injectedeaccelerator

eaccelerator  时间:2021-05-14  阅读:()
MeasurementofpolarizationobservablesinthedpppnreactionatTd2.
0GeVS.
L.
Belostotski,O.
G.
Grebenyuk,L.
G.
Kudin,andV.
N.
NikulinSt.
-PetersburgNuclearPhysicsInstitute,188350,Gatchina,RussiaA.
Boudard,B.
Bonin,M.
Garcon,R.
M.
Lombard,B.
Mayer,andY.
TerrienServicedePhysiqueNucleaire,CEA–Saclay,91191Gif-sur-Yvette,FranceM.
Boivin,E.
Tomasi-Gustafsson,andJ.
YonnetLaboratoireNationalSaturne,CEA–Saclay,91191Gif-sur-Yvette,FranceM.
YounandH.
C.
BhangDepartmentofPhysics,SeoulNationalUniversity,Seoul151-742,KoreaN.
E.
CheungandC.
F.
PerdrisatCollegeofWilliamandMary,Williamsburg,Virginia23185V.
PunjabiNorfolkStateUniversity,Norfolk,Virginia23504J.
Ero,*Z.
Fodor,P.
Koncz,andZ.
SeresKFKIResearchInstituteforParticleandNuclearPhysics,1525Budapest,HungaryReceived29January1997Wehavestudiedthedeuteronbreakupinthep(d,2p)nreactionatTd2.
0GeV.
Inthisexperiment,thevectoranalyzingpowerAY,thetensoranalyzingpowerAYY,andthepolarizationoftheforwardscatteredprotonaremeasuredclosetothequasifreeppscatteringkinematics.
Theseobservablesarepresentedasafunctionoftheneutronmomentumrangingfrom0.
04to0.
45GeV/cintherestframeofthedeuteron.
Markeddeviationsfromtheimpulseapproximationusingconventionaldeuteronwavefunctionsareobserved.
Correc-tionsduetothemultiplescattering,thenalstateinteraction,andtheexcitationarecalculatedinamodelwherethespin-isospinstructureoftheelementaryamplitudesistreatedrigorously.
Withthismodel,areason-ableaccountofthemeasuredpolarizationobservablesisobtained.
Theglobalagreementwithallobservablesis,however,notgoodenoughthatwecanreliablydiscriminatebetweenconventionalwavefunctions.
S0556-28139702507-7PACSnumbers:24.
70.
s,21.
45.
v,25.
10.
s,25.
45.
zI.
INTRODUCTIONThedeuteronisaveryinterestingnucleusasapurecor-relationbetweentheprotonandtheneutron.
Adetailedstudyofitsstructurewillbringinformationonthestronginterac-tionbetweentwoboundnucleonsinspecicquantumstates.
Whilethestaticpropertiesofthedeuteron,suchasbind-ingenergy,radius,andmagneticandquadrupoleelectricmo-ments,arewellknown,thedynamicsofthissystemarelesswelldocumented.
TheknowledgeoftheprobabilityforanucleontohaveaninternalmomentumqinthedeuteronisastrongconstraintfortheNNpotential.
Thelargerthismo-mentum,thesmallertherelativedistancebetweenthetwonucleons.
Astheinternucleondistancedecreases,mesonexchange,andexcitationofthenucleoninternalstructureleadingtoNN*andcomponentsandevennewdynamicaleffectsappear.
Theseultimateeffectsstillunderinvestigationareduetotheincreasingoverlapbetweenthetwonucleon'sthree-quarkbags.
Experimentalinformationfromthepolar-izationobservablesasfunctionsofq,issensitivetosmallcomponentsofthewavefunctionandsocouldhelptodis-entangletheseeffects.
Thekinematicsoftheexclusiveprocessdp→ppniscompletelyspeciedforeachidentiedevent,andscanninginqispossibleassumingthevalidityofplanewaveimpulseapproximationPWIA.
Ameasurementofthevec-torandtensoranalyzingpowerandofpolarizationtransfertooneoutgoingproton,providesfourindependentobservablesofthereactioninadditiontoexistingcross-sectiondata.
Thisredundancywillbeastringenttestforagoodunderstandingofthereactionmechanism.
Experimentallytheanalyzingpowersareratiosofcrosssectionsandoffereasyaccesstosmallprobabilitieswithregardstonormalizationandef-ciencyproblems.
Theusefulnessofpolarized-deuteronbreakupexperimentswasemphasizedandstudiedinseveralpapers1–3.
ThePWIAforthereactionp(d,2p)nunderinvestigationassumesthatoneofthenucleonsinthedeuteronisaspec-tator,beingunaffectedbythebreakupprocess.
Themomen-tumofthisnucleonintheoutgoingchannelboostedtothe*Deceased.
PHYSICALREVIEWCJULY1997VOLUME56,NUMBER1560556-2813/97/561/5014/$10.
00501997TheAmericanPhysicalSocietydeuteronrestframeisinterpretedasitsFermimomentumqorinternalmomentumofthenucleoninthedeuteron.
Hence,intheframeworkoftheIA,itispossibletostudytheinternalmomentumdistribution(q)2u2(q)w2(q).
Withinthesameapproximation,thepolarizationobservablesaresensi-tivetotheratiou(q)/w(q),momentumspacewavefunc-tionsoftheSandDstatecomponentsofthedeuteron,re-spectively.
Thestructureofthedeuteronhasbeenthesubjectofmanyinvestigations,boththeoreticallyandexperimen-tally.
ConventionaltheoreticalstudiesarebasedonmodelsoftheN-Npotential.
Fromthepotential,thewavefunctionofthedeuteronasaboundstateoftheprotonandtheneutronisdeduced.
Amongthenumerousresults,wewillspecicallyusetheBonnwavefunction4andthePariswavefunction5asrepresentativesofreasonablevariationsofvariousphe-nomenologicalpotentials.
Anumberofedelasticscatteringexperimentshavebeenperformedtomeasurethecharge,quadrupole,andmagneticformfactorsseeRef.
6,andreferencesincludedthereinuptoatransferedmomentumof4.
6fm1.
However,thetransverseandlongitudinalstructurefunctions,A(Q2)andB(Q2)havebeenmeasuredupto8and10fm1,respec-tively.
ItshouldbenotedthatifthemomentumtransferinelasticscatteringisQ,thenthecorrespondingvalueofthedeuteroninternalmomentumisqQ/2.
Exclusiveandinclusivedeuteronbreakupreactions,bothprovidinginprincipledirectaccesstothedeuteronwavefunctionhavebeenextensivelyinvestigated.
Therearedatafromtheexclusived(p,2p)n7–15andd(e,ep)n16–18reactions,andalsofromtheinclusivereactionA(d,p)X19–22.
Anexclusiveexperimentonpolarizeddeuteronphoto-disintegrationisinprogressinNovosibirsk23andatNIKHEF24.
InclusivepolarizeddeuteronbreakuphasbeenintensivelyinvestigatedusingDubnaandSaturnepolarizeddeuteronbeams21,22,25–28.
ThesestudieshavedemonstratedthatpolarizationobservablessuchasthetensoranalyzingpowerT20,wereindependentofbeamenergy,andonlyweaklydependentuponthetargetnature,whenanalyzedasafunc-tionofinternalmomentumq,overarangeofdeuteronen-ergiesfrom1.
25to4.
4GeV.
PolarizationtransferdatashowasimilarenergyandtargetindependenceasT20,althoughtheexperimentalevidenceisweaker.
Thevariousreactionsgiveacoherentpictureofthedeu-terondensityandarewellunderstoodintermsoftheIAwithaconventionaldeuteronwavefunctionuptomomentumofabout200MeV/c.
Abovethisqvalue,dependinguponthereactionandthekinematics,theresultsdiffersignicantly.
AftercorrectionstothePWIA,the(q)2from(e,ep)experiment18isinagreementwiththePariswavefunctionupto500MeV/c,whilethe(q)2extractedfrom(p,2p)15agreesbetterwiththeBonnwavefunctioninthesameinternalmomentumrange.
Ininclusivebreakup,withapro-tondetectedintheforwarddirection,amarkedbumporexcessofprobability,isobservedaround320–350MeV/cinthedata,aboveconventionalwavefunctionpredictionsforalltargetsandenergiesofthedeuteronbeam19–22.
Uptonowthisbumpisnotunambiguouslyunderstood.
Newde-greesoffreedominthedeuteronstructurewerealsosug-gested;forexample,KermanandKisslingerfollowedbyothersintroducedandNN*isobariccomponentsinthedeuteronwavefunction29andAbleevetal.
20suggestedsix-quarkeffectsfollowingmanytheoreticalstudies30–32.
Whateverthedeuteronstructure,thePWIAneedstobecomplementedathighinternalmomentabyknowneffectssuchasnalstaterescatteringFSR.
Theoff-shelleffectoftheprotoninthereactiond(e,ep)wasdiscussedinRef.
18.
Theestimatedcorrectiontothecrosssectionwasfoundtobesmallafewpercent.
ThepossibilityofFSRprocesseswasstudied1,8andincludedinmostoftheinterpretations.
Thisaspectisespeciallydetailedin33wheretheexclusived(p,2p)nandinclusivep(d,p)XcrosssectionandtensoranalyzingpowerT20arecomputeduptodoublescatteringbutinacoplanargeometry.
Thevirtualexcitationwasalsodiscussed34,10,forthed(p,2p)ncrosssection,conclud-ingthatitcanbedominantwhenthetwonalprotonsareemittedsymmetricallywithaninvariantmassaroundMNM.
Inotherkinematicsclosertothequasifreescat-tering,thevirtualcontributionwasshown15tohavemodesteffects.
WhenFSRorexcitationplayasignicantrole,itisnotpossibletointerpretthemomentumofthespectatornucleonastheinternalmomentumofthedeuteronconstituentnucle-ons.
Yetthisinterpretationstillprovidesaneasywaytopic-tureanddiscussexperimentalresultswhicharevefolddif-ferentialinathreebodynalstateexperiment.
WeexpectthatpolarizationdatawillprovideatestofthevalidityrangeofthePWIAfromtheuniversalityofobservableswithre-specttoq,aswellasastrongconstraintintheseparationofthereactionmechanismfrompossibleunconventionaldeu-teroncomponents.
InthepresentexperimentthetensorAYYandvectorAYanalyzingpowers,andthepolarizationoftheoutgoingfastprotoninthedp→ppnexclusivereaction,havebeenmeasuredwithpolarizeddeuteronbeamsfromtheSATURNEsynchrotronatLaboratoireNationalSaturneinFrance.
Thecoincidencecrosssectionsmeasuredinthesameexperimentwerepublished35andarethusnotdiscussedinthepresentpaper.
Thetheoreticalmodelusedfortheanalysisofthepolar-izationobservablesissimilartotheoneusedfortheGatchinaunpolarizedpd→ppnexperiment15.
Morede-tailsconcerningthedescriptionofpolarizedobservablesaregiveninSec.
II.
Theexperimentanddatareductionarede-scribedinSec.
III.
InSec.
IV,theresultsarepresentedanddiscussedwithasummaryofthetheoreticalmodelused.
TheconclusionsaredrawninSec.
V.
II.
DESCRIPTIONOFOBSERVABLESInthePWIArst-orderapproximationforthereactionmechanism,thespectatornucleonremainsinthesamespinstateandhasthesamemomentumaspriortothereaction.
Inthisexperimenttheanglesofdetectionforthetwoprotonswerechosentofavorquasifreepp-scatteringevents,leavingtheneutroninthedeuteronasaspectator.
TheamplitudeofthereactioninthePWIAcanbewrittenasFM,1,2,31/21,1/22,1/23,Vpp1,21/2,1M1,3,q,15651MEASUREMENTOFPOLARIZATIONOBSERVABLESIN.
.
.
wherethespinpartofthewavefunctionsisspeciedwithanotationillustratedinFig.
1.
Thedeuteronwavefunctioninmomentumspaceis1M1,3,q1qL0,2uLqYLq11,31M,2wherethesphericalharmonicsYL(q)determinetheangulardependence,and1isthedeuteronspinor.
Theradialdepen-denceoftheSandDstateofthedeuteronarethefunctionsuL(q)tobedenotedinthefollowingasu(q)andw(q),oruandwforshort.
ThecrosssectionoftheexclusivereactionforagivenspinstateMoftheinitialdeuteronisthend5Mdp1d1d2dM121,2,3FM,1,2,32,3wherethenotationdMisintroducedforshortness.
FollowingtheMadisonconvention36thedifferentialcrosssectionforvector(py)andtensor(pyy)polarizationofthedeuteronbeamisd5dp1d1d2py,pyyd5dp1d1d20,0132AYpy12AYYpyy,4withcorrespondingvectorandtensoranalyzingpowersde-nedasAYdM1dM1dM1dM0dM1,5AYYdM1dM12dM0dM1dM0dM1,6andtheunpolarizedcrosssectionasd5dp1d1d20,0ddM1dM0dM13.
7Fromtheseexpressions,onecanderivethefollowingexpres-sionsforthethreeobservablesinthePWIA:AYqPpp2u2w2uw23u2w2nyw2uwu2w2kyk,nPppBY,8AYYq123qY21w22uwu2w2,9ddpp4q2u2w2,10wherekq/qq,nistheunitvectoralongthenormaltotheplaneoftheppscattering,Pppthepolarization,anddppthedifferentialcrosssectionoftheppscattering.
TheexpressionforAY(q)denesastructurefunctionBY(q)forthedeuteron.
Thepolarizationofthefastproton,whichwasalsomea-suredinthisexperiment,isdenedasPNupNdownNupNdown,11wherethenumberoffastprotonsintheupordownspinstateisNupdownMnMdMupdownMnM12,2,3FM,updown,2,32.
12Iftheproportionofincidentdeuteronsineachspinstateisn,n,andn0,thenthevectorandtensorpolarizationofthebeamarepynn,13pyynn2n0,14nnn01,15andthespinstructureofthep(d,2p)namplitudeleadsinIAtoPPpp3BYDpppy/2AYYpyyPpp/213AYpy/2AYYpyy/2,16whereDppisthedepolarizationparameterinfreeppscat-tering.
Thedepolarizationparameterforthep(d,2p)nreac-tioncanbedenedasDvd↑↑d↑↓3d,17withd↑↑12,2,3F1,↑,2,32F1,↓,2,32,18d↑↓12,2,3F1,↑,2,32F1,↓,2,32,19andd1213M,,1,2,3FM,1,2,32.
20FIG.
1.
Notationsforthep(d,2p)nreaction.
ThelettersM,,andirefertothespinmagneticquantumnumberofeachparticle.
5256S.
L.
BELOSTOTSKIetal.
TheDvobservablemeasuresthefractionoffastprotonswiththeirspininthesamedirectionasthedeuteronspin.
IntheIA,thisobservableisequaltoDvBYDpp,21whereBYisthesamedeuteronstructurefunctionwhichwasintroducedearlierinthedenitionofAY;BYhasvaluesintherangefrom1to1.
LabelingthepolarizationofthefastprotonPforanincidentdeuteroninthestate(M1),andPforthestate(M1)theexpressionofDv,follows,DvPP3pyAYPP2.
22CombiningthetwoindependentquantitiesPandPitcanbeshownthatP0PP232AYpyPP2,23whichisthepolarizationofthefastprotonforunpolarizeddeuteronbeam.
IntheIAitisequaltothepolarizationinfreeppscattering:P0Ppp.
24Tosummarize,wenotethatthespinobservablesAY,AYY,andDvarefunctionsoftheratiobetweentheSandtheDstatesataninternalmomentumqxedbythekinematicsintheoutgoingchannel.
IntheIA,themomentumqisthemomentumofthespectatorneutron,inthedeuteronrestframe.
Inthispaperalltheobservablesareshownasfunc-tionsofq,beingsummedupoverotherkinematicvariableswithintheexperimentalacceptance.
Thisrepresentationofobservableswhicharevefolddifferential,doesdisplaythemaindynamicalfeaturesofthereactiontorstorder;thispointwillbefurtherdiscussedinmoredetailinSec.
IV.
Atlargevaluesofq,theIAshouldbecomplementedwithothergraphsincludingFSI,excitation,andsoonseeFig.
2,whichmodifytheobservablessubstantially.
Itfol-lowsthatstrongconstraintsforthecalculationofthereactionmechanismwillresultfromthecomparisonoftheoreticalpredictionswiththefourindependentobservablesAY,AYY,Dv,andP0.
ThetermqYinEq.
9takesintoaccounteventswithppscatteringoutofthehorizontalplaneresultingfromthelargeverticalapertureofthedetectorsinthisexperiment.
ButthePppandDppparametersaredenedonlyforcopla-narppscattering.
Expressionsfortheanalyzingpower,validintheframe-workoftheIA,andsimilartoEqs.
8and9,havebeendiscussedbyWilkin37,andusedforanalysisofinclusivedeuteronbreakupreactiondata21,22andof6Liinclusivebreakupreactiondata38.
However,Eqs.
8and9differfromthembythefactthattheycontainatermdependingonqY.
III.
DESCRIPTIONOFEXPERIMENTANDDATAHANDLINGThepolarizeddeuteronbeamfromtheatomicionsourceHYPERIONisinjectedinthepreacceleratorMIMASandthenintothesynchrotronringSATURNE,whereitisaccel-eratedupto2GeV.
TheextractedbeamistransportedtothetargetpointoftheSPES4spectrometershowninFig.
339.
Thescatteringangle1ofthefastprotonp1wassetto18.
3°bymeansofamovabledipolemagnetupstreamofthetarget.
Therecoilprotonp2wasdetectedincoincidencewiththeprotonp1withinarangeofscatteringangles2from52.
5°to61.
5°withtherecoilspectrometerRSlocatedinthetargetarea.
Thebeamwasstoppeddownstreamfromthetargetinabeamdump.
TheRSdetectorswereprotectedfromadirectviewofthebeamdumpbyaconcretewallof1.
5mthickness.
A.
ThedeuteronbeamandthetargetThebeamwasfocusedonthetargetwithaspotofdimen-sions6mmhorizontallyby2.
2mmvertically.
ThetargetFIG.
2.
TheFeynmandiagramsincludedintothecalculation.
TheexclusivebreakupOisthecoherentsumofrst-orderim-pulseapproximationA,nalstaterescatteringB,andexcita-tionC.
ForgraphsAandB,thetwocircularpermutationsofthenalparticlesarealsocomputed.
ForgraphC,onlythepermutationofnandp1isconsidered.
FIG.
3.
Experimentalsetup:ThemagnetsofthebeamlineandoftheSPES4spectrometerareshownwiththelocationoftheRSarmandofthePOMMEpolarimeter.
Theshadedareasareconcretewalls.
TheRSdetectorsareprotectedfromadirectviewofthebeamstop.
5653MEASUREMENTOFPOLARIZATIONOBSERVABLESIN.
.
.
wasaverticalcylindercelllledwithliquidhydrogen.
Thecellhadadiameterof40mmwithwallsmadeof150m-thickmylar.
Theslowrecoilingprotonsexitedthetargetvacuumchamber38cmawayfromthetargetcellthrougha50mtitaniumwindow.
Thebeamtimestructurewasof0.
4sdurationat3srepetitionperiod.
Thebeamintensitywaslimitedto3.
0109deuteronsperspilltomaintainacceptablevaluesoftheleakagecurrentintheproportionalchambersofRSlo-catedclosetothetarget.
Alsowhendataweretakenclosetothequasielasticpeakthebeamintensitywasfurtherreducedtokeepthedeadtimeofthedataacquisitionsystemreason-ablysmall.
ThereisnodepolarizationofthedeuteronsduringtheaccelerationinSATURNE40,sothatthepolarizationcanbemeasuredat385keVwithalow-energypolarimeter41locatedattheexitoftheionsourcebeforeinjectionintothepreacceleratorMIMAS.
Thepolarizationstateofsuccessivebeamburstswasrepeatedcyclicly,eitherinthetwo-statemodestates2and3,orinthefour-statesmodestates5,6,7,and8.
Successivebeamburstshadadifferentpolar-ization,assummarizedinTableI,togetherwiththemaxi-mumpolarizationdeliveredbytheatomicsourceineachoneofthesestates.
Thedatawereobtainedduringtwoseparateperiodsintwoconsecutiveyears.
Themeasuredpolarizationswerecon-stantduringeachperiodandaregiveninTableIIafterap-propriatenormalization41anddeadtimecorrection42.
Inadditiontothestatisticaluncertaintyfromthebeampolar-izationmeasurements,theestimateofthesystematicerroris6%forthetensorand4%forthevectorpolarization41.
Thedatameasuredduringthetworunshavebeensummedaftercheckingthattheywereconsistentwithinsta-tisticaluncertainty.
B.
TheSPES4spectrometerThespectrometerSPES4isshowninFig.
3;itscongu-rationisdiscussedindetailin39,43.
Atimeofightisobtainedwiththestartfromscintillators1-mmthicknessattheintermediatefocusIF,andthestopgivenbyscintilla-tors3-mmthickinthenalfocusFFFig.
4;thetime-of-ighthasabasedistanceof16.
8mandprovidesexcellenttriggerselectivityforprotons.
Thespectrometermomentumresolutionisp/p103.
Acollimatordenedasolidangleof0.
69msr,withangularacceptancesh1.
04°horizontally,andv2.
17°vertically;themomentumac-ceptancewas4%withoutcuts,extendingto6%withade-creasingsolidangle.
Theangularresolutionafteranalysisofthetrackswas0.
1°fullwidthathalfmaximumFWHMhorizontallyand0.
2°vertically.
Thepolarizationoftheprotonsp1selectedbySPES4ismeasuredwiththepolar-imeterPOMME44.
ThepolarimeterFig.
4measurestheazimuthalasymmetryofp-Cinclusivescatteringfroma31.
2-cm-thickcarbonanalyzerlocatedneartheFFplane.
Protontracksupstreamanddownstreamofthecarbonblockarereconstructedusing6multiwire(XY)proportionalcham-berswithsensitivearea5050cm2forthethreefrontchambersand100100cm2forthethreerearchambers.
ThepolarimeterhasitsowntriggergivenbyacoincidencebetweentheFF,P,andQscintillators.
Thethreefrontcham-bersarealsousedfortheprecisetrackingthatdeterminesthemomentumandscatteringangleattheprimaryliquidhydro-gentarget.
C.
The''recoilspectrometer''RSThe''recoilspectrometer''consistsoftwoX,YmodulesofmultiwireproportionalchambersCH1andCH2,anarrayofsevenscintillationplatesEi,anda74matrixofscin-tillationblocksEijforE,EanalysisFig.
5.
Thedistancesbetweenthetargetpointandthewirechambersarerespec-tively1.
2and2.
7m,whichtogetherwiththe4-mmspacingofthewiresandthemultiplescatteringinthetargetandthetitaniumwindowresultaresolution20.
45°FWHM.
ThesevenplatesoftheEarray,eachof50012510mm3,wereplacedhorizontallyatadistanceof3.
03mfromthetarget.
Eachplateisviewedonbothsidesbyaphotomul-tiplier,andforeachofthematimeandaenergylossinfor-mationarerecorded.
TheEmatrixconsistsof28blocksplasticscintillator120120200mm3,eachofthemviewedbyasinglephotomultiplierandwithchargeinforma-tionrecorded.
D.
CalibrationbyelasticdpscatteringToobtainanabsolutecalibrationoftheanglebetweenSPES4andRS,elastictwo-bodyscatteringdp→pddataTABLEI.
Beampolarizationextremalvalueonthetargetandassociatedbeamstatenumber.
Assignedbeampyy;tensorpy;vectorstatenumberpolarizationpolarization10.
00.
020.
02/330.
02/340.
00.
051.
01/361.
01/371.
01/381.
01/3TABLEII.
Absolutevalueofthebeampolarizationmeasuredduringthetworunswiththestatisticalerror.
Run1Run2pystates230.
6470.
0200.
6330.
007pystates5,6,7,80.
3010.
0170.
3260.
012pyy0.
9470.
0180.
9120.
014FIG.
4.
PolarimeterPOMME:Thehodoscopeofplasticscintil-latorsFiislocatedatthenalfocalizationFFofthespectrometer.
ThePandQilathofplasticscintillatorsareconnectedtophoto-multipliersoneachside.
5456S.
L.
BELOSTOTSKIetal.
wererecordedandanalyzedforseveralSPES4angles,SPES4of7.
0°,6.
5°,and7.
0°.
Inthiscalibration,thedeuteronwasdetectedinSPES4,andtheprotoninRS.
Themeasurementwasextendedtonegativeangleinordertohaveaconstraintforthedeterminationofthe0°valueofSPES4;itwasfoundthatthenominalzeroanglewasshiftedby0.
33°totheleft,theusualscatteringsideinaSPES4experiment.
ForthelargerSPES4valuesof7.
9°,9.
54°,10.
93°,and12.
86°,thecorrelationoftheelasticscatteringdataandthetwo-bodykinematicsconstraintisshowninFig.
6.
Theval-uesdandparethedirectangularmeasurementinSPES4andRSwithrespecttotheircentralaxis.
Fromacomparisonbetweentheexperimentalpointsandthecurve,itwasdeterminedthattheanglebetweentheaxisofSPES4andRSwas75.
0°.
TheelasticscatteringdatawerealsousedtocalibratethetimeofightandtheEandEdetectorsoftheRSforknownprotonenergies.
AmoredetaileddescriptionofallthesecalibrationscanbefoundinRef.
45.
E.
EventselectionThep(d,2p)nreactioneventswereselectedbyrequiringtheappropriatetimingbetweenSPES4andRSrTOF.
TheaccuracyforrTOFwasbetterthan1.
0nsFWHM.
OncetheprotoninSPES4wasidentiedanditsmomentump1re-constructed,rTOFcouldbeconvertedtothetimeofightoftherecoilproton,fromthetargetvertextotheEdetector.
WedenotethisconvertedtimeofightasTOF.
ThisvaluerepresentstheparticlevelocitydetectedbyRSallowingtocalculatetherecoilprotonmomentump2.
The(E,p2)scat-terplotwasusedtoidentifyprotons.
Themomentump2wasusedinsteadofthemeasuredenergyintheEijcounters,becauseabove175MeV,theprotonswerenotstoppinginthe200-mm-thickplasticscintillators.
Thisadditionalinfor-mationEijwasonlyusedtosolveambiguouscases.
Forthedp→p1p2nprocessatagivendeuteronkineticenergyTd,whenp1isdeterminedfromtheSPES4mea-surementand2fromtheRSmeasurement,thereisacor-relationfTd;p1,2,p2,2025betweenp2and2.
Thisequationdenesamaximumscat-teringangle2max(p1,2)andtwopossiblevaluesofp2foragivenscatteringangle2smallerthanthismaximum.
Inthefollowing,thelow-energysolutionLEScorrespondstothelowestvalueofp2andthehigh-energysolutionHEStothehighest.
Thecorrelationisusedtoselectthedp→ppnpro-cessfromtheremainingbackground.
Theangle2ismea-suredbythemultiwireproportionalchamberMWPCofRSandp2bytheTOF,assumingtheRSparticletobeaproton.
Duetomultiplescatteringanddetectionresolutions,thedetectedeventsarespreadaroundthepurekinematicalcor-relation25,evenoutsidethekinematicallimit.
Toover-comethisdifculty,amethodthatminimizestheprobabilityofdeviationfromthethree-bodykinematicswasused.
A''distance''dbetweenthemeasuredeventat(2m,p2m)andtheexpected(2,p2)correlationisdenedd2p2mp22p222m2222,26where2isactuallygivenby2gp1,2,p227derivedfromthecorrelationf.
Theclosestvalue(2c,p2c)isobtainedbyaminimizationofexpression26withrespecttop2.
Thisvalue(2c,p2c)willthendetermineallotherkinemati-calquantitiesassociatedwiththemeasuredeventandcom-patiblewiththedp→ppnthree-bodykinematics.
Acutisalsoappliedontheminimizedd2valuesmallerthan4toselectthedp→ppnreactionandrejectbackground.
ThebackgroundcontaminationwasdeterminedfromFig.
7inaregionoutsidethekinematiclimitsofthedp→ppnreaction.
Inthegure,thecontourwhichisequivalenttotheallowedphasespaceofdp→ppnreactionisshown,butFIG.
5.
RecoilSpectrometerRS:TheRSarmisshownfromthesideontherightpartandfromthebackontheleftpart.
ThedistancebetweenEijscintillatorsandbetweenEscintillatorsisenlargedonthepicture.
Thedistanceisactuallyonlythewrappingpapers.
FIG.
6.
Thecorrelationfromelasticdpscatteringdatausedforcalibration.
5655MEASUREMENTOFPOLARIZATIONOBSERVABLESIN.
.
.
shiftedtolargervalueofTOF.
Theestimatedbackgroundwasaround2%intotal,butitaffectedmostlytheregionoflowcountingratee.
g.
,largeq).
InFig.
8,theestimatedbackgroundandrealp(d,2p)neventsaftersubtractionofthebackground,areshownasafunctionofq.
Fortheselectedeventswithp1andp2determined,themagnitudeofthespectatormomentumqwascalculatedwithatypicalaccuracyof8MeV/crms.
Foragivensetting,theprecisiononqrangesfrom2to30MeV/cinextremecases.
Themeasurementswereperformedatsixdifferentset-tingsofthemagneticeldsinSPES4withcentralvaluesof1.
6,1.
7,1.
8,1.
9,2.
0,and2.
05GeV/c,correspondingtothedifferentdomainsofqlistedinTableIII.
F.
DatahandlingforthepolarizationofthefastprotonOnlyforthoseeventsidentiedasoriginatingfromthedp→ppnreactionwasthepolarimeterPOMMEinformationanalyzed.
Theparticletrajectoriesreconstructedbeforeandafterthescattering,andthereactionvertexinthegraphiteanalyzerwereobtainedfromthefrontandrearchamberscoordinatesFig.
4.
Thethicknessoftheanalyzerwas31.
2cm.
Acutontherangeofthereactionvertextomatchtheactualsizeofthe12Cblockwasrstapplied.
Thedistribu-tionofthecscatteringangleafterthiscutisshowninFig.
9a.
Becausethesmallscatteringanglesaremostlyduetomultiplescatteringandnottoanuclearinteraction,eventswithc2.
5°wererejected.
TheseeventshavenegligibleFIG.
7.
Thecorrelationtoselectthecontaminationsfromback-ground.
Weusedtheeventsinsidethecontourshowntoestimatethecontributionfromthebackground.
FIG.
8.
Theestimatedbackgroundaandrealeventsb.
TABLEIII.
InternalmomentaqfordifferentSPES4settings.
p10,GeV/cq,GeV/c1.
60.
03–0.
201.
70.
04–0.
221.
80.
10–0.
381.
90.
16–0.
412.
00.
22–0.
442.
050.
29–0.
45FIG.
9.
aThedistributionofthescatteringangle(c)aftervertexcut.
Weusedonlytheeventscу2.
5°forthepolarizationanalysis.
bThenaldistributionoftheazimuthalanglec.
5656S.
L.
BELOSTOTSKIetal.
asymmetryandsufferfromabaddeterminationoftheazi-muthalangle(c).
A''conetest''46wasthenapplied.
Thistestrequiresthattheconedenedbycfortherunningeventlieswithintheacceptanceofthepolarimetertocon-siderthisevent.
Itisusedtoeliminatesystematicasymme-triesbyensuringasufcientazimuthalacceptance.
Theef-ciencyofthepolarimeterforthisexperimentwastypically8%.
Theazimuthalangle(c)distributionoftheeventsaftertheconetestisshowninFig.
9b.
Acdistributionwasobtainedforanumberofqvalues.
Togetreasonablestatis-tics,thebinningsizeforqwastakenas0.
05GeV/c.
Foreachevent,thecoefcientsa1Aycccosc,28a2Aycc2,29werecalculatedwithAyc(c)theanalyzingpowerofthein-clusivep12Creactionatthescatteringangle(c).
ValuesofAyc(c)wereobtainedinapreviouscalibrationofthePOMMEpolarimeter44.
Foreachbinofq,thequantitiesa1anda2weresummedforallevents,andtheprotonpolar-izationwasobtainedasPq2a1qa2q.
30ThispolarizationP(P)ismeasuredforthepolarizationstate2respectively3oftheincidentdeuteronbeam.
Rela-tions22and23wereusedtocalcutetheobservables.
ThestatisticaluncertaintyonP0andDvisratherlarge.
InFig.
10eachobservableobtainedfordifferentSPES4mo-mentumisplottedasafunctionofqbutseparatelyforthehigh-andthelow-energysolutionoftheproton.
Withthispartition,qseemsagoodvariableatleasttothelevelofaccuracyoftheexperimentasveriedbya2testbetweenmeasurementsatthesameqvalue.
Mostofthe2perpointaremuchsmallerthan1.
SovaluesobtainedatthesameqbutfordifferentSPES4settingswerecombined.
Theinternalmomentumqisthescalingvariableonlybelow200MeV/c,wheretheIAisknowntobevalid.
Abovethisvalue,thedeviationfromtheIAforP0andDvshouldbesmallerthantheprecisionofthemeasurement.
Thereis,however,anobviousdifferencebetweenthehigh-andthelow-energysolution.
Theycorrespondtodifferentorientationsoftheneutronmomentumqwhichshouldin-duceverydifferentcorrectionstotheIAandthisistherea-sonwhywehavekeptthisdependence.
G.
ObservablesfromselectedeventsAswasmentionedinprevioussections,therearetwoki-nematicalsolutionsandtheobservablesAY,AYY,P0,andDvcanbecalculatedasafunctionofqforeachsolutionseparately.
DenotingthenumberofselectedeventsafterbackgroundsubtractionasNi(q),whereiisthebeampolar-izationstatenumbergiveninTableI,theanalyzingpowersAYandAYYaregivenbyAYq231pyN2qN3qN2qN3q,AYq231pyN5qN6qN7qN8qN5qN6qN7qN8q,31AYYq21pyyN5qN6qN7qN8qN5qN6qN7qN8q,wherethebeampolarizationspyandpyyaredenedinEqs.
13,14,andinTableII.
Expressions31followfromEqs.
4,5,and6.
ThecompletesetofexperimentalvalueswithstatisticalerrorsisgiveninTableIVhighenergyandTableVlowenergyoftherecoilprotonp2).
FIG.
10.
Depolarization(Dv)ofthedp→p1p2nreactionandpolarization(P0)ofthefastproton(p1)asafunctionofq,themomentumoftheneutroninthedeuteronrestframe.
Eachfamilyofsymbolisforagivencen-tralmomentump1detectedinSPES4;thetopguresaandcforthelow-energysolutionofthesecondproton(p2)detectedinRSandthebottomguresbanddforthehigh-energyone.
Thebinninginqis50MeV/c,butthepointsatthesameqvalueareslightlydisplacedtoseethevariouserrorbars.
5657MEASUREMENTOFPOLARIZATIONOBSERVABLESIN.
.
.
IV.
THEORETICALINTERPRETATIONANDDISCUSSIONOFRESULTSA.
ModelusedThekinematicsofthisexperimentisdominatedbythep-pquasielasticscattering.
Nevertheless,then-ptermtakingintoaccountscatteringoftheneuteroninthedeuteronoffthetargetprotonproducingeithertheslowrecoilproton(p2)detectedwithRSorthefastone(p1)detectedbytheforwardspectrometerSPES4wasaddedcoherentlytothemainp-pscatteringtermintheIA.
Thisn-pcontributiontothecrosssectionisrathersmallbutitisnotnegligibleforthepolarizedobservables.
AlltheNNsecond-orderrescatteringtermsFSR'swereincludedtakingintoaccountboththelow-energynalstateinteractionandGlauber-typerescatteringofthefastprotons.
Inaddition,the33excitationdiagramswerealsoevaluated.
TABLEIV.
Measuredvaluesofthetensorandvectoranalyzingpowerandstatisticalrmserrorsasafunctionofq.
Seetextfordetailsandsystematicerrors.
Thistableisfortherecoilingprotonp2ofhighestenergy.
Themomentump1ofthefastprotoninthelaboratoryisspecied.
p1GeV/c)qMeV/c)AYY(AYY)AY(AY)1.
650.
00.
0920.
0320.
2560.
00970.
00.
0930.
0190.
2650.
00590.
00.
1450.
0170.
2550.
005110.
00.
1350.
0200.
2480.
006130.
00.
1840.
0260.
2380.
007150.
00.
2700.
0360.
2100.
011170.
00.
3180.
0510.
1830.
015190.
00.
1920.
0650.
1640.
021210.
00.
0210.
0860.
1290.
028230.
00.
0500.
1040.
1200.
036250.
00.
0140.
1241.
790.
00.
1940.
0180.
2700.
006110.
00.
2510.
0120.
2590.
004130.
00.
2710.
0120.
2490.
004150.
00.
2950.
0140.
2460.
005170.
00.
3570.
0210.
2140.
007190.
00.
4300.
0290.
2100.
010210.
00.
5530.
0380.
1730.
014230.
00.
5570.
0500.
1940.
018250.
00.
4720.
0600.
2030.
022270.
00.
2210.
0281.
8150.
00.
3600.
0250.
2850.
012170.
00.
3890.
0190.
2870.
007190.
00.
4380.
0200.
2580.
007210.
00.
4810.
0230.
2480.
009230.
00.
4900.
0320.
1920.
010250.
00.
5120.
0430.
1640.
013270.
00.
5400.
0570.
1310.
017290.
00.
5590.
0710.
1300.
022310.
00.
4680.
0870.
1320.
0201.
9210.
00.
4240.
0460.
3580.
029230.
00.
3820.
0220.
3040.
009250.
00.
3210.
0210.
2510.
008270.
00.
2700.
0220.
2340.
008290.
00.
1750.
0250.
1800.
009310.
00.
1450.
0310.
1540.
010330.
00.
2040.
0410.
1240.
012350.
00.
1490.
0570.
0830.
015370.
00.
0650.
0760.
0510.
0192.
0290.
00.
0410.
0770.
2700.
039310.
00.
0760.
0360.
2590.
011330.
00.
1260.
0310.
2010.
009350.
00.
1330.
0290.
1720.
009370.
00.
2000.
0300.
1620.
009390.
00.
1220.
0340.
1100.
010410.
00.
2520.
0470.
1440.
014430.
00.
2680.
1020.
1870.
0332.
05350.
00.
1630.
0750.
2370.
028370.
00.
1160.
0470.
1970.
018390.
00.
1210.
0410.
1670.
017410.
00.
2110.
0490.
1510.
020430.
00.
1630.
0940.
1540.
037TABLEV.
Measuredvaluesofthetensorandvectoranalyzingpowerandstatisticalrmserrorsasafunctionofq.
Seetextfordetailsandsystematicerrors.
Thistableisfortherecoilingprotonp2oflowestenergy.
Themomentump1ofthefastprotoninthelaboratoryisspecied.
p1GeV/c)qMeV/c)AYY(AYY)AY(AY)1.
7150.
00.
2930.
021170.
00.
3440.
014190.
00.
3200.
016210.
00.
2810.
021230.
00.
2080.
029250.
00.
2170.
0501.
8170.
00.
2110.
139190.
00.
3500.
0590.
2750.
018210.
00.
3280.
0470.
3110.
012230.
00.
4590.
0480.
2890.
013250.
00.
4450.
0570.
2840.
015270.
00.
4550.
0790.
1930.
021290.
00.
5620.
1060.
1720.
030310.
00.
4700.
1530.
1270.
0451.
9230.
00.
3170.
044250.
00.
4260.
0660.
2920.
017270.
00.
3430.
0510.
2710.
014290.
00.
3270.
0430.
2210.
015310.
00.
3450.
0420.
2040.
018330.
00.
3390.
0490.
1600.
025350.
00.
4000.
0600.
1670.
019370.
00.
1270.
024390.
00.
1120.
0332.
0310.
00.
2380.
0750.
2570.
020330.
00.
1860.
0520.
2230.
016350.
00.
2180.
0490.
1910.
014370.
00.
2990.
0490.
1830.
014390.
00.
2280.
0560.
1460.
015410.
00.
3030.
0730.
1810.
019430.
00.
1680.
1910.
1900.
0362.
05370.
00.
0560.
0720.
2080.
028390.
00.
2260.
0650.
1990.
025410.
00.
1710.
0630.
2230.
026430.
00.
4440.
1040.
2990.
0475856S.
L.
BELOSTOTSKIetal.
Thecalculationsresultspresentedbelowareobtainedbyco-herentsummationoftheIA,FSR,and33excitationdia-grams:MMIAMFSRM.
32AmplitudesMIA,MFSRandMcorrespondtothediagramsA,B,andCshowninFig.
2.
ThespinstructureoftheinputNNamplitudesisincludedintheenergy-dependentphaseshiftanalysisPSAofArndtetal.
47.
FollowingEverett48,inthetrianglediagramB,theNNamplitudesweretakenoutoftheloopintegral,andevaluatedattheoptimumFermimomentum.
However,whenthenucleonpairinteractinginthenalstatehasasmallrelativeenergy,itisnecessaryandpossibletocorrectthisNNamplitudefortheoff-shellbehavioroftheinterme-diatestate49–51:MoffMonfs31,mv2.
33Theformfactorfisafunctionoftheinvariantenergys31ofthepairandofthevirtualmass(mv2e2p2)ofoneoftheintermediatenucleon.
Itspreciseformcanbederivedfromthedeuteronmomentumwavefunctionusingclosure,asinRef.
52.
Thisformfactorwaskeptwithproperpropa-gatorsandverticesintheloopintegralandreplacedbyunityabove200MeV.
TheamplitudeMd→NNhasbeencomputedtakingintoaccounttheone-loopdiagramswiththeN33asintermediatestateandalsothediagramswiththeNscatteringintheS,P,andDwavesparametrizedbytheirphaseshifts.
InordertoavoiddoublecountingwehaveexcludedthenucleonpoleintheNamplitudewhichalreadycontributestotheIAterminEq.
32,andtheP11waveintheNscatteringwhichispartoftheFSRterm.
Finally,theex-changeisalsotakenintoaccountintheinteractionofthetwonucleonsofthed→NNamplitude.
Furtherdetailscanbefoundin53.
Intheframeworkofthismodelaverygooddescriptionoftheexclusiveunpolarizeddifferentialcrosssectionsforthed(p,2p)nreactionstudiedinGatchinahasbeenobtained15.
Itshouldbestressedthatherekinematicsaredevelopedtoincludeeventsoutofthescatteringplane;thecalculationsareintegratedovertheexperimentalapertureofthedetec-tors.
Amorecompletedescriptionofthemodelisinprogressandwillbepublishedsoon.
B.
DiscussionThetensoranalyzingpowerAYYforeachsettingoftheSPES4centralmomentum,andforbothhigh-andlow-energysolutions,isshowninFigs.
11and12.
ResultsofthecalculationswiththedeuteronBonnwavefunctionarealsopresentedinthegures.
Atthe1.
6,1.
7,and1.
8GeV/cset-tings,thetensoranalyzingpowerforthehigh-energysolu-tionshowsgoodagreementwithIAintherange0.
03рqр0.
20GeV/c.
Abovethisregion,thesimpleIAfailsbutisratherwellcorrectedbyadditionaldiagrams.
Thesamebehaviorisobservedatthe1.
8GeV/csettingforthelow-energysolution.
At1.
9,2.
0,and2.
05GeV/cthestrongde-viationofthemeasuredtensoranalyzingpowerfromIAforbothlowandhighT2isnotexplainablebythecalculations.
However,includingsecond-ordertermsrevealstherighttrendwithrespecttotheexperimentalpoints.
AsitfollowsfromEq.
9,inIAtheexperimentalAYYdividedbythefactor13qY2shouldscaleversusqforthetwokinematicsolutionsandalltheSPES4settings.
How-ever,thisisbyfarnotthecase,whichmeansunambigouslythattheIAfailstodescribethedataatqlargerthan0.
2GeV/FIG.
11.
ThetensoranalyzingpowerAYYforthehigh-energysolution.
Theexperimentalpointsarepresentedforthedifferentvaluesofthecentralmomentumdetectedinthemagneticspectrom-eterandasafunctionoftheoutgoingneutronmomentumexpressedinthedeuteronrestframe.
Thehigh-andlow-energysolutionreferstotheenergyoftheslowprotondetectedatthesameangleinRSThecurvesarethecalculationsexplainedinthetext.
Thedashed-dottedlineistheimpulseapproximation,thedashedlinehasinadditiontheFSRcontribution,andthecontinuouslineisthefullcalculationincludinginadditionthevirtual.
FIG.
12.
ThetensoranalyzingpowerAYYforthelow-energysolution.
SamenotationsasinFig.
11.
5659MEASUREMENTOFPOLARIZATIONOBSERVABLESIN.
.
.
c,andnomodicationofthedeuteronwavefunctioncanhelp.
ThevectoranalyzingpowerresultsarepresentedinFigs.
13and14.
Theyexhibitasimilartendency:thefullcalcula-tionsresultinasignicantcorrectiontotheIAabove0.
25GeV/c.
Agoodagreementbetweenthefullcalculationsandtheexperimentalpointsisachievedat2.
0and2.
05GeV/cbothforthehigh-andlow-energysolutions.
Polarizationoftheforward-scatteredprotonsP0andde-polarizationDvarepresentedaveragedovereachSPES4settinginFigs.
15–18.
AgooddescriptionisobtainedforP0whenalldiagramsareincluded,whereasthisisnotthecaseforDv.
EspeciallytheratherhighvalueofDvat220MeV/cisnotreproduced,butthecorrectiontotheIAlooksreasonableathighqmomenta.
TheIAisclosertothedatathanthefullcalculationsforthelow-energybranchespe-ciallyforintermediatevaluesofq.
However,consideringthelargeerrorbarsinthiskinematics,itappearsthatthereisnodecisivediscriminationfromthecalculations.
V.
CONCLUSIONAnextensiveandconsistentsetofdataonpolarizationobservableshasbeenobtainedforthed(p,pp)nthree-bodybreakupofdeuterononhydrogenuptodeuteroninternalmomentaq440MeV/c.
ThevectorAYandthetensorAYYanalyzingpowersex-FIG.
13.
ThevectoranalyzingpowerAYforthehigh-energysolution.
SamenotationsasinFig.
11.
FIG.
14.
ThevectoranalyzingpowerAYforthelow-energysolution.
SamenotationsasinFig.
11.
FIG.
15.
TheforwardprotonpolarizationP0forthehigh-energysolution.
ThenotationofthecurvesarethesameasinFig.
11.
ThecalculationsaredoneconsistentlyasforAYandAYYforeachset-tingofthespectrometerwhilethedataaresummedasexplainedinthetext.
FIG.
16.
TheforwardprotonpolarizationP0forthelow-energysolution.
ThenotationofthecurvesarethesameasinFig.
11.
6056S.
L.
BELOSTOTSKIetal.
hibitalargedeviationfromIAforinternalmomentaqlargerthan200MeV/c.
Theanalyzingpowers,beingratiosofre-actionamplitudes,couldbethoughttobelessmodiedbydistorsionsoftheIAthancrosssections,butthissimplecon-siderationappearsclearlywrong,atleastinthekinematicsinvestigatedhere.
ThedeviationfromtheIAisparticularlylargeforthetensoranalyzingpower.
Onecanconclude,basedontensoranalyzingpowerdataonlythatIAfailstodescribetheAYYdataabove200MeV/c.
Thisconclusioncannotbechangedbymeansofmodicationofthedeuteronwavefunction.
Descriptionofthedataisconsiderablyimprovedatmoderateqwhenconventionalsecond-ordertermsareincludedinthereactionmechanismintheframeworkofthetheoreticalmodeldiscussedabove.
NoticeabledeviationsofthetheoryfromthedatatakeplaceforAYYatlargeq,wheretheres-catteringFSR,thoughshowingtherighttrend,isnotsuf-cienttodescribetheexperimentaldataforthehigh-energykinematicsbranch.
SmallerdeviationsfromIAarefoundforthevectorana-lyzingpowerthanforAYY.
AverygooddescriptionoftheAYdatahasbeenobtainedforallsettingsofthespectrom-eter.
Itshouldbenotedthatoutofplanescatteringistreatedandintegratedovertheexperimentalacceptanceinthecal-culations.
Theexcitationofavirtualisfoundtohaveverylittleeffect,eventhoughtheinvariantenergyofthenucleonpairsissometimesveryclosetoMNM.
However,itshouldbementionedthatthereisonemissinggraphinthemodel;theformationonthetargetproton.
ThepolarizationP0ofthefastprotonmeasuredforthehigh-energybranchisconvincinglyreproducedbythemodel.
Thisisagoodtestfortheunderstandingofthereac-tionmechanism,becausethisobservableisnotsensitiveinrstordertothedeuteronstructure.
Thedepolarizationpa-rameterDvispoorlyreproducedbythemodel.
Toconclude,thepolarizationdataobtainedinthisexperi-menthaveprovidedaseveretestofadetailedmodelofthedp→ppnreactionmechanismaround1GeVpernucleon.
ThemodelhasbeenalreadysuccessfullyusedfordescriptionoftheGatchinaunpolarizedexclusivebreakupdata15.
TheimportanceofcorrectionstotheIAinvariouskinematiccon-ditionsisclearlydemonstratedbothbypolarizedandunpo-larizedexclusiveexperiments.
However,itdoesnotgiveacoherentandprecisepictureofallobservables.
Neverthelesswedonothavemuchfreedomtouseverydifferentdeuteronwavefunctions,takingintoconsiderationthegooddescriptionoftheunpolarizeddeuteronbreakupdataobtainedintheframeworkofthesamemodel.
TheagreementobtainedbetweendataespeciallyAY)andtheorywithaconventionaldeuteronwavefunctionimpliesthatnewdegreesoffreedominthedeuteronstructure,suchassixquarkbag,arenotrevealedinthekinematicregioninvesti-gated.
VI.
ACKNOWLEDGMENTSTheauthorswishtothanktheSATURNEstaffforthequalityofthepolarizeddeuteronbeamprovidedduringtheexperimentandforthemanagementoftheliquidhydrogentarget.
WearegratefultoM.
Rougerfortheconceptionandmanagementofvariouspartsoftheelectronics,subsequentlytakeninchargewithgreatefciencybyJ.
P.
Mouly.
Themanagementofmanypiecesofequipmentfortheexperi-ment,especiallytheRSdetectorswasefcientlyinsuredbyJ.
C.
Lugol,J.
Habault,andJ.
leMeur.
WewouldlikealsotoacknowledgeM.
Strikman,L.
Frankfurt,andJ.
M.
Lagetforfruitfultheoreticaldiscussions.
WealsowishtorememberProfessorJ.
Erodeceasedasaverykindperson,onewhowasveryinterestedinthisphysics,andaninspirationtoallwhoknewhim.
FIG.
17.
ThedepolarizationparameterDvforthehigh-energysolution.
SamenotationsasinFig.
11.
FIG.
18.
ThedepolarizationparameterDvforthelow-energysolution.
SamenotationsasinFig.
11.
5661MEASUREMENTOFPOLARIZATIONOBSERVABLESIN.
.
.
1G.
Alberi,L.
P.
Rosa,andZ.
D.
Thome,Phys.
Rev.
Lett.
34,5031975.
2T.
E.
O.
EriksonandM.
Rosa-Clot,Annu.
Rev.
Nucl.
Sci.
35,2711985.
3M.
I.
StrikmanandL.
L.
Frankfurt,Nucl.
Phys.
A405,5571983.
4R.
Machleidt,K.
Holinde,andCh.
Elster,Phys.
Rep.
149,21987.
5M.
Lacombe,B.
Loiseau,R.
VinhMau,J.
Cote,P.
Pires,andR.
deTourreil,Phys.
Lett.
101B,1391981.
6M.
Garcon,J.
Arvieux,D.
H.
Beck,E.
J.
Beise,A.
Boudard,E.
B.
Cairns,J.
M.
Cameron,G.
W.
Dodson,K.
A.
Dow,M.
Farkhondeh,H.
W.
Fielding,J.
B.
Flanz,R.
Goloskie,S.
Ho"ibraten,J.
Jourdan,S.
Kowalski,C.
Lapointe,W.
J.
Mc-Donald,B.
Ni,L.
D.
Pham,R.
P.
Redwine,N.
L.
Rodning,G.
Roy,M.
E.
Schulze,P.
A.
Souder,J.
Soukup,I.
The,W.
E.
Turchinetz,C.
F.
Williamson,K.
E.
Wilson,S.
A.
Wood,andW.
Ziegler,Phys.
Rev.
C49,25161994.
7C.
F.
Perdrisat,L.
W.
Swenson,P.
C.
Gugelot,E.
T.
Boschitz,W.
K.
Roberts,J.
S.
Vincent,andJ.
R.
Priest,Phys.
Rev.
187,12011969.
8T.
R.
Witten,M.
Furic,G.
S.
Mutchler,C.
R.
Fletcher,N.
D.
Ga-bitzsch,G.
C.
Phillips,J.
Hudomalj,L.
Y.
Lee,B.
W.
Mayes,J.
Allred,andC.
Goodman,Nucl.
Phys.
A254,2691975.
9R.
D.
Felder,T.
R.
Witten,T.
M.
Williams,M.
Furic,G.
S.
Mutchler,N.
D.
Gabitzsch,J.
Hudomalj-Gabitzsch,J.
M.
Clem-ent,Jr.
,G.
C.
Phillips,E.
V.
Hungerford,L.
Y.
Lee,M.
Warneke,B.
W.
Mayes,andJ.
C.
Allred,Nucl.
Phys.
A264,3971976.
10C.
F.
Perdrisat,V.
Punjabi,M.
B.
Epstein,D.
J.
Margaziotis,A.
Bracco,H.
P.
Gubler,W.
P.
Lee,P.
R.
Poffenberger,W.
T.
H.
VanOers,H.
Postma,H.
J.
Sebel,andA.
W.
Stetz,Phys.
Lett.
156B,381985.
11V.
Punjabi,C.
F.
Perdrisat,W.
T.
H.
VanOers,P.
R.
Poffen-berger,W.
P.
Lee,C.
A.
Davis,A.
Bracco,D.
J.
Margaziotis,J.
P.
Huber,M.
B.
Epstein,H.
Postma,H.
J.
Sebel,andA.
W.
Stetz,Phys.
Lett.
B179B,381986.
12V.
Punjabi,K.
A.
Aniol,A.
Bracco,C.
A.
Davis,M.
B.
Epstein,H.
P.
Gubler,J.
P.
Huber,W.
P.
Lee,D.
J.
Margaziotis,C.
F.
Per-drisat,P.
R.
Poffenberger,H.
Postma,H.
J.
Sebel,A.
W.
Stetz,andW.
T.
H.
VanOers,Phys.
Rev.
C38,27281988.
13N.
P.
Aleshin,S.
L.
Belostotsky,Yu.
V.
Dotsenko,O.
G.
Grebenyuk,L.
M.
Kochenda,L.
G.
Kudin,N.
P.
Kuropatkin,S.
I.
Manaenkov,O.
V.
Miklukho,V.
N.
Nikulin,O.
E.
Prokoev,A.
Yu.
Tsaregorotsev,S.
S.
Volkov,J.
Ero,J.
Kecskemeti,P.
Koncs,Zs.
Kovacs,andZ.
Seres,Phys.
Lett.
B237,291990.
14M.
B.
Epstein,J.
P.
Huber,K.
A.
Aniol,A.
Bracco,C.
A.
Davis,H.
P.
Gubler,W.
P.
Lee,D.
J.
Margaziotis,C.
F.
Perdrisat,P.
R.
Poffenberger,H.
Postma,V.
Punjabi,H.
J.
Sebel,A.
W.
Stetz,andW.
T.
H.
VanOers,Phys.
Rev.
C42,5101990.
15N.
P.
Aleshin,S.
L.
Belostotsky,O.
G.
Grebenyuk,V.
A.
Gordeev,E.
N.
Komarov,L.
M.
Kochenda,V.
I.
Lasarev,S.
I.
Manaenkov,O.
V.
Miklukho,V.
V.
Nelyubin,V.
N.
Nikulin,O.
E.
Prokoev,V.
V.
Sulimov,V.
V.
Vikhrov,A.
Boudard,andJ.
M.
Laget,Nucl.
Phys.
A568,8091994.
16R.
G.
Arnold,B.
T.
Chertok,E.
B.
Dally,A.
Grigorian,C.
L.
Jordan,W.
P.
Schu¨tz,R.
Zdaarko,F.
Martin,andB.
A.
Meck-ing,Phys.
Rev.
Lett.
35,7761975.
17W.
P.
Schu¨tz,R.
G.
Arnold,B.
T.
Chertok,E.
B.
Dally,A.
Grigo-rian,C.
L.
Jordan,R.
Zdaarko,F.
Martin,andB.
A.
Mecking,Phys.
Rev.
Lett.
38,2591977.
18M.
Bernheim,A.
Bussie`re,J.
Mougey,D.
Royer,D.
Tar-nowski,S.
Turck-Chieze,S.
Frullani,G.
P.
Capitani,E.
deSanctis,andE.
Jans,Nucl.
Phys.
A365,3491981.
19L.
Anderson,W.
Bru¨ckner,E.
Moelleri,S.
Nagamia,S.
Nissen-Meyer,L.
Schroeder,G.
Shapiro,andH.
Steiner,Phys.
Rev.
C28,12241983.
20V.
G.
Ableev,D.
A.
Abdushukurov,S.
A.
Avramenko,Ch.
Dim-itrov,A.
Filipkowski,A.
P.
Kobushkin,D.
K.
Nikitin,A.
A.
No-molov,N.
M.
Piskunov,V.
I.
Sharov,I.
M.
Sitnik,E.
A.
Strok-ovsky,L.
N.
Strunov,L.
Viziereva,G.
G.
Vorobiev,andS.
A.
Zaporozhets,Nucl.
Phys.
A393,4911983.
21C.
F.
Perdrisat,V.
Punjabi,C.
Lyndon,J.
Yonnet,R.
Beurtey,M.
Boivin,A.
Boudard,J.
P.
Didelez,R.
Frascaria,T.
Repo-seur,R.
Siebert,E.
Warde,F.
Plouin,P.
C.
Gugelot,andJ.
Y.
Grossiord,Phys.
Rev.
Lett.
59,28401987.
22V.
Punjabi,C.
F.
Perdrisat,P.
Ulmer,C.
Lyndon,J.
Yonnet,R.
Beurtey,M.
Boivin,F.
Plouin,J.
P.
Didelez,R.
Frascaria,T.
Reposeur,R.
Siebert,E.
Warde,A.
Boudard,andP.
C.
Gugelot,Phys.
Rev.
C39,6081989.
23S.
I.
Mishnev,D.
M.
Nikolenko,S.
G.
Popov,I.
A.
Rachek,A.
B.
Temnykh,D.
K.
Toporkov,E.
P.
Tsentalovich,B.
B.
Wojt-sekhowski,S.
L.
Belostotsky,V.
V.
Nelyubin,V.
V.
Sulimov,andV.
N.
Stibnov,Phys.
Lett.
B302,231993.
24E.
Passchier,ThesisUniversiteitUtrecht,1996.
25V.
G.
Ableev,L.
Visireva,V.
I.
Volkov,S.
V.
Dzhmukhadze,S.
A.
Zaporozhets,A.
D.
Kirillov,A.
P.
Kobushkin,V.
I.
Kotov,B.
Kuehn,P.
K.
Many'akov,V.
A.
Monchinskii,B.
Naumann,L.
Naumann,S.
A.
Novikov,W.
Neubert,A.
A.
Nomolov,L.
Penchev,Yu.
K.
Pilipenko,N.
M.
Piskunov,P.
A.
Rukoyatkin,A.
L.
Svetov,I.
M.
Sitnik,E.
A.
Strokovsky,L.
N.
Strunov,S.
V.
Fedukov,V.
V.
Fimushkin,andV.
I.
Sharov,Pis'maZh.
Eksp.
Teor.
Fiz.
47,5581988JETPLett.
47,6491988.
26E.
Cheung,C.
F.
Perdrisat,K.
Beard,J.
Yonnet,M.
Boivin,R.
Beurtey,F.
Plouin,V.
Punjabi,R.
Siebert,R.
Frascaria,E.
Warde,R.
Abegg,W.
T.
H.
vanOers,W.
W.
Jacobs,S.
Nanda,C.
Lippert,andP.
C.
Gugelot,Phys.
Lett.
B284,2101992.
27A.
A.
Nomolov,V.
V.
Perelygin,V.
F.
Peresedov,A.
E.
Senner,V.
I.
Sharov,V.
N.
Sotnikov,L.
N.
Strunov,A.
V.
Zarubin,L.
S.
Zolin,S.
L.
Belostotsky,A.
A.
Izotov,V.
V.
Nelyubin,V.
V.
Sulimov,V.
V.
Vikhrov,T.
Dzikowski,andA.
Korejwo,Phys.
Lett.
B325,3271994.
28B.
Kuehn,V.
P.
Ladygin,P.
K.
Many'akov,N.
M.
Piskunov,I.
M.
Sitnik,E.
A.
Strokovsky,L.
Penchev,andA.
P.
Kobush-kin,Phys.
Lett.
B334,2981994.
29L.
S.
KisslingerandA.
K.
Kerman,Phys.
Rev.
180,14831969.
30Yu.
M.
Tchuvil'skyandYu.
F.
Smirnov,J.
Phys.
G4,14831978.
31A.
P.
KobushkinandL.
Viziereva,J.
Phys.
G8,8931982.
32V.
A.
MatveevandP.
Sorba,Lett.
NuovoCimento20,4351977.
33C.
F.
PerdrisatandV.
Punjabi,Phys.
Rev.
C42,18991990.
34A.
F.
Yano,Phys.
Lett.
156B,331985.
35J.
Ero,Z.
Fodor,P.
Koncz,Z.
Seres,C.
F.
Perdrisat,V.
Punjabi,A.
Boudard,B.
Bonin,M.
Garcon,R.
Lombard,B.
Mayer,Y.
Terrien,E.
Tomasi,M.
Boivin,J.
Yonnet,H.
C.
Bhang,M.
Youn,S.
L.
Belostotsky,O.
G.
Grebenyuk,V.
N.
Nikulin,andL.
G.
Kudin,Phys.
Rev.
C50,26871994.
36PolarizationPhenomenainNuclearReactions,editedbyH.
H.
BarschallandW.
HaeberliUniversityofWisconsinPress,Madison,1970.
6256S.
L.
BELOSTOTSKIetal.
37C.
Wilkin,ProceedingsJourneesd'etudeSaturne,Roscoff,LaboratoireNationalSaturnereport,1979.
38V.
Punjabi,C.
F.
Perdrisat,E.
Cheung,J.
Yonnet,M.
Boivin,E.
Tomasi-Gustafsson,R.
Siebert,R.
Frascaria,E.
Warde,S.
L.
Belostotsky,O.
V.
Miklukho,V.
V.
Sulimov,R.
Abegg,andD.
R.
Lehman,Phys.
Rev.
C46,9841992.
39E.
Grorud,J.
L.
Laclare,A.
Ropert,A.
Tkatchenko,J.
Banaigs,andM.
Boivin,Nucl.
Instrum.
Methods188,5491981.
40J.
Arvieux,S.
D.
Baker,R.
Beurtey,M.
Boivin,J.
M.
Cameron,T.
Hasegawa,D.
Hutcheon,J.
Banaigs,J.
Berger,E.
Codino,J.
Dufo,L.
Goldzahl,F.
Plouin,A.
Boudard,J.
Gaillard,NguyinvanSen,andCh.
F.
Perdrisat,Nucl.
Phys.
A431,6131984.
41J.
Arvieux,S.
D.
Baker,A.
Boudard,J.
Cameron,T.
Hase-gawa,D.
Hutcheon,C.
Kerboul,G.
Gaillard,andNguenVanSen,Nucl.
Instrum.
MethodsPhys.
Res.
A273,481988.
42E.
Tomasi-Gustafssonetal.
,ReportNo.
LNS/Ph/91-27,1991.
43M.
Bedjidian,C.
Contardo,E.
Descroix,S.
Gardien,J.
Y.
Gros-siord,A.
Guichard,M.
Gusakow,R.
Haroutunian,M.
Jacquin,J.
R.
Pizzi,D.
Bachelier,J.
L.
Boyard,T.
Hennino,J.
C.
Jourdin,M.
Roy-Stephan,andP.
Radvanyi,Nucl.
Instrum.
MethodsPhys.
Res.
A257,1321987.
44B.
Bonin,A.
Boudard,H.
Fanet,R.
W.
Fergerson,M.
Garcon,C.
Giorgetti,J.
Habault,J.
leMeur,R.
M.
Lombard,J.
C.
Lugol,B.
Mayer,J.
P.
Mouly,E.
Tomasi-Gustafsson,J.
C.
Duch-azeaubeneix,J.
Yonnet,M.
Morlet,J.
VandeWiele,A.
Willis,G.
Greeniaus,G.
Gaillard,P.
Markowitz,C.
F.
Perdrisat,R.
Abegg,andD.
A.
Hutcheon,Nucl.
Instrum.
MethodsPhys.
Res.
A288,3791990.
45M.
Youn,Ph.
D.
thesis,SeoulNationalUniversity,Korea,1993.
46R.
W.
Fergerson,Ph.
D.
thesis,ReportNo.
LA-16554-T,LosAlamos,1985.
47R.
A.
Arndt,J.
S.
Hyslop,andL.
D.
Roper,Phys.
Rev.
D35,1281987.
48A.
Everett,Phys.
Rev.
126,8311962.
49B.
S.
Aladashvili,J.
-F.
Germond,V.
V.
Glagolev,M.
S.
Nio-radze,T.
Siemiarczuk,J.
Stepaniak,V.
N.
Streltsov,C.
Wilkin,andP.
Zielinski,J.
Phys.
G3,71977.
50C.
AlvearandC.
Wilkin,J.
Phys.
G10,10251984.
51V.
G.
KsenzovandV.
M.
Kolybasov,Sov.
J.
Nucl.
Phys.
22,3721976.
52J.
M.
Laget,Nucl.
Phys.
A296,3891978.
53J.
M.
Laget,Nucl.
Phys.
A370,4911981.
5663MEASUREMENTOFPOLARIZATIONOBSERVABLESIN.
.
.

亚洲云-浙江高防BGP,至强铂金8270,提供自助防火墙管理,超大内存满足你各种需求

官方网站:点击访问亚洲云官网618活动方案:618特价活动(6.18-6.30)全站首月活动月底结束!地区:浙江高防BGPCPU:至强铂金8270主频7 默频3.61 睿频4.0核心:8核(最高支持64核)内存:8G(最高支持128G)DDR4 3200硬盘:40G系统盘+80G数据盘带宽:上行:20Mbps/下行:1000Mbps防御:100G(可加至300G)防火墙:提供自助 天机盾+金盾 管...

易探云:香港大带宽/大内存物理机服务器550元;20Mbps带宽!三网BGP线路

易探云怎么样?易探云隶属于纯乐电商旗下网络服务品牌,香港NTT Communications合作伙伴,YiTanCloud Limited旗下合作云计算品牌,数十年云计算行业经验。发展至今,我们已凝聚起港内领先的开发和运维团队,积累起4年市场服务经验,提供电话热线/在线咨询/服务单系统等多种沟通渠道,7*24不间断服务,3分钟快速响应。目前,易探云提供香港大带宽20Mbps、16G DDR3内存、...

vdsina:俄罗斯VPS(datapro),6卢布/天,1G内存/1核(AMD EPYC 7742)/5gNVMe/10T流量

今天获得消息,vdsina上了AMD EPYC系列的VDS,性价比比较高,站长弄了一个,盲猜CPU是AMD EPYC 7B12(经过咨询,详细CPU型号是“EPYC 7742”)。vdsina,俄罗斯公司,2014年开始运作至今,在售卖多类型VPS和独立服务器,可供选择的有俄罗斯莫斯科datapro和荷兰Serverius数据中心。付款比较麻烦:信用卡、webmoney、比特币,不支持PayPal...

eaccelerator为你推荐
"中科院重庆绿色智能技术研究院采购供应商信息登记表"combininggoogle请务必阅读正文之后的免责条款部分司机苹果5win10关闭445端口win10怎么关闭445的最新相关信息phpecho在php中 echo和print 有什么区别重庆电信宽带测速重庆电信光纤宽带网络,内外网络和电脑等设备都没发生变化的情况下,办理了从20M提速到100M业务。csshack什么是Css Hack?ie6,7,8的hack分别是什么firefoxflash插件火狐安装不了FLASH为什么?下载完后明明安装完成,火狐却仍然提示“缺少插件”firefoxflash插件火狐浏览器怎么安装flash
域名注册网站 美国网站空间 网站空间申请 fc2新域名 免费二级域名注册 怎样注册域名 金万维动态域名 西安电信测速 加勒比群岛 edis 美国php空间 dropbox网盘 699美元 河南移动m值兑换 1美金 域名dns 免费asp空间 阿里云免费邮箱 英雄联盟台服官网 net空间 更多