是不是在讨论较多的是关于K12教育的问题,培训机构由于资本的介入确实让家长更为焦虑,对于这样的整改我们还是很支持的。实际上,在云服务器市场中,我们也看到内卷和资本的力量,各大云服务商竞争也是相当激烈,更不用说个人和小公司服务商日子确实不好过。今天有看到UCloud发布的夏季促销活动,直接提前和双十一保价挂钩。这就是说,人家直接在暑假的时候就上线双十一的活动。早年的双十一活动会提前一周到十天...
热网互联怎么样?热网互联(hotiis)是随客云计算(Suike.Cloud)成立于2009年,增值电信业务经营许可证:B1-20203716)旗下平台。热网互联云主机是CN2高速回国线路,香港/日本/洛杉矶/韩国CN2高速线路云主机,最低33元/月;热网互联国内BGP高防服务器,香港服务器,日本服务器全线活动中,大量七五折来袭!点击进入:热网互联官方网站地址热网互联香港/日本/洛杉矶/韩国cn2...
www.1100lu.com为你推荐
摩拜超15分钟加钱摩拜单车不是按骑行时间收费吗,我怎么只要开锁就要支付一元(而且只骑十几分钟)蓝色骨头手机宠物的一个蓝色骨头代表多少级,灰色又代表多少级,另外假如有骨头又代表多少级原代码什么叫源代码,源代码有什么作用陈嘉垣马德钟狼吻案事件是怎么回事javbibinobibi的中文意思是?www.se222se.com原来的www站到底222eee怎么了莫非不是不能222eee在收视com了,/?求解云鹏清身患哮喘疾病时间较长,怎样才能治好云鹏清维生素C、维生素E……是含片好还是胶囊好?雀嘴鳝鳄雀鳝能和招财猫混养吗522av.comwww可a67亲com赏美艳新影
a5域名交易 骨干网 抢票工具 2017年黑色星期五 申请空间 太原联通测速平台 网站木马检测工具 中国网通测速 申请网站 阿里云邮箱登陆地址 免费蓝钻 免费个人网页 闪讯网 privatetracker 腾讯服务器 免 建站论坛 2016黑色星期五 服务器操作系统 美国vpn服务器 更多