arXiv:hep-ex/0306044v1

eaccelerator  时间:2021-05-14  阅读:()
20Jun2003CriticalIssuesinLinearCollidersValeryTelnovInstituteofNuclearPhysics,630090Novosibirsk,RussiaAbstractLinearcolliders(LC)ontheenergy0.
5–1TeVareconsideredasthenextstepintheparticlephysics.
Highaccelerationgradients,smallbeamsizes,precisiontolerances,beamcollisioneectsaremainproblemsforlinearcolliders.
Inthispaperwediscussphysicsmotivation,parametersandstatusofcurrentLCprojects,e+e,γγandγemodesofoper-ation,physicallimitationsontheenergyandluminosity.
Presenttechnologiesallowtoreachenergiesabout5TeVwithadequateluminosities.
Advancedtechniquebasedonplasmaandlasermethodofaccelerationcanprovidemuchhigheracceleratinggradients,however,perspectivesofthesemethodsforhighenergycollidersarestillunderbigquestion.
Linearcolliderswithenergiesabove10TeVarehardforanyaccelerationtechnology.
SpeculationsonpossibilityofPeVlinearcollidersbasedonponderomotivelaseraccelerationarejustnotseriousandcontainseveralmistakesonconceptuallevel.
Itisshownthatduetoradiationinthetransverselasereld,methodsofaccelerationbasedonlaserbunch"pressure"donotworkathighenergies.
1Introduction:nextstepsinparticlephysicsProgressinparticlesphysicsinthelastseveraldecadeswasconnectedwiththeincreaseofacceleratorenergies.
Historically,twotypesofcollidersco-existedandgavemainresults,pp(pp)ande+e.
Protoncollidersgiveaccesstohigherenergies,bute+ecollidershavesimpleinitialstate,smallerbackgroundandallowmuchbetterprecision.
Atprotoncollidersc,b,tquarksandW,Zbosonshavebeendiscovered,whileate+ecollidersc-quark,τ-lepton,gluon.
Inaddition,ate+ecollidersc,b,W,Z,τphysicshasbeenstudiedwithahighaccuracyprovidingaprecisiontestoftheStandardModel.
ThenextprotoncolliderLHCwiththeenergy2E0=14TeVwillstartoperationinabout2007.
Itwillcertainlybringnewdiscoveries.
But,asbefore,fordetailstudyofnewphysicsandit'sunderstandingae+ecolliderisverydesirable.
Suchprojectsontheenergy2E0=0.
5–1.
5TeValreadyexist,but,unfortunately,approvalisdelayedduetoahighcostandnecessityofinternationalcooperation.
Accordingtopresentunderstandingtheconstructioncanstartinabout2007.
Asforlong-termperspectivesofparticlephysics,thefutureisevenlessclear.
Threekindoffacilitiesareunderdiscussion:VeryLargeHadronicCollider(VLHC)withppbeamsontheenergyupto200TeV,Compacte+eLinearColliderCLIContheenergy2E0=3–5TeVandmuoncolliderswhichpotentiallycanreachac.
m.
s.
energyevenhigherthaninppcollisions.
TalkatWorkshoponQuantumAspectsofBeamPhysicsandOtherCriticalIssuesofBeamsinPhysicsandAstrophysics,January7–11,2003,HiroshimaUniversity,Higashi-Hiroshima,Japan1Physicsmotivationfornextgenerationofcolliders(LHC,LC)isverystrong,twoexamplesaregivenbelow.
IftheStandardModelisvalidanewparticle,theHiggsboson,shouldexist.
DirectsearchatLEPandmeasurementsofloopcorrectionsindicatethattheHiggsbosonmasslaysintheregion115–200GeV.
Suchaparticleshouldhaveveryspecialproperties,theircouplingconstantswithotherparticlesareproportionaltoparticlemasses.
LinearcollidersallowustomeasureHiggsbranchingswithahighaccuracy,So,experimentsatLHCandLCcanshedalightontheoriginofparticlemasses.
Thesecondphysicsgoalisasearchofasupersymmetrywhichassumestheexistenceofanewclassofparticles,superpartnersofknownparticlesbutwithdierentspins:particleswiththespin1/2havepartnerswiththespin0andviceversa.
Itispossiblethatthedarkmatterintheuniverseconsistsofthelightestneutralsupersymetricalparticles.
Atcolliders,onecouldproduceanykindofsuchparticles,chargedandneutral.
Adiscoveryofa"parallel"world(whichaccordingtoastronomicaldatahasadensityevenhigherthanthatofthebarionicmatter)wouldmeananewrevolutioninphysics.
Belowweconsiderexistingprojectsoflinearcolliders,theirproblems,energyandluminositylimitations,prospectsofadvancedacceleratormethods.
2ProjectsoflinearcollidersItwasrealizedalready30yearsagothattheenergyofcirculare+elinearcollidersislimitedbysynchrotronradiationlossesatalevelof100–200GeVandfurtherprogressisonlypossibleusinglineare+ecolliders[1].
Attheendof1980-ththe2-mileelectronlinacatSLAChasbeentransformedintoa(semi)linearcolliderSLCwiththec.
m.
s.
energyof90GeV.
Itgavenicephysicsresultsandagreatexperienceofworkattherstlinearcollider.
AtthesametimeaninternationalstudyonlinearcolliderleadbySLAC,KEK,DESY,CERNandBINPhasbeenlaunchedwithambitiousgoaltodevelopalinearcolliderwithanenergyaboutoneTeVandaluminositybyafactorof103–104higherthanitwasattheSLC.
SincethattimealotofdevelopmentshavebeendoneandnowthreeprojectsTESLA(Eu-rope)[2],NLC(US)[3],JLC(Japan)[4]arealmostreadyforconstruction.
AfourthprojectCLIC(CERN)[5]isfocusedonmulti-TeVenergiesandisconsideredasthenext-to-nextlinearcollider.
SchemesofcollidersareshowninFig.
1,mainparametersarepresentedinTable1.
Eachprojecthassomedistinctivefeatures:TESLA:Lband,1.
4GHz,superconducting,Gmax35MeV/m,agoodeciency,alowwakeeld,arelaxedalignmenttolerances,alargedistancebetweenbunches;NLC/JLC:X-band,11.
4.
GHz,warmcavities,ahighgradient(55MeV/mloaded);CLIC:30GHz,atwo-beamaccelerator(oneofbeamsproducesRFpower),averyhighgradient,150MeV/m,costeectiveatmulti-TeVenergies.
So,therearethreemaintechnologiesforLCdevelopedbylargeteams,eachprojecthavecertainadvantages.
Itwouldbegoodtobuilttwocollidersalmostsimultaneously:TESLAforenergiesbelow0.
5TeV,NLC/JLCfortheenergyregionupto1.
5TeVandathirdcollider,CLIC,ontheenergy3–5TeVonedecadelater.
However,duetoahighcostonlyonegloballinearcolliderisseeninthevisiblefuture.
2electronsources(HEPandx-raylaser)linearacceleratorlinearacceleratorx-raylaserelectron-positroncollisionhighenergyphysicsexperimentspositronsourceaux.
positronand2ndelectronsourcedampingringdampingringpositronpreacceleratore-e+e-33kmFigure1:SchemesoflinearcollidersTESLA,NLC,JLCandCLIC(fromuptodown).
3Table1:ParametersoflinearcolliderTESLAJLC/NLCCLIC2E0GeV50080050010005003000SiteLkm–33–32–40TwolinacLkm303012.
625.
8527.
5Beamdel.
Lkm3.
23.
23.
83.
855G(un.
l/load)MeV/m23.
43570/5570/55172/150172/150TotalACMW95160120240100300AC-beame.
%232110108.
58.
5RFfreq.
GHz1.
31.
311.
411.
43030Rep.
rateHz54120120200100bunch/train28204886192192154154Coll.
ratekHz14.
119.
5232330.
815.
4Bunchsepar.
ns3371761.
41.
40.
670.
67Trainlengthsec9508600.
2670.
2670.
10.
1Part.
/bunch101021.
40.
750.
750.
40.
4σzm3003001101103030εnx/εnymm·mrad10/0.
038/0.
0153.
6/0.
043.
6/0.
042/0.
020.
68/0.
02βx/βymm15/0.
415/0.
48/0.
1113/0.
1110/0.
158/0.
15σx/σynm553/5391/2.
8243/3219/2.
3200/2.
543/1Dx/Dy0.
2/250.
2/270.
16/12.
90.
08/100.
12/7.
90.
03/2.
7Υ00.
060.
090.
140.
290.
38.
1δ%3.
24.
34.
78.
93.
831nγ/e21.
51.
31.
30.
72.
3ne+e/e0.
17L(withpin.
)1034cm2s13.
45.
8231.
410.
3L(w/opin.
)1034cm2s11.
62.
81.
21.
9L(1%)/L%66646725.
5L(5%)/L%91858640.
83GeneralfeaturesoflinearcollidersAtstoragerings,eachbunchcollidesmanytimes,theRFpowerisspentmainlyforcompensa-tionofsynchrotronradiationlosses.
Atlinearcolliders,eachbunchisusedonlyonce,radiationlossesduringtheaccelerationarenegligible,butalotofenergyisneededforproductionandaccelerationofbuncheswithahighrate.
ThetotalRFpowerconsumptionatLEPandat0.
5TeVlinearcollidersarecomparable,oftheorderof100MWfromthewallplug.
ThenumberofacceleratedparticlesislimitedbytotalACpowerwhichisproportionaltothebeampowerP.
Duetothedependenceofcrosssectionsontheenergyasσ∝1/E2theluminosityshouldincreaseasE2,asaresulttherequiredtransversebeamsizesatTeVenergiesshouldbeverysmall.
Beamswithsmallsizeshaveverystrongeldsthatleadtolargeradiationlossesduringbeamcollisions(beamstrahlung).
Thiseectdoesnotallowustousebeamswithsimultaneouslysmallhorizontalandverticalbeamsizes(σx,σy)(onlyveryatbeams)andtogettherequiredluminositythebeampowershouldbeadditionallyincreased.
Thisleadstothe"energycrisis"4atthebeamenergyofabout2E05TeV,seeSec.
4.
Intheγγmodeofoperation(Sec.
5)onlysomewhathigherenergiesarepossibleduetoconversionofhighenergyphotonstoe+epairsintheeldoftheopposingbeam(coherentpaircreation).
Besidetraditionallinearaccelerators,thereareideasofusingplasmaandlaserhighgradientacceleratortechniquesforlinearcolliders.
Therearesomespeculationsaboutcolliderswith100TeVandevenPeVenergies.
Certainly,developmentofthesetechniqueswillleadtosomepracticalapplications,butobtainingcollidingbeamsisveryproblematicduetorequiredqualityofbeamsandcollisioneects.
SomeconsiderationsandcriticalremarksonplasmaandlaseraccelerationaregivenSec.
6.
4CollisioneectsrestrictingluminosityandenergyoflinearcollidersInordertoobtainasucientluminosityatlinearcollidersthebeamsizesshouldbeverysmall.
Thiscausestwosortsofproblems:a)generationandaccelerationofbeamswithverysmallemittancesandfocusingtoatinyspot,b)beam-beamcollisioneectswhichleadtodegradationofthebeamquality.
Therstproblemisverydicultbutnotfundamental,inprinciple,onecanobtainemit-tancesmallerthangivedampingringsusing,forexample,lasercooling.
Thesecondproblemisevenmoresevere:beamcollisioneectsputrestrictionsonattainableluminosityand,cor-respondently,onthemaximumenergyoflinearcolliders.
IntheabsenceofcollisioneectstheluminosityofacolliderL≈N2f4πσxσy=P4πE0*Nσxσy.
(1)For2P=20MW(200MWACpower),N=2*1010,σx=σy=1nmitgivesL=1037/E0[TeV],cm2s1,thisluminosityissucientforproductionof103leptonpairsper107secupto2E0=25TeV.
Belowweconsiderseverallimitationsduetocollisionseects.
4.
1PincheectandinstabilityofbeamcollisionsDuringthecollisionbeamsattract(e+e)orrepulse(ee)eachother.
Thecharacteristicdisruptionparameter[6,7]Dy=2Nreσzγσxσy.
(2)ForatbeamandDy10,theattractionleadstoincreaseofthee+eluminositybyafactorofHD2.
AtDy≥25beamsbecomeunstable,thecorrespondingluminosityLPmc2reσz.
(3)ForP=10MWandσz=100mL5*1034cm2s1.
So,thisputlimitontheluminosityforagivenbeampowerandbunchlength.
54.
2BeamstrahlungAstrengthofabeameldischaracterizedbytheparameterΥ[8,7]Υ=23ωcE=γBB0,B0=αer2e=4.
4*1013G.
(4)ForatbeamsΥav≈5Nr2eγ6ασxσz.
(5)Themaximumvalueofσzisdeterminedbydisruption.
Ideally,increasingσxtoinnityandsimultaneouslydecreasingσytozeroonecangetarbitrarysmallΥforanyluminosity.
However,ifσyhassomeminimumvalue(therearemanyreasons),thenΥ∝L2γ2σy/P2Dy.
AsPisalwayslimited,DyE=4√315ΥU1(Υ)U0(Υ)=0.
462Υ(Υ→0),0.
254(Υ→∞),(8)δE=EE=1.
24α2σzΥreγΥU1(Υ);(9)Υ1isthe"classic"regime;Υ0.
2–200the"transition"regime(ΥU1(Υ)≈0.
1–0.
20.
15);Υ200the"quantum"regime.
CollidersintheTeVregionbelongtothetransitionregime,multi-TeVLCwithdenseshortbunchescanreachthequantumregime.
Theluminosity(1)canbeexpressedviaδE.
Inthetransitionregimeitdoesnotdependonthebunchlengthσz:L6.
45δE4παreγσyPmc2=1.
5*1034P[MW]δEE0[TeV]σy[nm]cm2s1;(10)InthequantumregimeL1.
954πα2σyδ3EreσzγPmc2=5*1034P[MW]σy[nm]δ3EE0[TeV]σz[m].
(11)Forexample,forP=10MWperbeam(about200MWfromwallplug)σy=1nm,2E0=5TeV,δE=0.
2weget(accuracyisaboutfactorof2–3)L=1.
2*1034cm2s1inthetransitionregime(doesnotdependonσz)andL=3*1034cm2s1inthequantumregime6(forσz=1m),anadditionalfactorof1.
5cangivethepincheect.
Weseethatthequantumregime(shortbunches)helpsbutnottoomuch.
Inordertoproduce103characteristicreactionse+eper107secattheenergy2E0=5TeVtherequiredluminosityis3*1034,thatisclosetotheabovelimitduetobeamstrahlung.
So,ifσy,min1nm(seeSec.
4.
5),themaximumreasonableenergyoflinearcollidersisabout2E05TeV.
Inprinciple,thereisapossibilitytocancelbeameldsbycollidingfourbeams(e+efromeachside),thenbeamstrahlungisabsent.
Thebeamsinstabilitythresholdremainsatthesamelevelofluminosityormaybeonlysomewhathigher.
Thisschemecangivesomegaininluminosity,buttechnicallyitlooksunrealistic.
4.
3Coherente+epaircreationAtκ=(ω/E0)Υ>1abeamstrahlungphotoncanconvertintoe+epairsintheeldoftheopposingbeam[9].
Atκ1theratioofbeamstrahlung/paircreationprobabilitiesisabout3.
8.
ThenumberofbeamstrahlungphotonsatlinearcollidersNγNe(inordertoincreseluminositythehorizontalsizeisdecreaseduntileachelectronemitaboutonephoton).
Thereforethenumberofe+epairsatκ1(orΥ1),Ne+e/Ne=O(0.
1).
Forexample,atCLIC(3000)Ne+e/Ne0.
085.
Theminimumenergyofproduceparticles(importantfromabackgroundpointofview)Emin0.
05E0/Υ.
4.
4DeectionofsoftparticlesThelowestenergychargedparticlesproducedinprocessofcoherentpaircreationwiththesamesignofthechargeasthatoftheopposingbeamaredeectedbytheopposingbeamontheangle[9]θ4πNe2σzEmin1/2170Nσzr3eσx1/2.
(12)Forexample,atCLICθ15mrad.
Toavoidbackgroundfromtheselargeangleparticlesoneshouldusethecrab-crossingscheme[10].
Belowwewillseethatcrab-crossinganglesbelow20–30mradareacceptable,butlargeranglesleadtotheincreaseoftheverticalbeamsize.
So,deectionofsoftparticlesputanadditionalconstraintonthebeamparameters.
Beam-strahlungandinstabilitiesmaybeOK(incaseofveryshortbunches),butdisruptionanglesaretoolarge.
4.
5MinimumvalueofσyTheminimumverticalbeamsizeattheinteractionpoint(atβyσz)σy=εnyσz/γ.
Limi-tations:Attainablevalueofthenormalizedverticalemittancefromaninjector;Radiationinnalquadrupoles(Oideeect)[11].
Minimumachievablebeamsizeσmin[m]≈1.
7*104εny[m]5/7.
ForεnyconsideredinthecurrentLCprojectsσmin0.
5nm;Radiationinthedetectorsolenoideldduetothecrabcrossing[12,13,14]7σ2y=55r2e480√3αeBsθcL2mc25.
(13)ForBs=4T,L=4mσy=0.
74nmforθc=20mradand2nmforθc=30mrad.
Moreaccuratesimulationofthiseect(thenumberofemittedphotonisaboutone)wasdoneinRefs[13,14].
Asalinearcolliderwithoutadetectorhasnosensethiseectputalimitonaminimumverticalbeamsizeattheinteractionpointatthelevelof0.
5nmatθc=20mrad.
4.
6ResumeonmaximumenergiesoflinearcollidersForareasonablewallplugACpower100–300MWthemaximumenergyoflineare+ecolliderswithaluminositysucientforexperiments,accordingtopresentunderstanding,islimitedbycollisioneectsatthelevelof2E0=5–10TeV.
5PhotoncollidersInadditiontoe+ephysics,linearcollidersprovideauniqueopportunitytostudyγγandγeinteractionsathighenergiesandluminosities[15,16].
HighenergyphotonscanbeobtainedusingComptonbackscatteringoflaserlightohighenergyelectrons.
Thisoptionisforeseeninallotherprojectoflinearcolliders[2,3,4,5,18].
ThemaximumenergyofphotonsafterComptonscatteringωm=xx+1E0;x≈4E0ω0m2c415.
3E0TeVω0eV.
(14)Forexample:E0=250GeV,ω0=1.
17eV(λ=1.
06m)x=4.
5andωm=0.
82E0=205GeV.
Thevaluex=4.
8isthethresholdfortheprocessγγL→e+eintheconversionregion.
Thisdeterminetheoptimumlaserwavelength:λopt4E0[TeV]m[19].
NonlineareectsinComptonscatteringincreasethethresholdvalueofxbyafactorof(1+ξ2),whereaparameterofnonlinearityξ20.
5isacceptable[18].
Mostpowerfulsolidstatelaserwithλ1.
05mcanbeuseduptotheenergies2E0800GeV.
Detaileddiscussionofphysics,andtechnicalproblemofphotoncolliderscanbefoundelsewhere[18,3,28].
Belowweconsideronlythemostcriticalissues:luminosity,energy,lasersystem.
5.
1CurrentprojectsofphotoncollidersParametersofthephotoncollidersatTESLA[18](asanexample)arepresentedinTable2,forcomparisontheluminosityine+ecollisionsisalsogiven.
Otherparameters,constantforallenergies,are:λ=1.
06m,N=2*1010,σz=0.
3mm,frep*nb=14.
1kHz,εnx/εny=2.
5/0.
03*106m·rad,βx/βy=1.
5/0.
3mm.
ForthesameenergytheγγluminosityinthehighenergypeakoftheluminosityspectrumLγγ(z>0.
8zmax)≈(1/3)Le+e,(15)wherez=Wγγ/2E0.
Note,thatcrosssectionsinγγcollisionsaretypicallylargerthenine+ebyoneorderofmagnitude.
AmoreuniversalrelationLγγ(z>0.
8zm)≈0.
1Lee(geom)(fork2=0.
4).
Expectedγγ,γeluminosityspectraatTESLAcanbefoundelsewhere[20,18,21].
8Table2:ParametersofthephotoncollideratTESLA2E0,GeV200500800Wγγ,max122390670Wγe,max156440732σx/y[nm]140/6.
888/4.
369/3.
4b[mm]2.
62.
12.
7Lee(geom)[1034]4.
81219Lγγ(z>0.
8zm,γγ)[1034]0.
431.
11.
7Lγe(z>0.
8zm,γe)[1034]0.
360.
941.
3Lee(z>0.
65)[1034]0.
030.
070.
095Le+e,[1034]1.
33.
45.
8TheγγluminosityatTESLAislimitedbyattainableelectronbeamsizes.
Havingbeamswithsmalleremittances(especiallythehorizontalone)onewouldgetahigherluminosity.
Inordertoincreasethegeometricluminosityoneshoulddecreasetheβ-functionsasmuchaspossible,downtoaboutabunchlength.
Inthecurrentschemeofthenalfocusitwasnotpossibletomakeβxbelow1.
5mmduetochromo-geometricabberations[18].
Itisnotclearwhetherthisisafundamentalorjustatemporarytechnicalproblem.
5.
2UltimateluminosityofphotoncollidersThoughphotonsareneutral,γγandγecollisionsarenotfreeofcollisioneects.
Electronsandphotonsareinuencedbytheeldoftheoppositeelectronbeamthatleadstothefollowingeects[19]:inγγ:conversionofphotonsintoe+epairs(coherentpaircreation);inγe:coherentpaircreation;beamstrahlung;beamdisplacement.
Beamcollisioneectsine+eandγγ,γecollisionsaredierent.
Inparticular,inγγcollisionstherearenobeamstrahlungandbeaminstabilitieswhichlimitthehorizontalbeamsizeine+ecollisionsonthelevel550(350)nmforTESLA(NLC/JLC).
Asimulation,whichincludesallcollisioneectshasshownthatinγγmodeatTESLAonecanusebeamswiththehorizontalsizedowntoσx=10nm(atsmallerσxmaybeproblemswiththecrab–crossingscheme)andinuenceofcollisioneectswillberathersmall[22,20,18].
Theγγluminosity(inthehighenergypart)canreach1035cm2s1.
NotethatnowinTESLAprojectσx≈500nmine+ecollisionsandabout100nmintheγγcollisions.
Havingelectronbeamswithmuchsmalleremittancesonecouldbuildaphotoncolliderfactorywithproductionrateofnewparticlesbyafactorof10–50higherthanate+ecolliders.
Alasercoolingofelectronbeamsisoneofthepossiblemethodsofreductingbeamemittancesatphotoncolliders[23,24],butthismethodisnoteasy.
Notethatsmallrateofcoherente+epairproductionatTESLAenergiesispartiallyexplainedbythebeamrepulsionwhichreducestheeldactingonthephotons.
Formulti-TeVenergiesandshortbunchessuchsuppressionisabsentandphotoncollidersreachtheirenergylimit(withadequateluminosity)approximatelyatthesameenergiesase+ecolliders[25,26,27].
95.
3TechnicalaspectsofphotoncollidersAkeyelementofphotoncollidersisapowerfullasersystemwhichisusedforthee→γconversion.
Requiredparametersare:afewJoulesashenergy,afewpicoseconddurationand10–20kHzrepetitionrate.
Toovercomethe"repetitionrate"problemitisquitenaturaltoconsideralasersystemwhereonelaserbunchisusedforthee→γconversionmanytimes.
AttheTESLA,theelectronbunchtraincontains3000buncheswith337nsspacing,heretwoschemesarefeasible:anopticalstorageringandanexternalopticalcavity[20,18,21].
Withtheopticalcavityarequiredlaserpowercanbelowerthaninthecaseofaone-passlaserbyfactorof50–100.
Thereisnodetailedschemeofsuchlasersystemyet.
AtNLC,theelectronbunchtrainconsistsof96buncheswith2.
8secspacingthereforeexploitingoftheopticalcavityisnoteective.
Acurrentsolutionisaone-passlaserschemebasedontheMercurylaserdevelopedforthefusionprogram.
Thelaserproduces100–200Jpulseswhichaftersplittingto96pulsescanbeusedfore→γconversionofonetrain[3,21].
Alasersystemforaphotoncollidercancertainlybebuiltthoughitisnoteasyandnotcheap.
6AdvancedacceleratorschemesConventionalRFlinearcollidershaveacceleratinggradientsupto150MeV/m,correspondinglengthsabout30–40kmandattainableenergiesupto5TeV(Sec.
2).
Ontheotherhands,peopleworkingonplasmaandlasermethodsofaccelerationhaveobtainedgradientsof100GeV/m!
Somepeoplearethinkingalreadyabout100TeVandeven1PeVlinearcollidersorabout1–5TeVLCwithlessthanonekmlength.
Certainly,newmethodsofaccelerationwillmakefurtherprogressandndcertainappli-cations,butitislessclearaboutpossibilityofsuperhighenergycollidersbasedonthesetechnologies.
Firstofall,collisioneectsrestricttheenergyoflinearcollidersatabout10TeV(Sec.
4);secondly,thequalityofelectronbeamsshouldbeveryhigh;andthirdly,itisverylikelythatinconsiderationsofveryhighaccelerationgradientssomeimportanteectsarejustmissed.
Drivenbymycuriosityandforself-educationIhavespentsometimeforrandomcheckoftheseconceptionsandsomeremarksarepresentedbelow.
Situationinthiseldisnotbad,butsomeofexistingproposalsarecertainlywrong.
6.
1PlasmaaccelerationLaserorparticlebeamscanexcitewavesinplasmawithalongitudinalelectricaleld[29].
TheacceleratinggradientGmcωp104np[cm3]MeVm.
(16)Typicalparametersconsidered:np1015cm3,G2GeV/m.
106.
1.
1MultiplescatteringLetusconsiderthecasenbnpwhenallplasmaelectronsarepushedoutfromtheacceleratedbeam.
Thebeamstravelthroughionswithdensitynpandexperienceaplasmafocusingwiththeβ-function[30]β2πγ/renp=√2γλp.
Ther.
m.
s.
angleduetomultiplescatteringθ2≈8πZ2r2endzγ2dρρ,ρminRN,ρmaxRD,(17)whereRD=(kT/4πne2)1/2istheDebairadius.
Theincreaseofthenormalizeemittanceεn2=γ2r2θ2=εnγβθ2.
Afterintegrationontheenergywegetthenalnormalizedemittanceεn8π√2πZ2(npr3eγf)1/2(mc2/G)L,(18)whereL=lnρmax/ρmin20.
Substitutingn=1015cm3,G=2GeV/m,Z=1,γf=5*106(2E0=5TeV)wegetεn3*107cm.
NotethattheresultdoesnotdependontheplasmadensitybecauseG∝√np(Eq.
16).
InpresentLCdesignstheminimumverticalemittanceεny=2*106cm,somultiplescatteringinanidealplasmaacceleratorslookacceptable.
Itisassumedthatsectionswithplasmahavesmallholesforbeamssinceanywindowswillgivetoolargescatteringangles.
6.
1.
2SynchrotronradiationDuetoastrongfocusingbyions(plasmaelectronsarepushedoutfromthebeam),beamelectronslosetheirenergytoradiation,theradiationpowerP=(2/3)cr2eγ2E2⊥,whereE⊥=2πenpZr(asbeforeweassumenbnp),rεnβ/γ,β=2πγ/renp.
Afterintegrationontheenergywendthedierenceofenergiesfortheparticleontheaxis(noradiation)andoneatther.
m.
sdistanceformtheaxisE/E25r5/2en3/2pZ2γ3/2f(mc2/G)εn.
(19)ForG=2GeV/m,np=1015cm3,εnx104cm(emittancefromdampingringsorfromphoto-guns),γf=5*106(2E0=5TeV)wegetE/E103,thatisacceptable.
Forseveraltimeslargerenergyspreadstherearechromaticityproblemsinnalfocussystems.
Note,thatG∝√np,thereforetheenergyspreadisproportionaltotheplasmadensity.
InRef.
[31]thecaseoftheoverdenseplasma(nb1/θ,thenintheelectronrestframelaserphotonscomefromtheforwardhemisphereandthereforetheelectronisdeaccelerated!
Forλ=1mandZR=100m,Emax15MeVonly!
2.
Ponderomotiveacceleration.
Inastronglasereldanelectronexperiencesacollectiveforcefromthewholelaserbunch,socalledaponderomotiveforce[37,38,39],Fimc2γdξ2dxi,ξ2=e2E2m2c2ω20=2nγr2eλα.
(21)Thisopensawaytotransfertheenergyfromlargebody(laserbeam)toonemicroscopicparticle(electron).
Thereisanidea[40]tocollidethelaserpulsepropagatinginararegas(tohavevAccordingtoaboveRefs,forthelaserpower4.
3EW(EW=1018W)γ=1.
6*106andγ0=1400,theenergyofreectedelectronsinthelaboratorysystemis1PeV≡1000TeV!
ThelengthofthecollideristhelaserbunchlengthoralmostZERO!
Unfortunately,theideaiswrongduetomanyreasons:TheinteractionlengthisnotthebunchlengthbutLintllaser/(1v/c)llaser*(γ)2102*1012105km!
Radiationofelectrons(seebelow),andmanyother"NO".
6.
2.
3RadiationduringaponderomotiveaccelerationDuringtheponderomotiveaccelerationelectronsradiateinthetransverselasereld.
ThiscanbetreatedasComptonscattering.
Radiatedenergyperunitlength:dE/dxn(1cosθ)σT.
Substitutingθ2λ/(2πZR),ω0γ2θ2,n=αξ2/(2r2eλ)wegetdEdxξ2γ2reZ2Rmc2.
(22)Forexample:E0=1TeV,ZR=100m,andξ2=100(ashenergy100J),dE/dx=200GeV/cm.
Forthementioned1PeVprojectwithξ2=2*106,dE/dx=109PeV/cm!
So,ponderomotiveaccelerationcanbeusefulforlowenergyapplication,butnotforlinearcollidersduetothedecreaseoftheforcewiththeincreaseoftheenergyandahugeradiation.
7ConclusionLineare+e,ee,γγ,γecollidersareidealinstrumentforstudyofmatterintheenergyregion2E0100–1000GeV.
Threeprojectsarealmostreadyforconstruction,awisechoiceandpoliticaldecisionareneeded.
Alinearcolliderisnotasimplemachine,veryhighaccuracies,stabilitiesandcleaverbeamdiagnosticsareneeded.
Manycriticalelementshavebeentestedexperimentally.
13Accordingtopresentunderstandingamaximumattainableenergyoflinearcolliderswithadequateluminosityisabout2E05TeV.
Thereistechnologyforsuch"last"LC,thatisCLIC.
Advancetechnologies(plasma,laser)cangivehigheracceleratinggradientsbuttheirap-plicationforhighenergylinearcollidersisunderbigquestion.
Furthercomplexstudiesofnewacceleratingmethodsinthiscontextareneeded.
AcknowledgementIamgratefultoPisinChenforagreatworkonorganizationofseriesofworkshopsonQuantumAspectsofBeamPhysics,whichmotivatedpeopletolookdeeplyintopicsrelatedtobeamphysicsatEarthandCosmosandtoAtsushiOgatafororganizationofthepresentworkshopinHiroshima.
ThisworkwassupportedinpartbyINTAS(00-00679).
References[1]A.
N.
Skrinsky,Usp.
Fiz.
Nauk,bf138(1982)3.
[2]TESLA:Technicaldesignreport,DESY2001-011,ECFA2001-209,March2001.
[3]LinearcolliderphysicsresourcebookforSnowmass2001,T.
Abeetal.
,SLAC-R-570,May2001.
[4]K.
Abeetal.
,KEK-REPORT-2001-11,hep-ph/0109166.
[5]R.
W.
Assmannetal.
,CERN-2000-008.
[6]V.
Balakin,N.
Solyak,PreprintINP82-123,Novosibirsk,1982;Proc.
ofVIIIIntern.
Conf.
onHighEnergyAccel.
,Novosibirsk,1987,p.
151.
[7]K.
Yokoya,P.
Chen,US-CERNPart.
Accel.
School,HiltonHead,S.
C.
,Nov7-14,1990.
Proceedings.
EditedbyM.
Dienesetal.
,Springer-Verlag,1992.
(LectureNotesinPhysics,400).
[8]R.
Noble,Nucl.
Inst.
Meth.
,A256(1987)427.
[9]P.
ChenandV.
I.
Telnov,Phys.
Rev.
Lett.
,63(1989)1796.
[10]R.
B.
Palmer,SLAC-PUB4707.
[11]K.
Oide,Phys.
Rev.
Lett.
,61(1988)1713;K.
Hirata,K.
OideandB.
Zotter,Phys.
Lett.
B224(1989)437;J.
Irwin,AIPConf.
Proc.
335(1995)3.
[12]TheNLCDesignGroup.
Zeroth-OrderDesignReportfortheNLC,LBNL-5424,SLAC-474,UCBL-ID-124161,UC-414.
[13]V.
Telnov,Proc.
oftheAPS/DPF/DPBSummerStudyontheFutureofParticlePhysics(Snowmass2001),ed.
N.
Graf,eConfC010630(2001)T104.
14[14]D.
SchulteandF.
Zimmermann,CERN-SL-2001-043-AP,PAC2001,Chicago,Illinois,18-22Jun2001.
[15]I.
F.
Ginzburg,G.
L.
Kotkin,V.
G.
Serbo,andV.
I.
Telnov,PizmaZhETF,34(1981)514(JETPLett.
34(1982)491);Nucl.
Instr.
&Meth.
,205(1983)47.
[16]I.
F.
Ginzburg,G.
L.
Kotkin,S.
L.
Panl,V.
G.
Serbo,andV.
I.
Telnov.
Nucl.
Inst.
Meth.
,A219(1984)5.
[17]R.
Brinkmannetal.
,Nucl.
Instr.
&Meth.
,A406(1998)13;hep-ex/9707017.
[18]B.
Badeleketal.
,TESLATechnicalDesignReport,PartVI,Ch.
1.
PhotoncollideratTESLA,DESY2001-011,hep-ex/0108012.
[19]V.
Telnov,Nucl.
Instr.
&Meth.
,A294(1990)72;A355(1995)3.
[20]V.
Telnov,Nucl.
Instr.
&Meth.
A472(2001)43;hep-ex/0010033.
[21]V.
Telnov,Nucl.
Instr.
Meth.
A494(2002)35,hep-ex/0207093.
[22]V.
Telnov,Nucl.
Phys.
Proc.
Suppl.
82(2000)359,hep-ex/9908005.
[23]V.
Telnov,Phys.
Rev.
Lett.
78(1997)4757[Erratum-ibid.
80(1998)2747.
[24]V.
Telnov,Nucl.
Instr.
Meth.
,A455(2000)80,hep-ex/0001028.
[25]V.
Telnov,AIPConf.
Proc.
397(1996)259,physics/9706003.
[26]V.
Telnov,Nucl.
Instr.
Meth.
A472(2001)280,hep-ex/0012047.
V.
Telnov,Proc.
oftheAPS/DPF/DPBSummerStudyontheFutureofParticlePhysics(Snowmass2001),ed.
N.
Graf,eConfC010630(2001)E3026.
[27]H.
BurkhardtandV.
Telnov,CERN-SL-2002-013-AP.
[28]Proc.
ofIntern.
WorkshoponHigh-EnergyPhotonColliders(GG2000),Hamburg,Ger-many,14-17Jun2000,ed.
R.
D.
Heuer,V.
I.
Telnov,N.
J.
Walker,Nucl.
Instr.
MethodsA472(2001)1-321.
[29]T.
TajimaandJ.
M.
Dawson,Phys.
Rev.
Lett.
43(1979)267.
[30]D.
Whittum,A.
Sessler,Phys.
Rev.
Lett.
64(1990)2511-2514.
[31]W.
A.
Barleta,E.
P.
Lee,R.
Bonifacio,L.
DeSalvo,Nucl.
Instr.
andMeth.
A423(1999)256.
[32]J.
Rozenzweig,N.
Barov,A.
Murokh,E.
Colby,P.
Colestock,Nucl.
Instr.
andMeth.
A410(1998)532.
[33]E.
Esarey,P.
SprangleandJ.
Krall,Phys.
RevE52(1995)5443.
[34]C.
D.
Barnesetal.
,SLAC-PROPOSALE-163,2001.
15[35]A.
A.
Mikhailichenko,SNOWMASS-2001,Jun2001,eConfC010630:T401,2001.
[36]T.
Tajima,G.
Mourou,Phys.
Rev.
STAccel.
andBeams,5(2002)031301.
[37]T.
Kibble,Phys.
Rev.
Lett.
16(1966)1054;Phys.
Rev,150(1966)1060.
[38]P.
Mora,T.
Antonsen,Jr.
Phys.
Plasma,4(1997)217.
[39]V.
I.
Telnov,BUDKER-INP-2003-15,hep-ex/0302038.
[40]I.
V.
Smetanin,P.
N.
Lebedev,C.
Barnes,K.
Nakajima,ProceedingsofHEACC2001,March26–30,2001,Tsukuba,Japan;K.
Nakajima,inProc.
ofSnowmass2001ed.
N.
Graf,eConfC010630(2001)T803.
16

创梦网络-江苏宿迁BGP云服务器100G高防资源,全程ceph集群存储,安全可靠,数据有保证,防护真实,现在购买7折促销,续费同价!

官方网站:点击访问创梦网络宿迁BGP高防活动方案:机房CPU内存硬盘带宽IP防护流量原价活动价开通方式宿迁BGP4vCPU4G40G+50G20Mbps1个100G不限流量299元/月 209.3元/月点击自助购买成都电信优化线路8vCPU8G40G+50G20Mbps1个100G不限流量399元/月 279.3元/月点击自助购买成都电信优化线路8vCPU16G40G+50G2...

Hostodo(年付12美元),美西斯波坎机房Linux VPS主机66折

Hostodo 商家是比较小众的国外VPS主机商,这不看到商家有推送促销优惠在美国西岸的斯波坎机房还有少部分库存准备通过低价格促销,年付低至12美元Linux VPS主机,且如果是1GB内存方案的可以享受六六折优惠,均是采用KVM架构,且可以支付宝付款。第一、商家优惠码优惠码:spokanessd 1GB+内存方案才可以用到优惠码,其他都是固定的优惠低至年12美元。第二、商家促销这里,我们可以看到...

DediPath($1.40),OpenVZ架构 1GB内存

DediPath 商家成立时间也不过三五年,商家提供的云服务器产品有包括KVM和OPENVZ架构的VPS主机。翻看前面的文章有几次提到这个商家其中机房还是比较多的。其实对于OPENVZ架构的VPS主机以前我们是遇到比较多,只不过这几年很多商家都陆续的全部用KVM和XEN架构替代。这次DediPath商家有基于OPENVZ架构提供低价的VPS主机。这次四折的促销活动不包括512MB内存方案。第一、D...

eaccelerator为你推荐
上海工程技术大学机动车diandiandominavimasios7支持ipad责任编辑:纪春columnios5ipad连不上wifiipad无法加入网络怎么回事iphone连不上wifi苹果手机无法连接wifi是什么原因win10445端口windows server2008怎么开放4443端口用itunes备份如何用iTunes备份iPhone数据
如何申请域名 krypt 亚洲大于500m 免费申请网页 GGC 韩国俄罗斯 linode 外国服务器 鲜果阅读 湖南服务器托管 华为网络硬盘 全站静态化 dux 空间出租 空间论坛 七夕促销 135邮箱 无限流量 国内域名 supercache 更多