recommendations37
yw372:Com 时间:2021-02-13 阅读:(
)
DISCOVERYANDANALYSISOFWEBUSAGEMININGMARATHEDAGADUMITHARAMR.
C.
PatelA.
C.
S.
College,Shirpur,Maharashtra,IndiaABSTRACTInthispaperwedescribesomeofthemostcommontypesofpatterndiscoveryandanalysistechniquesemployedintheWebusagemining.
InthispapermentionAssociationandClusterAnalysis.
AssociationRuleisafundamentalofDataminingtask.
Itsobjectivetofindallco-occurrencerelationshipcalled,Associationamongdataitem.
LetI={i1,i2,…,im}beasetofitems.
LetT=(t1,t2,…,tn)beasetoftransactions.
ClusteranalysisandvisitorssegmentationClusteringisadataminingtechniquethatgroupstogetherasetofitemshavingsimilarcharacteristics.
Intheusagedomain,therearetwokindsofinterestingclustersthatcanbediscovered:userclustersandpageclusters.
GoalDiscoveryandanalysisofwebusagepatternsusingAssociationanalysis.
DiscoveryandanalysisofwebusagepatternsusingClusterAnalysisandVisitorssegmentation.
KEYWORDS:AssociationAnalysis,ClusterAnalysisandVisitorsSegmentationINTRODUCTIONAssociationrulediscoveryandstatisticalcorrelationanalysiscanfindgroupsofitemsorpagesthatarecommonlyaccessedorpurchasedtogether.
AssociationbasedonApriorialgorithm.
Thisalgorithmfindsgroupsofitemusingsupportandconfidence.
Satisfyingauserspecifiedminimumsupportthreshold.
Suchgroupsofitemsarereferredtoasfrequentitemsets&frequentitemsetsgraph.
Logfilesgeneratedbywebserverscontainenormousamountsofwebusagedatathatispotentiallyvaluableforunderstandingthebehaviorofwebsitevisitors.
Clusteringofuserrecords(sessionsortransactions)isoneofthemostcommonlyusedanalysistasksinWebusageminingandWebanalytics.
Clusteringofuserstendstoestablishgroupsofusersexhibitingsimilarbrowsingpatterns.
Suchknowledgeisespeciallyusefulforinferringuserdemographicsinordertoperformmarketsegmentationine-commerceapplicationsorprovidepersonalizedWebcontenttotheuserswithsimilarinterests.
Furtheranalysisofusergroupsbasedontheirdemographicattributes(e.
g.
,age,gender,incomelevel,etc.
)mayleadtothediscoveryofvaluablebusinessintelligence.
Usage-basedclusteringhasalsobeenusedtocreateWeb-based"usercommunities"reflectingsimilarinterestsofgroupsofusers,andtolearnusermodelsthatcanbeusedtoprovidedynamicrecommendationsinWebpersonalizationapplications.
ASSOCIATIONRULESupport&ConfidenceTheSupportofrule,XYthepercentageoftransactioninTthatcontainsXUY.
nisthenumberoftransactioninT.
Supportisusefulmeasurementofitemsetoritems.
IfXistruethenchecksforY,ifXisfalsethennothingtobesayY.
InthefollowingexampleXunionYthencount.
InternationalJournalofComputerScienceEngineeringandInformationTechnologyResearch(IJCSEITR)ISSN2249-6831Vol.
3,Issue1,Mar2013,313-320TJPRCPvt.
Ltd.
314MaratheDagaduMitharame.
g.
(XUY).
CountSupportN(XUY).
CountConfidenceX.
CountUsingaboveexampleswecanaccepttheminsubandminconf.
Tocalculateminsubandminconfasfollows.
T1C++,JAVA,RUBYT2C++,ASPT3ASP,VBT4C++,JAVA,ASPT5C++,JAVA,PHP,ASP,RUBYT6JAVA,PHP,RUBYT7JAVA,RUBY,PHPJAVA,PHPRUBY[sup=3/7,conf=3/3]Inabove7transactionsJAVA,PHP&RUBYshow3/7times.
EveryitemchecksitemsettoeveryusingJoiningandPruningsteps.
Inwebusageminingsuchrulecanbeusetooptimizestructureofwebsite.
e.
g.
Language,/product/softwareRCPACSCOLLEGEWebsiteEXPERIMENT-FINDINGWEBUSAGEASSOCIATIONRULESInstances:14Attributes:5outlooktemperatureDiscoveryandAnalysisofWebUsageMining315humiditywindyplayIfchecksunny,falseyes[sub1/14conf1/1]Thepurposeofthisexperimentwastogivesomeinsightintotheusefulnessofassociationruleswhentheyareappliedtotheweblogdatasetofaneducationinstitutionandothers.
Weexpectedtofindrulesthatcorrelatetowebpagesthatcontaininformationaboutsunny,rainyortemperatureetc.
SupposethisistransactiontableandfindoutFrequentItemsetthen,T1C++,JAVA,RUBYT2C++,ASPT3ASP,VBT4C++,JAVA,ASPT5C++,JAVA,PHP,ASP,RUBYT6JAVA,PHP,RUBYT7JAVA,RUBY,PHPSize1Size2Size3Size4ItemSetSupp.
ItemSetSupp.
ItemSetSupp.
ItemSetSupp.
C++4C++,JAVA3C++,JAVA,RUBY2C++,JAVA,RUBY,ASP1JAVA5C++,RUBY2C++,JAVA,ASP2C++,JAVA,RUBY,PHP1RUBY4C++,ASP3JAVA,RUBY,ASP1ASP4C++,PHP1JAVA,RUBY,PHP3VB1JAVA,RUBY4RUBY,ASP,PHP1PHP3JAVA,ASP2JAVA,PHP3RUBY,ASP1RUBY,PHP3ASP,PHP1Figure1:WebTransactionsandResultingFrequentItemsets(Minsup=1)FindoutFrequentItemsetbyUsingJoiningandPruningMethodsofAssociationRuleFREQUENTITEMSETGRAPHFig.
2,findsitemsC++andRUBYascandidaterecommendations.
TherecommendationscoresofitemAandCare1,correspondingtotheconfidencesoftherules,JAVA,ASP->C++andJAVA,ASP->RUBY,respectively.
Aproblemwithusingasingleglobalminimumsupportthresholdinassociationruleminingisthatthediscoveredpatternswillnotinclude"rare"butimportantitemswhichmaynotoccurfrequentlyinthetransactiondata.
316MaratheDagaduMitharamC=C++J=JAVAA=ASPR=RUBYP=PHPFigure2:FrequentItemsetsCLUSTERANALYSISANDVISITORSSEGMENTATIONConceptandExampleClusteringofuserrecords(sessionsortransactions)isoneofthemostcommonlyusedanalysistasksinWebusageminingandWebanalytics.
Clusteringofuserstendstoestablishgroupsofusersexhibitingsimilarbrowsingpatterns.
Suchknowledgeisespeciallyusefulforinferringuserdemographicsinordertoperformmarketsegmentationine-commerceapplicationsorprovidepersonalizedWebcontenttotheuserswithsimilarinterests.
DiscoveryandAnalysisofWebUsageMining317HereweUsetheformulaof"WebDataMining"-Bingliubook.
Asanexample,considerthetransactiondatadepictedinsimplicityweassumethatfeature(pageview)weightsineachtransactionvectorarebinary(incontrasttoweightsbasedonafunctionofpageviewduration).
Weassumethatthedatahasalreadybeenclusteredusingastandardclusteringalgorithmsuchask-means,resultinginthreeclustersofusertransactions.
Itshowstheaggregateprofilecorrespondingtocluster1.
Asindicatedbythepageviewweights,pageviewsBandFarethemostsignificantpagescharacterizingthecommoninterestsofusersinthissegment.
PageviewC,however,onlyappearsinonetransactionandmightberemovedgivenafilteringthresholdgreaterthan0.
25.
Suchpatternsareusefulforcharacterizinguserorcustomersegments.
Thisexample,forinstance,indicatesthattheresultingusersegmentisclearlyinterestedinitemsBandFandtoalesserdegreeinitemA.
GivenanewuserwhoshowsinterestinitemsAandB,thispatternmaybeusedtoinferthattheusermightbelongtothissegmentand,therefore,wemightrecommenditemFtothatuser.
ExperimentandResultsInthisexperimentwedefinetable"weather"anddefinefields.
318MaratheDagaduMitharamOutputUsingClusterinWeka===Runinformation===Scheme:weka.
clusterers.
HierarchicalClusterer-N2-LSINGLE-P-A"weka.
core.
EuclideanDistance-Rfirst-last"Relation:weatherInstances:13Attributes:5outlooktemperaturehumiditywindyIgnoredplayTestmode:Classestoclustersevaluationontrainingdata===Modelandevaluationontrainingset===Cluster0((((((1.
0:0.
18505,1.
0:0.
18505):0.
05959,1.
0:0.
24464):0.
7557,(1.
0:0.
16832,(1.
0:0.
08235,1.
0:0.
08235):0.
08597):0.
83201):0.
00109,((0.
0:0.
22986,0.
0:0.
22986):0.
77157,0.
0:1.
00142):0):0.
00106,(0.
0:0.
21648,0.
0:0.
21648):0.
78601):0.
00135,1.
0:1.
00384)ClusteredInstances012(92%)11(8%)Classattribute:playClassestoClusters:01<--assignedtocluster71|yes50|noCluster0<--yesCluster1<--NoclassIncorrectlyclusteredinstances:6.
046.
1538%DiscoveryandAnalysisofWebUsageMining319VisualizationsofPatternsCONCLUSIONSUsagepatternsdiscoveredthroughWebusageminingareeffectiveincapturingitem-to-itemanduser-to-userrelationshipsandsimilaritiesatthelevelofusersessions.
Thispaperhasattemptedtoforthepurposeofwebusagemining.
TheproposedmethodsweresuccessfullytestedonthedatasetordatabasesusingassociationruleandclusteranalysismethodusingWekaTool.
Ourexperimentsconfirmedthatoneofthemajorissuesinassociationruleandclusterfindingistheexistenceoftoomanyrulesandgroups,allofwhichsatisfydefinedconstraints.
REFERENCES1.
Webdatamining–BingLiu320MaratheDagaduMitharam2.
PPTforWebusagemining-BingLiu3.
Srivastava,J.
,Cooley,R.
,Deshpande,M.
,Tan,P.
N.
(2000).
WebUsageMining:DiscoveryandApplicationsofUsagePatternsfromWebData.
ACMSIGKDD,Jan2000.
4.
JaideepSrivastavaPaper5.
WCA.
Webcharacterizationterminology&definitions.
6.
http://www.
w3.
org/1999/05/WCA-terms/.
Vigenteal19/11/2005
恒创科技也有暑期的活动,其中香港服务器也有一定折扣,当然是针对新用户的,如果我们还没有注册过或者可以有办法注册到新用户的,可以买他们家的香港服务器活动价格,2M带宽香港云服务器317元。对于一般用途还是够用的。 活动链接:恒创暑期活动爆款活动均是针对新用户的。1、云服务器仅限首次购买恒创科技产品的新用户。1 核 1G 实例规格,单个账户限购 1台;其他活动机型,单个账户限购 3 台(必须在一个订单...
华纳云(HNCloud Limited)是一家专业的全球数据中心基础服务提供商,总部在香港,隶属于香港联合通讯国际有限公司,拥有香港政府颁发的商业登记证明,保证用户的安全性和合规性。 华纳云是APNIC 和 ARIN 会员单位。主要提供数据中心基础服务、互联网业务解决方案, 以及香港服务器租用、香港服务器托管、香港云服务器、美国云服务器,云计算、云安全技术研发等产品和服务。其中云服务器基于成熟的 ...
Digital-VM商家的暑期活动促销,这个商家提供有多个数据中心独立服务器、VPS主机产品。最低配置月付80美元,支持带宽、流量和IP的自定义配置。Digital-VM,是2019年新成立的商家,主要从事日本东京、新加坡、美国洛杉矶、荷兰阿姆斯特丹、西班牙马德里、挪威奥斯陆、丹麦哥本哈根数据中心的KVM架构VPS产品销售,分为大硬盘型(1Gbps带宽端口、分配较大的硬盘)和大带宽型(10Gbps...
yw372:Com为你推荐
操作httpflashfxp那位大侠能通俗易懂的告诉我FlashFXP到底是个什么东西。到底有什么作用?到底怎么操作?aspweb服务器asp网站挂上服务器,详细步骤linux防火墙设置如何使用iptables命令为Linux系统配置防火墙德国iphone禁售令有人说苹果手机从2017年开始,中国禁售了163yeah请问163油箱和yeah邮箱的区别,已经和163其他邮箱的区别!360公司迁至天津公司名字变更,以前在北京,现在在天津,跨地区了怎么弄?360arp防火墙在哪360ARP防火墙哪里下载?netshwinsockresetwin7系统我在输入netsh winsock reset后错误代码11003求大神解决上不了网360免费建站怎样给360免费自助建站制作的企业网站做一级域名解析绑定?
北京网站空间 域名反查 php空间租用 美国vps评测 浙江vps cn域名备案 如何申请免费域名 国外idc 私服服务器 国内永久免费云服务器 免备案空间 godaddy支付宝 shopex空间 阿里云代金券 国外免费全能空间 徐正曦 流量计费 爱奇艺vip免费试用7天 免费dns解析 四核服务器 更多