costwindtour

windtour  时间:2021-05-25  阅读:()
PartIAFrameworkforVisualizationandOptimization17Thefivechaptersofthispartprovideawhirlwindtourofsomebasictheories,frameworks,andideasfromavarietyoffieldsincludingcogni-tivepsychology,human-computerinteraction,computergraphics,com-puterscience,artanddesign.
Clearlythosefieldsarefartoobroadtobecoveredinthreechapters,letaloneasinglebook.
Thefocusisonsomeofthemoreimportantideasandresults.
Inthesecondpartofthebook,webuildonthebasicspresentedhere,emphasizingtheirapplicationtovisualizationandoptimization.
Inordertoorganizeourdiscussionofvisualizationandoptimization,wepresentasimpleframework(Figure1.
4).
Theframeworkis:Thesuccessofvisualizationforaproblem-solvingprojectdependsonthetaskstobeaccomplished,thepeopleinvolved,andtherepresentationsformatsusedforthetaskandthepeo-ple.
TaskPeopleFonnatFigure1.
4:Aframeworkforvisualizationandoptimization.
Inotherwords,differentpeoplemaybenefitfromdifferentrepresen-tationformatsfordifferenttasks.
Althoughthisframeworkmayseemobvious,ithasnotalwaysbeenapparenttomany.
Forexample,researchcomparingtheeffectivenessoftraditionaltwo-dimensionalplotstotabularrepresentations(knownasthe18"graphs-vs-tables"question)iswidelyacknowledgedtobe"amess"[1].
Theresearchresultstodatehavebeenalmostcompletelyequivocal.
Somestudiesfoundnodifferenceinperformance,othershavefoundthattablesproducedbetterperformance,andothersfoundthatgraphsproducedbet-terperformance.
Theexplanation,intheabstractatleast,isquitesimple.
Mostofthestudiesuseddifferenttasks,representations,andsubjects.
Withineachstudy,onlyvariationsinrepresentationformatweremade.
Eachindivid-ualexperimentthereforewasvalidonlyfortheparticulartaskandsub-jectpopulationstudied.
Therealquestionisnotgraphsversustables,butrather,whatcharacteristicsoftasksandsubjectsfavorgraphsovertables(andviCeversa)Anotherexampleontheimportanceofrepresentationtoproblemsolv-ingcomesfromLarkinandSimon[2].
Considerthefollowinggame:Eachofthedigits1through9iswrittenonaseparatepieceofpaper.
Twoplayersdrawdigitsalternately.
Assoonaseitherplayergetsanythreedigitsthatsumto15,thatplayerwins.
Ifallninedigitsaredrawnwithoutawin,thenthegameisadraw.
Onemightbesurprisedtolearnthatthisgameisequivalenttotic-tac-toe(sometimescalled"noughtsandcrosses").
Ifoneplacesthedigits1through9inthefollowingtable,however,thecorrespondenceisclear.
618753294Anywinintic-tac-toecorrespondstoaselectionofdigits,threeofwhichsumto15.
Inthiscase,avisualrepresentationseemsparamount.
However,anotherexample,fromAdams(viaGlassandHolyoak[3])showstheimportanceoftextualrepresentationsovervisualrepresenta-tions:Considerasheetofpaper1I100thofaninchthick.
Foldthepaperinhalf,andtheninhalfagain.
Repeatthisprocess50timesintotal.
Ofcourse,itisnotphysicallypossibletoper-formthistask,butimagineifyoucan.
Howthickisthere-sultingfoldedpaperInthiscase,thevisualrepresentationgivesfewclues,butusingstandardmathematicalnotation-text-theanswercaneasilybefound,1/100x250inches.
19Theimportanceofmatchingthecharacteristicsofthetask,theviewerandtheformathasbeencalledcognitivefitbyVessey[4],[5].
Vessey[4]definescognitivefitasacost-benefitcharacteristicthatsuggeststhat,formosteffectiveandefficientproblemsolvingtooccur,theprob-lemrepresentationandanytoolsoraidsemployedshouldallsupportthestrategies(methodsorprocesses)requiredtoper-formthattask.
Inareviewofthegraphsversustablesliterature[5],basedonthecog-nitivefithypothesis,Vesseywasabletoofferacogentexplanationastowhysomestudiesfoundgraphssuperiortotablesandothersfoundtablessuperiortographs.
Eachstudyconsidereddifferenttasksanddifferentrepresentationformats.
Whateverformatwasbestmatchedtothetaskyieldedsuperiorperformance.
Thecognitivefithypothesisimpliesthatrepresentationformatmat-ters;itaffectshumanperformanceinsolvingproblems.
Bycarefullymatch-ingtherepresentationformattothetaskathand,performancecanbeen-hanced.
Oneofthegoalsofthisbookistoexploreappropriaterepresen-tationformatsforthemanytasksinvolvedinoptimizationmodeling.
1.
6TasksNumerousauthorshaveproposedframeworksforclassifyingthetasksin-volvedinanoptimizationproject.
Theseframeworksassumethatopti-mizationprojectsinvolveaseriesofstagesorsteps,thatis,amodelinglife-cycle.
1.
6.
1TheModelingLifeCycleThelife-cycleideaisembodiedinSimonandNewell's[6],[7]modelofdecisionmaking,Intelligence-Design-Choice.
Accordingtohisframe-work,intheIntelligencephaseofproblemsolving,informationisgath-eredinanattempttounderstandthenatureoftheproblem-thebound-ariesoftheproblem,thoseaffectedbytheproblem,thecostsandbenefitsoftheproblem.
IntheDesignphase,alternativesolutionstotheproblemareconstructed.
IntheChoicephase,oneormoreofthealternativesareselected.
Manyproblemsconcentratemoreononeofthesephasesthanonanother.
Foroptimizationmodeling,manydifferentauthorshavedescribedthestagesinthemodelinglife-cycle,withvaryinglevelsofdetail.
Table1.
1201.
6.
TASKSAuthorsSimonandChurchman,Ack-ThisBookNewell[6],[7]offandArnoff[8]IntelligenceFormulatingtheModelproblemDevelopmentDesignConstructingaAlgorithmmathematicalDevelopmentmodeltorepre-sentthesystemunderstudyDerivingaso-lutionfromthemodelTestingthemodelSolutionAnalysisandthesolutionderivedfromitChoiceEstablishingResultscontrolsoverthePresentationsolutionImplementationPuttingtheso-Implementationlutiontowork:implementationTable1.
1:Comparisonofdifferentversionsofthemodelinglife-cycle.
21liststhreeofthedifferentframeworks,attemptingtomatchstepsfromoneframeworkwiththosefromanother.
Forpurposesofthistext,weshallsimplifythemodelinglife-cycleintofivestages:1.
ModelDevelopment.
Thisincludesidentifyingtheunderlyingprob-ilem,collectingandanalyzingdata,formulatingamathematicalmodel.
2.
AlgorithmDevelopment.
Dependingontheproblemidentifiedinthepreviousstage,algorithmdevelopmentmaybetrivial,ifanex-istingpieceofsoftwarecanbeusedtoanalyzethemodel.
How-ever,formanyoptimizationproblems,thealgorithmmustbecare-fullyconstructed.
3.
SolutionAnalysis.
The"solutions"producedbyalgorithmsmustbetested,probedanddebugged.
Thedatacould(will)haveer-rors,themodelcouldhaveproblems,orthealgorithmcouldfailtoconverge.
Furthermore,evenwithadebuggedmodel,dataandal-gorithm,onemustthenattempttounderstandtheirbehavior.
Whenthepriceofasetofinputsrises,howdoesthataffectthesolutionIfonerelaxessomeconstraints,howdoesthesolutionchangeInotherwords,inthisphase,onealsoattemptstorelatetheinforma-tionprovidedbythealgorithmbacktotherealproblembeingat-tacked.
4.
ResultsPresentation.
Theresultsgeneratedbythepreviousphasemustbepresentedtothepeopleincharge,thepeoplepayingforthestudy,thepeopleactuallyresponsibleforsolvingtheproblem.
Theywillprobablybeskeptical;theymustbeconvincedthattherecommendationsbeingmademakesense.
Usuallytheywillnotreallyunderstandthesophisticatedmathematicalandcomputertech-niquesusedtosolvetheproblem.
But,theyneedtobeconvincedthattherecommendationsaresound.
5.
ImplementationGiventheresultsoftheanalysis,thechoicemustbeimplemented.
Itmustbecommunicatedtothoseresponsibleforeffectingthechange,andtheprocessofchangemustbecontinuallymonitored.
Althoughthisframeworkcontainsfewerstepsthanmanyofthepro-posedmodelinglife-cycles,itarguablycapturestheessenceofhowmod-elsevolveovertime,startingwithidentifyingtheproblemandendingwithfinalresults.
Onecaneasilybelulledbythecleanpicturepresentedbyanysuchlife-cyclemodel.
Inactualmodelingprojects,progressdoesnotfollow221.
6.
TASKScleanlyandsurelyfromonestagetoanother.
Oftenproblemsthatareun-detectedinpreviousstagesareonlyuncoveredinlaterstages,forcingaretreatbacktoanearlierstagetofixtheundetectedproblem.
Inarecentstudy[9],[10]expertmodelerswerefoundtomovequiteoftenamongthedifferenttasksinthemodelinglife-cycle.
1.
6.
2VisualizationandtheModelingLifeCycleFromtheviewpointofvisualization,themodelinglife-cycletransformsvague,poorlydefinedrepresentationsofaproblemintoanunderstand-able,convincingsolutiontotheproblem.
Duringthemodelinglife-cycle,representationssuchasmathematicalformulations,inputstoalgorithms,programlistings,algorithmoutputs,amongotherscanbeofuse.
Thefieldofoptimizationhasconcentratedmostofitsenergyonmerelyonephaseofthemodelinglife-cycle:algorithmdevelopment.
Themodelinglife-cycle,ontheotherhand,involvesmanyotheractivities.
Represen-tationisacommonthreadunderlyingallthephasesofthemodelinglife-cycle.
Therefore,thestudyofthoserepresentationsshouldhelpimprovethechancesforsuccessinamodelingproject.
Differentrepresentationsarerequiredatdifferentphasesofthemod-elinglife-cycle(Table1.
2).
Inthenextchapter,foreachphaseofthemod-elinglife-cycle,wediscussappropriaterepresentations.
Inthefollowingchapter,wediscusshowthedifferentrepresentationscanbeusedtosup-portvariousaspectsofoptimization.
1.
6.
3SummaryThissectionhaspresentedseveralversionsofthemodelinglife-cycle.
Althoughtheydiffer,theyallbasicallyfollowthesameidea:modelingconsistsofavarietyofdifferenttasks.
Althoughactualmodelingprojectsareusuallyfarmessierthanthecleanpicturepresentedbytheselife-cyclemodels,thetaskslistedinthelife-cyclemodelsdoinfactoccur.
Thechaptersintherestofthispartofthebook(Chapters2-6)discusstheothertwocomponentsofourbasicframework,peopleandformat.
Chapter2discussesmodelsofhumanperceptionandcognition,aswellassomeofthedifferencesamongpeoplethathavebeenidentifiedbycog-nitivepsychologists.
Chapters3-6discussindetailtheories,frameworksandrecommendationsforthevarietyofdifferentrepresentationformatsthatcanbeusedtorepresentcomplexinformation.
PartIIofthebookconsidershowvisualizationcansupporteachphaseofthemodelinglife-cycle.
PartIIIofthebookdiscusseshowdifferentrepresentationformatscanbeusedtosupportoptimization.
23ModelAlgorithmSolutionResultsDevelop-Develop-AnalysisPresenta-mentmenttionTextAlgebraicProgram-StandardNarrativeLanguagesmingOutputLanguagesTablesSpread-MatrixMatrixSummarysheets;ImagesImagesTablesBlockStructuredStaticGraph-VisualPresentationPresentationGraphicsBasedLanguagesGraphicsGraphicsAnimatedorModelingbyAlgorithmAnimatedAlgorithmInteractiveExampleAnimationSensitivityAnimation;GraphicsAnalysisAnimatedSensitivityAnalysisSoundTouchTable1.
2:Thedifferenttypesofrepresentationsthatcanbeusefulindif-ferentphasesofanoptimizationproject24BIBLIOGRAPHYBibliography[1]ColIRA,ColIJH,ThakurG.
Graphsandtables:Afour-factorexperiment.
CommunicationsoftheACM,1994;37(4).
[2]LarkinJH,SimonHA.
Whyadiagramis(sometimes)worthtenthousandwords.
CognitiveScience,1987;1l:65-99.
[3]GlassAL,HolyoakKJ.
Cognition.
NewYork:RandomHouse,2ndedition,1986.
[4]VesseyI.
Cognitivefit:Atheory-basedanalysisofthegraphsversustablesliterature.
DecisionSciences,1991;22:219-241.
[5]VesseyI,GallettaD.
Cognitivefit:Anempiricalstudyofinformationac-quisition.
InformationSystemsResearch,1991;2(1):63-86.
[6]NewellA,SimonHA.
HumanProblemSolving.
EnglewoodCliffs(NJ):Prentice-Hall,Inc.
,1972.
[7]SimonHA.
TheNewScienceofManagementDecision.
NewYork:HarperandRow,1960.
[8]ChurchmanCW,AckoffRL,ArnoffEL.
IntroductiontoOperationsRe-search.
NewYork:JohnWileyandSons,1957.
[9]WillemainTR.
Insightsonmodelingfromadozenexperts.
OperationsResearch,1994;42(2):213-222.
[10]WillemainTR.
Modelformulation:Whatexpertsthinkaboutandwhen.
OperationsResearch,1994;pageforthcoming.

国内云服务器 1核 2G 2M 15元/月 萤光云

标题【萤光云双十二 全场6折 15元/月 续费同价】今天站长给大家推荐一家国内云厂商的双十二活动。萤光云总部位于福建福州,其成立于2002 年。主打高防云服务器产品,主要提供福州、北京、上海 BGP 和香港 CN2 节点。萤光云的高防云服务器自带 50G 防御,适合高防建站、游戏高防等业务。这家厂商本次双十二算是性价比很高了。全线产品6折,上海 BGP 云服务器折扣更大 5.5 折(测试了一下是金...

BuyVM迈阿密KVM上线,AMD Ryzen 3900X+NVMe硬盘$2/月起

BuyVM在昨天宣布上线了第四个数据中心产品:迈阿密,基于KVM架构的VPS主机,采用AMD Ryzen 3900X CPU,DDR4内存,NVMe硬盘,1Gbps带宽,不限制流量方式,最低$2/月起,支持Linux或者Windows操作系统。这是一家成立于2010年的国外主机商,提供基于KVM架构的VPS产品,数据中心除了新上的迈阿密外还包括美国拉斯维加斯、新泽西和卢森堡等,主机均为1Gbps带...

无忧云:洛阳/大连BGP云服务器38.4元/月,雅安物理机服务器315元/月起,香港荃湾CN2限时5折优惠

无忧云怎么样?无忧云是一家成立于2017年的老牌商家旗下的服务器销售品牌,现由深圳市云上无忧网络科技有限公司运营,是正规持证IDC/ISP/IRCS商家,主要销售国内、中国香港、国外服务器产品,线路有腾讯云国外线路、自营香港CN2线路等,都是中国大陆直连线路,非常适合免备案建站业务需求和各种负载较高的项目,同时国内服务器也有多个BGP以及高防节点,目前商家开启了夏日清凉补贴活动,商家的机器还是非常...

windtour为你推荐
OPENCORE苹果引导配置说明第四版-基于支持ipad重庆网通重庆联通网上营业厅手机版重庆网通重庆网通上网资费目前是多少? 小区宽带接入类型的eacceleratoraccess violation问题的解决办法!photoshop技术什么是ps技术127.0.0.1为什么输入127.0.0.1无法打开页面谷歌sbSb是什么意思?micromediamacromedia FreeHand MX是干什么用的?googleadsenceGoogle AdSense 帐户状态是什么意思!
域名注册godaddy 怎样注册域名 山东vps 5折 l5639 tier 创宇云 css样式大全 怎样建立邮箱 南通服务器 绍兴电信 微软服务器操作系统 新睿云 双十二促销 香港ip 免费获得q币 web是什么意思 hosting alexa搜 德国代理ip 更多