servicepiggycase

piggycase  时间:2021-03-23  阅读:()
ExplicitTransportErrorNotification(ETEN)forError-ProneWirelessandSatelliteNetworks–Summary_-ERajeshKrishnan,MarkAllman,CraigPartridge,andJamesP.
G.
SterbenzBBNTechnologiesWilliam.
IvancicGlennResearchCenterAbstract—ThispaperisasummaryoftheBBNTechnicalReportNo.
8333,"ExplicitTransportErrorNotificationforError-ProneWirelessandSatelliteNetworks.
"InthisstudywediscusstwotypesofExplicitTransportErrorNotification(ETEN)mechanisms:(i)per-packetmechanismsthatnotifyendpointsofeachdetectedcorruption;and(ii)cumulativemechanismsthatnotifyendpointsofaggregatecorruptionstatistics.
Wehaveimplementedtheproposedmechanismsinthens-2simulator.
WepresentsimulationresultsonperformancegainsachievableforTCPRenoandTCPSACK,usingETENmechanismsoverawiderangeofbiterrorratesandtrafficconditions.
WecompareTCPRenoandTCPSACKenhancedwithETENmechanismsagainstTCPWestwood,whichusesabandwidthestimationstrategyinplaceofthetraditionalAIMDcongestionavoidancealgorithm.
WediscusstwoissuesrelatedtothepracticaldeploymentofETENmechanisms:corruptiondetectionmechanisms(andtheirco-operationwithETEN-basedrecoveryinthetransportlayer)andsecurityaspects.
Weincluderecommendationsforfurtherwork.
IndexTerms—CongestionControl,ExplicitTransportErrorNotification,Internet,Protocols,Satellite,TCP/IPI.
BACKGROUNDNASAisworkingtoextendtheInternetintospaceinordertoimprovecommunications,enablenewsystemcapabilitiesandreduceoverallmissioncosts.
Assuch,NASAisinterestedinleveragingtechnologiesdevelopedbythecommercialcommunicationindustry.
Inparticular,NASAisinterestedinutilizingcommodityprotocols,theTCP/IPprotocolsuite,whereverpossible.
NASAcommissionedBBNTechnologiestoinvestigatethepotentialnetworkperformancebenefitsofETENandthepracticalissuesinvolvedinimplementinganddeployingETEN.
ThispaperisasummaryoftheBBNTechnicalReportNo.
8333,"ExplicitTransportErrorNotificationforError-ProneWirelessandSatelliteNetworks.
"II.
INTRODUCTIONOneobstacletogoodperformanceofinternetworkswithwirelessandsatellitecomponentsisnon-negligiblebit-errorrates(BER).
ThemostwidelyusedtransportprotocolintheTCP/IPsuite,thetransmissionControlProtocol(TCP)[1],guaranteesthatcorrupteddatawillberetransmittedbythedatasender,henceprovidingareliablebyte-streamtoapplications.
However,packetlossisalsousedbyTCPtodeterminethelevelofcongestioninthenetwork[2]–astraditionally,thebulkofpacketlossinnetworkscomesfromrouterqueueoverflow(i.
e.
congestion).
Therefore,toavoidcongestioncollapseTCPrespondstopacketlossbydecreasingthecongestionwindow[2][3],andthereforethesendingrate.
Thereductionofthecongestionwindowisnotneededtoprotectnetworkstabilityinthecasewhenlossesarecausedbycorruptionandthereforetheseneedlessreductionsinthesendingratehaveanegativeimpactonperformancewithlittleoverallbenefittothenetwork.
IftheTCPsendercandistinguishpacketslostduetocongestionfrompacketslostduetoerrors,betterperformancemaybeachieved.
TheperformancebenefitcanberealizedifTCPcanretransmitapacketlostduetocorruptionwithoutneedlesslyreducingthetransmissionrate,whilecontinuingtoprotectnetworkstabilitybydecreasingthesendingratewhenlossiscausedbynetworkcongestion.
TCPExplicitTransportErrorNotification(ETEN)istheconceptofnotifyingTCPthatpacketswerelostduetocorruption1.
ETENmechanismscanaidTCPindistinguishingpacketsthatarelostduetocongestionfromonesthatarelostduetocorruption.
Thepurposeofthisstudyistwo-fold:1.
ToestablishboundsontheperformanceimprovementsthatcanbeobtainedwiththeuseofidealETENmechanismsunderdifferentnetworkconditions–errorrates,capacities,delays,topologies,congestion–andtherebydeterminepromisingdirectionsforfutureresearch,ifany.
2.
ToconsiderissuesrelatedtopracticaldeploymentofETENmechanisms,toproposesuitablearchitecturesandmechanisms,toidentifysecurityvulnerabilities,andtoidentifyareasthatrequirefurtherstudybeforeanETENsystemisviable.
Throughsimulations,wehaveevaluatedpossibleenhancementstoTCPthatarebasedonETENnotificationsfromintermediateroutersand/orendsystems.
Emulationsinatestbedandlivetestingoverrealnetworkswereconsideredoutofscopeofthiseffort.
Thisstudyincludedthefollowingtasks:DetermineboundsonTCPgoodputimprovementspossiblefromETENwhenaTCPsenderispresentedwithidealinformationaboutthecauseofeachloss.
Evaluateviasimulations,actualperformanceachievableoverarangeofnetworktopologiesandtrafficconditionswithdifferentTCPvariantssuchasRenoandSACK.
DiscussandevaluatetheperformanceofspecificETENmechanismsthatfallinoneormoreofthefollowingbroadcategories:oForwardnotification–wherebyanynotificationaboutcorruptedpacketsissentinthedirectionofthedatapacketsandthenreturnedtothesenderinTCPacknowledgmentsegments.
oBackwardnotification–inwhichamessageissentfromthenode(end-hostorintermediaterouter)thatdetectsa1ETENissimlartoExplicitCongestionNotification(ECN).
InECN,TCPcanbeinformedoftheonsetofcongestionandadjustitstransmissionsaccordinglytherebyimprovingoverallperformance.
corruptedpackettothehostthatoriginatedthepacket.
Per-packetmechanismsthatattempttodeterminetherootcauseofeachlossexperienced.
AggregatenotificationschemeswheretheTCPsenderisprovidedwithaggregatestatisticsaboutthelosspatternsexperiencedinthenetworkpath.
DeterminehowTCPshouldbestreactuponreceivingETENnotification.
AssessthesecurityimplicationsofintroducingvariousETENmechanismsintotheInternetarchitecture.
Theseinclude:oPotentialvulnerabilitiesoftheproposedmechanismstodistributeddenial-of-serviceattacks.
oOperationoverencryptedtunnels,VPNs,andMPLSpaths,whereintermediatenodesmaynotbeabletodetermineactualsourceordestinationIPaddressesandports,makingETENnotificationeffectivelyimpossible.
oVulnerabilitiestomisbehavingreceiversthatattempttomaskcongestion-relatedlossesusingETENmechanismsinanattempttoobtainanunfairshareofnetworkresources.
III.
ERRORNOTIFICATIONANDRESPONSEMECHANISMSFortheETENmechanismsproposedinthisreportweassumeoneofthefollowingtwocasesholds:1.
ThesourceanddestinationIPaddresses,thesourceanddestinationTCPports,andtheTCPsequencenumbercanbecorrectlyobtainedfromthecorruptedpacket.
Inaddition,thepacketinquestionmustbepartofthesender'scurrentwindow;otherwise,theopportunitytomitigatetheperformanceproblemscausedbythecorruptedpacketislost.
Forthiscase,Oracle,BackwardandForwardETENwereconsideredwithOracleandBackwardETENsimulated.
2.
Thenodedetectingerrorscanonlycalculatecumulativeerrorratesforeachlink.
Inotherwords,theinformationintheheaderofacorruptedpacketisconsideredinaccurate.
BothForwardandBackwardCumulativeETENwereconsideredforthiscasewithonlyForwardCETEN(FCETEN)simulated.
IV.
ORACLEETENOracleETEN,illustratedinFigure1,isatheoreticalconstructthatassumessufficientknowledgeaboutthecorruptedpacket(senderanddestinationIPaddresses,senderanddestinationTCPportnumbers,andtheTCPsequencenumber)isavailabletotheintermediaterouterortheend-systemthatdetectscorruption.
Furthermore,thismechanismassumesthatthesourceoftheflowcanbeinstantaneouslynotifiedofthepacketcorruption.
OracleETENprovidesanupperboundontheperformanceimprovementachievablebyETENmechanismsthatnotifythesource.
WhiletheOracleETENmechanismisanimpossibilityintherealworld,itcanbeusedtodistinguishbetweencasesinwhichsomeETENmechanismwouldbeusefulandcaseswhennoETENschemewouldaidperformance.
Figure1-OracleETENV.
BACKWARDETENThebackwardETEN(BETEN)mechanism,illustratedinFigure2,isanalogoustobackwardexplicitcongestionnotificationschemes(e.
g.
,source-quench[4]).
Thismechanismassumesthattheintermediateroutercanextractorreconstruct(e.
g.
,usingFEC)sufficientknowledgeaboutthecorruptedpacketthatisrequiredtonotifythesender.
Figure2-BackwardETENVI.
FORWARDETENTheforwardETEN(FETEN)mechanismillustratedinFigure3isanalogoustoforwardexplicitcongestionnotificationschemes(e.
g.
,[6][7]).
Thismechanismalsoassumesthattheintermediateroutercanextract(orreconstructusingFEC)completeandcorrectknowledgeoftheIPaddresses,TCPports,andTCPsequencenumbercorrespondingtothecorruptedpacket.
Upondetectionofacorruptedpacket,theintermediateroutertransmitsaFETENmessagetothedestinationhost,whichthenconveystheinformationtothesenderonasubsequentacknowledgment.
Figure3-ForewardETENVII.
CUMULATIVEETENInpractice,wecannotalwaysaccuratelyretrievethesourceanddestinationIPaddress,sourceanddestinationTCPportnumbers,andTCPsequencenumberfromacorruptedpacketorlink-layerframe.
ForsuchcasesweconsiderETENmechanismsthatworkonthebasisofcumulativeerrorrates(forexample,errorratesthatareaveragedoveranintervaloftimeandacrossvariousflows),ratherthanattemptingtomakenotificationsonaper-packetbasis.
ThecumulativeETEN(CETEN)informationconveyedtotheend-hostscanbeinoneofseveraldifferentforms:Anabsolutebiterrorrate,byteerrorrate,orpacketerrorrateobservedwithinamovingwindowintime.
Theerrorratemaybequantizedintoasmallnumberofsteps(forexample,high,medium,andlow).
Abinaryfeedbackscheme[7](seealso[5][6])isaspecialcasethatprovidesindicationthatthebit/byte/packeterrorrateexceedssomethreshold.
Arelativeerrorratethatsimplyindicatesthatthequantizederrorratehasincreasedordecreasedfromthepreviousvalue.
Anestimateoftheprobabilitythatapacketsurvivescorruption.
CETENinformationcanbedeliveredtoasenderviaforwardorbackwardsignaling,analogoustoaFETEN-basedoraBETEN-basedstrategy.
Also,CETENcanbepiggybackedondataandacknowledgmentpackets,ratherthanusingadditionaldistinctmessages.
CETENinformationcanbecollectedonaper-hopbasisoraggregatedovertheend-to-endpath.
Duetothedifficultyincorrectlyassigningcorruptedpacketstotheircorrespondingflows,anyper-flowCETENinformationhastobeestimated,forexamplefromwhatisobservedacrossallflowsusingagivenlink.
CETENstrategiesthatrelypurelyonstatisticscollectedwithinthelifetimeofaparticularflowareoflimiteduseforshortflows.
Forexample,ashortflowmayhaveterminatedbeforeweobtainagoodestimateofthepacketcorruptionprobability.
VIII.
SENDERRESPONSETOETENThesender'sresponsetoanETENnotificationdependsonthetypeofthenotification.
IfthesenderreceivestimelyandreliableinformationaboutthecorruptedpacketthatidentifiestheTCPflowandthesequencenumberwithintheflow,thenthesendercanretransmitthecorruptedpacketwithoutadjustingthecongestionstate.
However,iftheinformationcontainedintheETENnotificationisonlypartiallyreliable,orifonlyacumulativeerrorrateisavailable,thenthesenderhastoapplyaheuristictodeterminewhatactionisappropriate.
Whenatransportendpointinfersapacketloss,itcannotexactlydeterminefromtheCETENinformationifthepacketlossoccurredduetocorruptionorcongestion.
Atbest,theCETENinformationprovidesarecentestimateofthefractionofthelossesthatareduetocorruption.
Thedecisiontobemadebythesenderincludeswhetheranoutstandingsegmentshouldberetransmittedandwhetherthecongestionstateshouldbealteredinresponse.
SincemostlinkleveltechnologiesrequirecorruptedpacketstobediscardedevenbeforeitreachestheIPlayer,per-packetETENmechanisms(attheIPandTCPlayers)cannotseethecorruptedpackets.
Althoughthesenderresponsetoper-packetETENismorestraightforwardthantheresponsetoCETEN,itmustbenotedthatthecorruptionlinklayercountersoferrorsarereadilyavailable;thesecounterscanbeusedtogenerateCETEN.
IX.
PERFORMANCEOFETENMECHANISMSInthissection,wedescriberesultsofsimulationsontheperformanceofOracleETEN,BETENandFCETEN.
Varioustypesoflinks(e.
g.
,terrestrialLAN,WAN,andsatellite),modeledbytheirrespectivelatencies,aresimulatedoverawiderangeofbiterrorrates.
ETENperformanceiscomparedagainstconventionalReno[2]andSACK[8]variantsofTCP.
EachsimulationconsistsofabulkTCPflow(FTPapplication)of120secondsdurationwithunlimiteddatatosend.
TheactualvaluesandvariablerangesusedinthestudyarelistedinTable1.
Allsimulationswereperformedusingthens-2simulator[9](version2.
1b7a)withextensions.
Table1-ParametersValuesOracleETENrepresentstheideal,yetimpossible,baselinethatprovidesanupperboundontheperformanceachievablebyanypracticalper-packetETENscheme.
OnedesigngoalisthattheadditionofanyETENscheme(toanygivenTCPcongestionavoidancestrategy)shouldnotmaketheperformanceworse;therefore,thecasewithnoETENisexpectedtoprovideausefullowerbound(and,thisisshowninoursimulationresults).
TheBETENstrategyrepresentsanimplementableper-packetETENstrategy(assumingthatwecanextractsufficientinformationfromcorruptedpackets).
Intheabsenceofcongestion,wecanexpectthatthegoodputwhenusingBETENwillliebetweenthegoodputsusingOracleETENandnoETEN.
TheCETENstrategyrepresentsanimplementablecumulativeETENstrategythatispotentiallymorerobustintermsofsecuritythanper-packetETENstrategies,buttheoreticallyprovideslessperformancegains.
InourstrategytheCETENflowsintheforwarddirectionandgetscopiedoverontotheacknowledgmentsgoingback.
Weconsidereightsetsofsimulations,asfollows:A.
Baseline–nocrosstrafficoverasingle-hoptopologyThissetofsimulationsisaimedatevaluatingthegainspossibleoverasingleuncongestedlinkusingOracleETENandBETENwithTCPRenoandTCPSACK.
B.
Multi-hoptopologywithnocross-trafficInthissetofsimulations,weusea3-hoplineartopologyofidenticallinks,whilevaryingtheotherparametersoutlinedabove.
Thesesimulationsservethepurposeofvalidatingourimplementationinamorecomplextopologywithmultiplelinksandrouters.
Theresultsareexpectedtomatchthoseofthefirstset.
C.
Multi-hoptopologywithcompetingUDPflows:Inthissetofsimulations,weusea3-hoplineartopologytoprovideinsightintotheperformanceofETENmechanismsinthefaceofcongestionfromconstant-bit-rateUDPtraffic.
Theintensityofcross-trafficisvariedacrosssimulationruns.
Thecompetingtrafficinthesesimulationsdoesnotuseacongestionavoidancestrategy.
D.
Multi-hoptopologywithcompetingTCPflows:ThissetofsimulationsofferscompetingTCPtraffic(insteadofUDPtraffic)andisotherwiseidenticaltothethirdset.
ThisprovidesinsightintotheperformanceofETENwhenthecompetingtrafficflowsalsouseacongestionavoidancestrategy.
E.
ComparisonofETENtoTCPWestwood:ThissetofsimulationsprovidesperformancecomparisonofourETENmechanismswithTCPWestwood[10]intheabsenceofcrosstraffic.
RecentlyproposedmodificationstoTCPcongestionavoidanceincludeusingbandwidthestimationtechniques.
TCPWestwood[10]isarepresentativecongestionavoidancestrategybasedonbandwidthestimation.
TCPWestwoodhasbeenshowntoperformwellunderhigherrorratesinsimulatedcomparisonstoTCPRenoandSACKTCP.
Here,wecompareviasimulationstheperformanceofETENwithRenoandSACKagainstTCPWestwood.
F.
ComparisonofETENtoTCPWestwoodwithUDPcross-traffic:ThissetofsimulationsprovidesperformancecomparisonofourETENmechanismswithTCPWestwood[10]inthepresenceofcrosstraffic.
G.
CumulativeETENperformancewithUDPcrosstraffic:Inthissetofsimulations,weusea3-hoplineartopologyofidenticallinks.
TheperformanceofCETENisevaluatedinthepresenceofUDPcrosstraffic.
H.
CumulativeETENperformancewithTCPcrosstrafficInthissetofsimulations,weusea3-hoplineartopologyofidenticallinks.
TheperformanceofCETENisevaluatedinthepresenceofTCPcrosstraffic.
X.
PERFORMANCEThefollowingarethreesampleresultsofthevariousteststhatwereperformedinthisstudy.
Foradetaileddescriptionofallthetestsandresults,refertothecompleteBBNreport.
A.
BaslineInthebaselinesetofsimulations,weinvestigateasingleTCPflowoverasinglelinkwithchannelerrorsthatresultinpacketcorruption.
Inthissetofsimulations,thereisnocross-trafficcompetingwiththeTCPflow.
ExaminingETENinisolationprovidesanempiricalupperboundonthegaininTCPgoodputthatisachievableusingETENmechanisms.
ThebaselineforthesimulationsistheperformanceofTCPRenoandSACKundervariouserrorrates.
Weconsidertwonear-idealconditionsfortheerrordetectionandnotification:1.
OracleETEN–completeknowledgeofthecorruptedpacketandinstantaneousnotificationtothesource.
2.
BETEN–completeknowledgeofthecorruptedpacketwithrealBETENmessagespropagatingbacktothesource.
TheresultsinFigure4showthegoodputusingRenowithOracleETENoveralong-thinnetwork(ataBERof10-5)isalmostseventimesthebaselinegoodputusingRenoalone.
ThegoodputusingBETENwithSACKismorethanthreetimestheSACKbaseline,andthegoodputusingBETENwithRenoisabouttwoandonehalftimestheRenobaseline.
ThefigurealsoillustratesthatwhentheerrorsarenotasprevalentonthelinktheETENmechanismshavearelativelysmallimpactbecauseerrorshaveonlyasmallimpactonstockTCP.
Fromthesimplesimulationspresentedinthissectionwecanderiveseveralconclusions:TheperformanceusingBETENwithSACKisclosetothatofOracleETENatlowerrorrates.
AstheBERincreases,thechancesoflosinganotificationalsoincreasesandweseethatgainsfromBETENbegintodiminish.
UsingBETENwithSACKoutperformsBETENwithReno;thismaybebecausetheabilityofSACKtocorrectmultiplelossescomplementsETEN.
Ingeneral,TCPSACKperformsbetterthanTCPRenoduetotheabilityofTCPSACKtomostlydecouplelossrecoveryfromcongestioncontrol.
Figure4-TCPwithETENoveranuncongestedlongthinnetwork(LTN)B.
TCPWestwoodversusSACKBETENForthesimulationresultsinfigure5,wecomparetheperformanceofTCPWestwoodwhenbothcongestionandcorruptionlossesarepresent.
Figure5showstheperformanceofTCPWestwoodandBETENovera3-hoplineartopologywith1.
5Mb/slinkseachwithaone-waydelayof320ms.
WeusecompetingUDPtrafficforthesesimulations.
Theplotshowsthatathigherrorratesandmoderatecongestion,BETEN'sabilitytodistinguishbetweencorruptionandcongestionlossesprovidesperformanceimprovementsovertheTCPWestwoodstrategythatreliesonintelligentbandwidthestimationalone.
TheWestwoodstrategy,however,showsanadvantageunderheavycongestion(_competingflows)withlowtomoderateerrorrates.
Figure5-TCPWestwoodversusSACKTCPwithETENoveralongthinnetwork(LTN)Figure6-CETENPerformancewithTCPRenoandTCPcrosstrafficC.
CumulativeETENversusTCPRENOThesimulationresultsinfigure6showCETENwithTCPcrosstraffic2.
Theresultsindicatethatunderallcongestionlevels,CETENoffersmoderategoodputgainsoverTCPReno,exceptathighBER(10-5).
TheCETENsimulationsweconductedaspartofthisinvestigationshowCETENtobeapromisingapproachinsomesituations.
Inothersituations,CETENoffersworseperformancethanTCPReno.
WefeelthatfurtherinvestigationintoadditionalCETENmechanismsiswarrantedbeforemakingconclusionsonthefeasibilityofCETENingeneral.
Forinstance,aninvestigation2ItisimportanttonotethatthecompetingtrafficinoursimulationdidnotuseanyETENmechanism.
Thus,thecompetingtrafficneedlesslyreducetheirtransmissionrateswhentheyexperiencecorruptionlosses.
Thisallowstheflowofinteresttousemoreofthebottleneckbandwidth.
intohowwelltheendsystemcanestimatethetotallossrateandusethatfordeterminingthefractionoflossescausedbycongestionmayshedadditionallightonCETEN(andmakeitmorefeasibletodeploy).
XI.
SECURITYCONSIDERATIONSETENtechniques(suchasBETEN,forexample)thatrequireout-of-bandmessagesarevulnerabletodistributeddenialofservice(DDOS)attacksbecausenetworksthatplantousethisformofETENwillhavetoallowsuchmessagestoenterorleavetheirnetworks.
ThismakesitpossibleforanadversarytolaunchaDOSattackbybombardingahost(oranetwork)withETENmessages.
Thiscanminimallyoverwhelmthevictimhost,butiflaunchedasadistributeddenialofserviceattackfromalargenumberofhosts(thathavebeencompromisedbyanInternetworm,forinstance),anattackcanoverwhelmthecapacityofentirenetworks[11].
ETENmechanismsmaybevulnerabletoanothermoresubtleandindirectattack.
Amaliciousadversarycansendfalsenotificationscorrespondingtopacketsthatareeithernotdroppedorweredroppedduetocongestion.
Thiscaninducethesenderintoretransmittingpacketsunnecessarilyorintobypassingcongestionavoidanceandcontinuetransmittingatahigherratethanappropriateforthegivennetworkconditions.
Thisattackinisolation(onasingleflow)cancauselimiteddamage.
However,ifacoordinatedattackwerelaunchedonmanyTCPflowsonaheavilyloadednetwork,theattackcanpotentiallydrivethenetworkintocongestioncollapse[12].
Theuseofencryptioncanpreventdeepheaderinspection.
Forexample,IPsec[13]hidesTCPportinformation;IPsectunnelsalsohidetheoriginalsourceaddress.
ThismakesitdifficultforintermediaterouterstodeterminethecorrectTCPendpointstowhichETENmessagesshouldbedelivered.
XII.
CONCLUSIONSOurconclusionsfromthisstudyare:Per-packetETENmechanismsoffersubstantialgainsinbulkTCPgoodputintheabsenceofcongestion;however,inthepresenceofcongestionTCPcongestionavoidancemechanismsdominateresultingininsignificantgainsfromETEN.
Theproposedper-packetmechanismsprovideusefulupperboundsonperformancethatcanbeusedtoevaluatefutureproposalsofper-packetandcumulativeETENtechniques.
Per-packetmechanismspresentsignificantchallengestopracticalimplementationbyprovidinganewopportunitytoexploitInternetsecurityvulnerabilitiesandbyrequiringintermediatenodestoreliablyextractinformationfromtheheadersofcorruptedpacketsCumulativeETENtechniquesaremoreattractivetoimplementation;however,theparticularmechanismweevaluateddidnotrealizethepotentialgainsofper-packettechniquesSecurityvulnerabilitiesincludenotonlydenial-of-serviceattacksbutalsomoresubtleattackswitheffectsrangingfromunfairbandwidthsharingtototalcongestioncollapseofthenetwork.
FutureworkinthisareashouldfocusonalternativecumulativeETENmechanisms,accuratelossinferenceatendpointstoavoidtrackingcongestionlossesateveryhop,interactionswithforwarderrorcorrection,andcross-layerco-operationforETEN.
XIII.
RECOMMENDATIONSFORFUTUREWORKTheresultsofthisinitialbroadstudyareintriguing;theyleadustorecommendfurtherworkfocusedonspecificaspectsofETEN.
Ontheonehand,ourworkdemonstratestremendouspotentialfromETENifreliableinformationextractionfromheaderswerepossibleandcongestioncansomehowbecontrolled.
Ontheotherhand,ituncoversanumberofpracticalchallengescoupledwithachievingonlylimitedsuccesswiththeparticularcumulativeETENschemeweimplemented.
TheprimarythrustthatwerecommendistoexplorecumulativeETENalternativesthatdonotrelyoncongestionfeedbackfromintermediaterouters(sincethiswouldimplicitlydemandglobaldeploymentandrendertheschemelesspractical).
WebelievethatthebiggestchallengetorealizingCETENschemesistheinabilityofaTCPendpointtoaccuratelyestimatethetotallossatafineresolution(ofafewpackets)andinatimelymanner(withinanRTTtoenablequickrecovery).
Researchisneededtodevelopthiscapability.
Giventhiscapability,werecommendthatourproposedcumulativeETENschemeshouldberefinedtomakeuseofitandthenre-evaluated.
TheinteractionsofECNwiththerefinedcumulativeETENschemealsoremaintobestudiedinthiscontext.
OurcurrenteffortfocusedonquantifyingthroughputimprovementsachievableusingETENandwasthereforelimitedtolong-livedTCPflows.
FurtherworkisneededtoisolatetheeffectsoflossduringtheslowstartphaseandquantifythebenefitsofETENforshort-livedflows.
Wealsorecommendthatthemechanismsbeevaluatedusingrealnetworktopologiesandtraffictracesincludingotherworkloads,forexample,HTTPtransactions.
Underhigherrorrates,TCPconnectionestablishmentcanbedelayedorcanfailcompletely.
WebelievethatincreasingtheconnectionestablishmentrateunderhigherrorratescouldbeakeybenefitofETEN.
Werecommendthatfutureworkaddressthisissue.
REFERENCES[1]J.
Postel(editor),"TransmissionControlProtocol,"RequestforComments:793,September1981.
[2]V.
Jacobson,"CongestionAvoidanceandControl,"ProceedingsofACMSIGCOMM'88,Stanford,CA,USA,August1988.
[3]M.
Allman,V.
Paxson,andW.
Stevens,"TCPCongestionControl,"RequestforComments:2581,April1999.
[4]ISI,"InternetControlMessageProtocol,"RequestforComments:792,September1981.
[5]K.
Ramakrishnan,andS.
Floyd,"AProposaltoaddExplicitCongestionNotification(ECN)toIP,"RequestforComments:2481,January1999.
[6]K.
Ramakrishnan,S.
Floyd,andD.
Black,"TheAdditionofExplicitCongestionNotification(ECN)toIP,"RequestforComments:3168,September2001.
[7]K.
K.
Ramakrishnan,andR.
Jain,"ABinaryFeedbackSchemeforCongestionAvoidance,"ACMTransactionsonComputerSystems,Volume8,Number2,May1990,pp.
158–181.
[8]M.
Mathis,J.
Mahdavi,S.
Floyd,andA.
Romanow,"TCPSelectiveAcknowledgmentOptions,"RequestforComments:2018,October1996.
[9]ns-2simulator,http://www.
isi.
edu/nsnam/ns/index.
html[10]S.
Mascolo,C.
Casetti,M.
Gerla,M.
Sanadidi,andR.
Wang,"TCPWestwood:End-to-endBandwidthEstimationforEfficientTransportoverWiredandWirelessNetworks,"ProceedingsofMOBICOM2001,Rome,Italy,July2001.
[11]S.
Gibson,"TheStrangeTaleoftheAttacksAgainstGRC.
COM,"http://grc.
com/dos/grcdos.
htm.
[12]S.
Floyd,andK.
Fall,"PromotingtheUseofEnd-to-EndCongestionControlintheInternet,"IEEE/ACMTransactionsonNetworking,August1999,pp.
458–472.
[13]S.
Kent,andR.
Atkinson,"SecurityArchitecturefortheInternetProtocol,"RequestforComments:2401,November1998.

npidc:9元/月,cn2线路(不限流量)云服务器,金盾+天机+傲盾防御CC攻击,美国/香港/韩国

npidc全称No Problem Network Co.,Limited(冇問題(香港)科技有限公司,今年4月注册的)正在搞云服务器和独立服务器促销,数据中心有香港、美国、韩国,走CN2+BGP线路无视高峰堵塞,而且不限制流量,支持自定义内存、CPU、硬盘、带宽等,采用金盾+天机+傲盾防御系统拦截CC攻击,非常适合建站等用途。活动链接:https://www.npidc.com/act.html...

GreenCloudVPS$20/年多国机房可选,1核@Ryzen 3950x/1GB内存/30GB NVMe/10Gbps端口月流量2TB

GreencloudVPS此次在四个机房都上线10Gbps大带宽VPS,并且全部采用AMD处理器,其中美国芝加哥机房采用Ryzen 3950x处理器,新加坡、荷兰阿姆斯特丹、美国杰克逊维尔机房采用Ryzen 3960x处理器,全部都是RAID-1 NVMe硬盘、DDR4 2666Mhz内存,GreenCloudVPS本次促销的便宜VPS最低仅需20美元/年,支持支付宝、银联和paypal。Gree...

香港ceranetworks(69元/月) 2核2G 50G硬盘 20M 50M 100M 不限流量

香港ceranetworks提速啦是成立于2012年的十分老牌的一个商家这次给大家评测的是 香港ceranetworks 8核16G 100M 这款产品 提速啦老板真的是豪气每次都给高配我测试 不像别的商家每次就给1核1G,废话不多说开始跑脚本。香港ceranetworks 2核2G 50G硬盘20M 69元/月30M 99元/月50M 219元/月100M 519元/月香港ceranetwork...

piggycase为你推荐
李子柒年入1.6亿李子柒男朋友是谁,李子柒父母怎么去世的?曲妙玲张婉悠香艳版《白蛇传》是电影还是写真集?丑福晋历史上真正的八福晋是什么样子的?www.vtigu.com如图所示的RT三角形ABC中,角B=90°(初三二次根式)30 如图所示的RT三角形ABC中,角B=90°,点p从点B开始沿BA边以1厘米每秒的速度向A移动;同时,点Q也从点B开始沿BC边以2厘米每秒的速度向点C移动。问:几秒后三角形PBQ的面积为35平方厘米?PQ的距离是多少partnersonline国外外贸平台有哪些?yinrentangweichentang产品功效好不好?dadi.tv海信电视机上出现英文tvservice是什么意思?hao.rising.cn如何解除瑞星主页锁定(hao.rising.cn). 不想用瑞星安全助手关键词分析关键词分析的考虑思路是怎样的,哪个数据是最重要的本冈一郎只想问本冈一郎的效果真的和说的一样吗?大概多长时间可以管用呢?用过的进!
m3型虚拟主机 qq空间域名 hostgator uk2 googleapps ixwebhosting 12u机柜尺寸 tightvnc 私有云存储 亚洲小于500m ntfs格式分区 183是联通还是移动 cn3 空间技术网 hktv 如何建立邮箱 lick photobucket 杭州电信宽带优惠 学生服务器 更多