formgraph

graphsearch  时间:2021-02-11  阅读:()
Algorithms:CorrectnessandComplexity.
Slideset13.
GraphSearchcTheodoreNorvellGraphSearchAproblem:WehaveagraphG=(V,E)andanodes∈V.
Writeu→vifnodeuisreachableinonestep.
"visasuccessorofu".
Ifthegraphisdirectedu→vmeansu=←eandv=→eforsomee∈EIfthegraphisundirectedu→vmeans{u,v}=←→eforsomee∈EWriteu→vtomeanthereisapathfromutov,i.
e.
visreachablefromu.
I.
e.
thereisasequenceofoneormorenodes[v0,v1,.
.
.
,vn]suchthatu=v0→v1→.
.
.
→vn=vTypesetNovember11,20161Algorithms:CorrectnessandComplexity.
Slideset13.
GraphSearchcTheodoreNorvellReachability:GivenagraphGandanodes,ndallnodesreachablefroms.
UsethefollowingcolourschemeHBlacknodes.
Foundandprocessed.
(Handled)WGreynodes.
Foundbutnotprocessedyet.
(Workset)Whitenodes.
Notyetfound.
The'ood'strategy.
Coloursgreyandallothernodeswhite.
Untiltherearenogreynodes:Pickagreynodeu.
Colourublack.
Colourallofu'swhitesuccessorsgrey.
Whentherearenomoregreynodes,allblacknodesarereachableandallwhitenodesarenot.
Invariants:LI1:Allblackorgreynodesarereachable.
LI2:Allsuccessorsofablacknodeareblackorgrey.
LI3:sisblackorgrey.
IfLI2,andLI3aretrueand,furthermore,nonodeisgrey,thenallnodesreachablefromsmustbeblack.
IfLI1,LI2,andLI3aretrueandnonodeisgrey,theblacknodesareexactlythenodesreachablefroms.
TypesetNovember11,20162Algorithms:CorrectnessandComplexity.
Slideset13.
GraphSearchcTheodoreNorvellTheoodalgorithmforreachabilityInputs:agraphG=(V,E)andanodesOutput:asetHVPreconditions∈VPostconditionH={v∈V|s→v}H:=//Handled(black)nodesvarW:={s}//Workset(greynodes)invariantLI1:Allnonwhitenodesarereachable:v∈H∪W·s→vLI2:Ifuisblack,allitssuccessorshavebeenfound:u∈H,v∈V·(u→v)(v∈H∪W)LI3:sisgreyorblack:s∈H∪WLI4:H∩W=whileW=dovalu∈W//letubeanyvalueinWW:=W{u};H:=H∪{u}forv|u→vdoifv/∈H∪WthenW:=W∪{v}endifendforendwhileTypesetNovember11,20163Algorithms:CorrectnessandComplexity.
Slideset13.
GraphSearchcTheodoreNorvellDoesitworkRecalltheinvariantisLI1:Allnodesfoundarereachablev∈H∪W·s→vLI2:Ifuhasbeenhandled,allitssuccessorshavebeenfoundu∈H,v∈V·(u→v)(v∈H∪W)LI3:sisgreyorblacks∈H∪W.
LI4:H∩W=Weneedtoshow:Termination:|V||H|isavariant.
Theinvariantisestablished:Exercise.
Theinvariantispreserved:ExerciseThepostconditionH={v∈V|s→v}isestablishedbytheloopterminating:FromLI1andW=,v∈H·s→vandsoH{v∈V|s→v}Itremainstoshow{v∈V|s→v}H.
·Letvbeanyreachablenodes→v·So,thereisapaths=v0→v1→.
.
.
→vn=v·ByLI3andW=,sisinH.
·ByLI2andW=,u∈H,v∈V·(u→v)v∈H·So,byinduction,eachviisinHandv∈HQEDTypesetNovember11,20164Algorithms:CorrectnessandComplexity.
Slideset13.
GraphSearchcTheodoreNorvellLeavingatrailofbreadcrumbsWewillmarkeachnodereachedwiththenodethatwasusedtoreachit.
LI5:Foranyblackorgreynodeuthereisapathfroms,s=π(.
.
.
π(≥0u)π(π(u))→π(u)→uallnodesofwhich,apartfrompossiblythelast,areblack.
Useafunctionvaluedstatevariableπ:V→V∪{null}(πforπarent).
Whenanodeturnsgrey,updateπTheoodalgorithmforreachabilitywithpathsforv←Vdoπ(v):=nullendforH:=varW:={s}{Inv:LI1andLI2andLI3andL4andLI5}whileW=dovalu∈W//letubeanyvalueinWW:=W{u}H:=H∪{u}forv|u→vdoifv/∈H∪WthenW:=W∪{v};π(v):=uendifendforendwhileTheπfunctiondenesatreewithsatitsroot.
IthastheresultofclassifyingeachreachableedgeasaTreeedge.
TreeedgesformatreedenedbyπBackedge.
Fromdescendanttoancestor.
Forwardedge.
Fromancestortodescendant.
(Otherthantreeedges.
)Crossedge.
AllothersTypesetNovember11,20165Algorithms:CorrectnessandComplexity.
Slideset13.
GraphSearchcTheodoreNorvellTrackingthecolourTomakeexpressionslikev/∈H∪Wfaster,wecantrackthecolourofeachnodewithanarraycolourwithalinkinginvariantthat,forallv∈V,(colour(v)=greyv∈W)∧(colour(v)=blackv∈H)∧(colour(v)=whitev/∈H∪W)Hisnolongerneeded.
Wisstillusefulforndingthenextnodetoprocess.
LI1:v·colour(v)∈{grey,black}s→vLI2:u,v·colour(u)=black∧(u→v)colour(v)∈{grey,black}LI3:colour(s)∈{grey,black}LI4:v·colour(v)=greyv∈WTheoodalgorithmforreachabilitywithcolourarrayforv←Vdoπ(v):=nullcolour(v):=whiteendforvarW:={s}colour(s):=grey{Inv:LI1andLI2andLI3andL4andLI5}whileW=dovalu∈W//letubeanyvalueinWW:=W{u}colour(u):=blackforv|u→vdoifcolour(v)=whitethenW:=W∪{v};colour(v):=greyπ(v):=uendifendforendwhileTypesetNovember11,20166Algorithms:CorrectnessandComplexity.
Slideset13.
GraphSearchcTheodoreNorvellDatareningWWecankeeptrackofthesetofgreynodeswithanykindofcollectiondatastructure:Set,FIFOqueue,stack.
AFIFOqueueQReplaceWwithaFIFOqueueQLI4becomesv·colour(v)=greyQ.
contains(v)Nodesarevisitedina"breadth"rstorder.
Nodesclosertosarehandledearlier.
Eachpathfoundhasasfewedgesaspossible.
Breadthrstsearchforv←Vdoπ(v):=nullcolour(v):=whiteendforvarQ:Queue:=newQueueQ.
add(s)colour(s):=grey{Inv:LI1andLI2andLI3andL4andLI5}whileQ.
isEmptydovalu:=Q.
remove()colour(u):=blackforv|u→vdoifcolour(v)=whitethenQ.
add(v);colour(v):=greyπ(v):=uendifendforendwhileTypesetNovember11,20167Algorithms:CorrectnessandComplexity.
Slideset13.
GraphSearchcTheodoreNorvellEfciencyAtthispoint,wecanseethat,ifwecanquicklyndthesuccessorsofanode,thenprocessingeachedgeisΘ(1).
Eachedgeisprocessedtwice.
HenceΘ(|V|+|E|).
Anadjacencylistrepresentationforthegraphwilldothetrick.
TypesetNovember11,20168Algorithms:CorrectnessandComplexity.
Slideset13.
GraphSearchcTheodoreNorvellALIFOstackSLI4becomesv·colour(v)=greyS.
contains(v)Ifagreynodeisfoundasecond(etc)time,itismovedtothetopofthestack.
Depth-rstsearchforv←Vdoπ(v):=nullcolour(v):=whiteendforvarS:Stack:=newStackS.
push(s)colour(s):=grey{Inv:LI1andLI2andLI3andL4andLI5}whileS.
isEmptydovalu:=S.
pop()colour(u):=blackforv|u→vdoifcolour(v)=blackthen//Notechange!
ifcolour(v)=greythen//Movevtothetopofthestack.
S.
remove(v)endifS.
push(v);colour(v):=greyπ(v):=u//Ifvisgrey,overwritesearlierassignment!
endifendforendwhileWeneedtoimplementthestacksothatanarbirarynodecanberemovedinconstanttime.
Adoubly-linkedlistimplementedwitharrayswilldoit.
TypesetNovember11,20169Algorithms:CorrectnessandComplexity.
Slideset13.
GraphSearchcTheodoreNorvellThisisadepth-rstsearch.
Itfollowspathsleadingawayfromsasfaraspossiblebeforebacktrackingtondotherpaths.
TypesetNovember11,201610Algorithms:CorrectnessandComplexity.
Slideset13.
GraphSearchcTheodoreNorvellDijkstra'salgorithmLet'srevisitthebreadthrstsearchBreadthrstsearchforv←Vdoπ(v):=nullcolour(v):=whiteendforvarQ:Queue:=newQueueQ.
add(s);colour(s):=grey{Inv:LI1andLI2andLI3andL4andLI5}whileQ.
isEmptydovalu:=Q.
remove()colour(u):=blackforv|u→vdoifcolour(v)=whitethenQ.
add(v);colour(v):=greyπ(v):=uendifendforendwhileThisndstheshortestpathfromstoeachreachablenode,countingeachedgeascosting1.
Supposethateachedgeeisassociatedwithanonnegativedistancew(←e,→e).
Wewanttondtheshortestpathfromstoeachreachablenode.
Applicationsareubiquitous,e.
g.
inrobotics,navigation,andplanning.
Lett(u)bethelengthoftheshortestpathfromstou.
t(u)=minp|sp→udistance(p)wheresp→umeansthatpisapathfromstouanddistance([u0,e0,u1,e1,.
.
.
,en1,un])=Σi∈{0,.
.
n}w(ui,ui+1)TypesetNovember11,201611Algorithms:CorrectnessandComplexity.
Slideset13.
GraphSearchcTheodoreNorvellUsearrayitemd(v)totrackthedistanceoftheshortestpathfromstovhandledsofar.
(I.
e.
,thateitherconsistsofallblacknodes,orisallblackexceptforthenalitem.
)Sincewestopassoonasallreachablenodesareblack,weneedDI1:Foreachblacknode,v,d(v)=t(v).
Toensurethatthegreynodewiththesmallestdvaluealsohasthetruedistance,weneedDI2:Foreachgreynode,v,d(v)isthedistanceofsomepathfromstov.
WedatareneWwithapriorityqueuePQ.
Apriorityqueueassociateseachitemwithapriorityvalue.
PQ.
add(v,x)addsnodevwithpriorityxorupdatesthepriorityofvtox.
PQ.
removeLeast()removesandreturnsanodewiththelowestpriority.
InvariantsaboutPQLI4:v·colour(v)=greyPQ.
contains(v)DI3:ThepriorityofeachnodevonPQisd(v).
TypesetNovember11,201612Algorithms:CorrectnessandComplexity.
Slideset13.
GraphSearchcTheodoreNorvellDI1:Foreachblacknode,v,d(v)=t(v).
DI2:Foreachgreynode,v,d(v)isthedistanceofsomepathfromstov.
DI3:ThepriorityofeachnodevonPQisd(v).
AswithDFS,greynodesmaybefoundmorethanonce,sowemightneedtoimprovead(v)Dijkstra'salgorithmforv←Vdoπ(v):=nullcolour(v):=whited(v):=∞endforvarPQ:PriorityQueue:=newPriorityQueuePQ.
add(s,0)colour(s):=greyd(s):=0{Inv:LI1and.
.
.
andLI5andDI1andDI2andDI3}whilePQ.
isEmptydovalu:=PQ.
removeLeast(){uhasthesmallestdvalueofallgreynodes}colour(u):=blackforv|u→vdoifd(v)>d(u)+w(u,v)then{visnotblack,byDI1}d(v):=d(u)+w(u,v)PQ.
add(v,d(v));colour(v):=greyπ(v):=uendifendforendwhileNote:whenPQ.
add(v,d(v))isexecuted,vmayalreadybeonthequeue(grey).
Inthiscase,itspriorityisupdated.
TypesetNovember11,201613Algorithms:CorrectnessandComplexity.
Slideset13.
GraphSearchcTheodoreNorvellTypesetNovember11,201614Algorithms:CorrectnessandComplexity.
Slideset13.
GraphSearchcTheodoreNorvellWeneedtoseethattheinvariantsarepreserved.
DI1:Foreachblacknode,v,d(v)=t(v).
DI2:Foreachgreynode,v,d(v)isthedistanceofsomepathfromstov.
Lemma:IfDI1andDI2hold,then,foranywandanyoptimalpathfromstow,therstgreynodevonthepath(ifany)hasd(v)=t(v).
Proof.
Letvbegreyandtherstgreynodeonsomeoptimalpath.
Ifviss,thend(v)=0=t(s).
Ifvisnots,thensisblack.
Sincethesuccessorofablacknodemustbeblackorgrey,therstgreynodeonanypathstartingatswillbeprecededbyablacknode.
Letubethepredecesorofvonthepath,asuisblack,byDI1d(u)=t(u).
Furthermore,whenuwasvisited,theedgefromutovwouldhavebeenconsideredandsod(v)≤t(u)+w(u,v).
ByDI2,d(v)≥t(v),sod(v)=t(u)+w(u,v),and,since(u,v)isonanoptimalpath,t(v)=t(u)+w(u,v).
Sod(v)=t(v).
DI1ispreserved.
SupposethatDI1andDI2hold,but,atlinecolour(u):=black,udoesnothavea"truevalue"(t(u)GraphSearchcTheodoreNorvellSinceu=uoruisbeforeuonanoptimalpath,t(u)≤t(u).
Altogetherd(u)=t(u)≤t(u)and+withothersuitableoperators.
E.
g.
Ifweightsrepresent(independent)probabilitiesofsuccess,replace>withGraphSearchcTheodoreNorvellEfciencyAssumethepriorityqueueoperationsaddandremovecanbedoneinΘ(logn)timewherenisthesizeofthequeue:WemayneedΘ(|V|)itemsonthequeue,sothealgorithmtakesΘ(|E|*log|V|)time.
Dijkstra'salgorithmhasthepropertythatitcanbemodiedtoprintoutallthenodesinorderoftheirdistancefroms.
Canyoushowthatanyshortestpathalgorithmwiththispropertytakes(|E|*log|V|)timeTypesetNovember11,201617Algorithms:CorrectnessandComplexity.
Slideset13.
GraphSearchcTheodoreNorvellPriorityQueueRepresentationAnefcientpriorityqueuecanbebuiltfromabalancedheap.
AheapisalabelledbinarytreeinwhicheachnodeislabeledwithadataitemandapriorityThepriorityofeachparentislessthanorequaltothepriorityofitschildren.
Westoretheitemsandprioritiesintherstnitemsofanarraya.
Invariant:i∈{0,.
.
n}·(leftExists(i)a(i).
priority≤a(left(i)).
priority)∧(rightExists(i)a(i).
priority≤a(right(i)).
priority)E.
g.
,Note:Onlytheprioritiesareshowninthepictures.
Wealsoneedafunctionmappingeachitemtoitslocationina.
Ifeachitemisrepresentedbyauniquesmallnumberin{0,.
.
m},wecanuseanarraylocsothati∈{0,.
.
n}·loc(a(i).
item.
number)=ij∈{0,.
.
m}·loc(j)=1∨a(loc(j)).
item.
number=jTypesetNovember11,201618Algorithms:CorrectnessandComplexity.
Slideset13.
GraphSearchcTheodoreNorvellArrayrepresentationWecanbuildabalancedheapofsizenbyusingtherstnitemsofanarraya.
Usebreadth-rstnumbering.
Therootisatlocation0.
Invariant:i∈{0,.
.
n}·left(i)=2i+1∧right(i)=2i+2∧leftExists(i)=(2i+1GraphSearchcTheodoreNorvellInsertingintoaheapPutthenewitemata(n);incrementn.
Thenswaptheelementupwardsuntilitspriorityislargerorequaltoitsparent's(orattheroot)(+correspondingchangestoloc)E.
g.
TheworstcaseisΘ(logn)ReducingpriorityofanitemReducethepriorityandthenswapitupwards,justasininsert.
TypesetNovember11,201620Algorithms:CorrectnessandComplexity.
Slideset13.
GraphSearchcTheodoreNorvellRemovingthelowestpriorityitemDecrementn;thena(0):=a(n)(+correspondingchangestoloc).
Swaptheitemnowattherootdownuntilitspriorityislessthanorequaltothatofallitschildren.
Swaponlywithalowestchild.
Thenumberofswapsislimitedtotheheightofthetree.
Θ(logn)TypesetNovember11,201621Algorithms:CorrectnessandComplexity.
Slideset13.
GraphSearchcTheodoreNorvellAnotherapplicationofheapsHeapSort:Input:anarrayasuchthata.
length>0Output:thesamearrayPostconditionaisasortedpermutationofa0varn:=1invaisapermutationofa0anda[0,.
.
n]isaheapwhilen0don:=n1swap(a,0,n)sinkDown(0)endwhilewhereoatUprestorestheheapinvariantbyswappinganitemupwardfromaleafpositionsinkDownrestorestheheapinvariantbyswappinganitemdownwardfromtherootposition.
SinceoatUpandsinkDownarebothΘ(logn)time(wherenisthesizeoftheheap),HeapSortisΘ(nlogn)time(wherenisthesizeofthearray).
(Nolocarrayisneeded.
Weonlyneededitbeforetoreducethepriorityofanitem.
)TypesetNovember11,201622

萤光云(16元/月)高防云服务器自带50G防御

螢光云官網萤光云成立于2002年,是一家自有IDC的云厂商,主打高防云服务器产品。在国内有福州、北京、上海、台湾、香港CN2节点,还有华盛顿、河内、曼谷等海外节点。萤光云的高防云服务器自带50G防御,适合高防建站、游戏高防等业务。本次萤光云中秋云活动简单无套路,直接在原有价格上砍了一大刀,最低价格16元/月,而且有没有账户限制,新老客户都可以买,就是直接满满的诚意给大家送优惠了!官网首页:www....

酷番云78元台湾精品CN2 2核 1G 60G SSD硬盘

酷番云怎么样?酷番云就不讲太多了,介绍过很多次,老牌商家完事,最近有不少小伙伴,一直问我台湾VPS,比较难找好的商家,台湾VPS本来就比较少,也介绍了不少商家,线路都不是很好,有些需求支持Windows是比较少的,这里我们就给大家测评下 酷番云的台湾VPS,支持多个版本Linux和Windows操作系统,提供了CN2线路,并且还是原生IP,更惊喜的是提供的是无限流量。有需求的可以试试。可以看到回程...

cyun29元/月,香港CN2 GIA云服务器低至起;香港多ip站群云服务器4核4G

cyun怎么样?cyun蓝米数据是一家(香港)藍米數據有限公司旗下品牌,蓝米云、蓝米主机等同属于该公司品牌。CYUN全系列云产品采用KVM架构,SSD磁盘阵列,优化线路,低延迟,高稳定。目前,cyun推出的香港云服务器性价比超高,香港cn2 gia云服务器,1核1G1M/系统盘+20G数据盘,低至29元/月起;香港多ip站群云服务器,16个ip/4核4G仅220元/月起,希望买香港站群服务器的站长...

graphsearch为你推荐
solutionssb支持ipad重庆网通重庆联通宽带netbios端口netbios ssn是什么意思?ipad如何上网iPad怎么上网?请高手指点win10关闭445端口如何进入注册表修改关闭445端口win10445端口WIN7怎么打开3306端口css下拉菜单html+css下拉菜单怎么制作tcpip上的netbiostcp 协议里的 netbios . 在哪,找不到重庆电信宽带管家重庆电信宽带多少钱一个月
上海服务器租用 域名停靠一青草视频 美国主机评测 burstnet 香港托管 香港机房托管 mobaxterm 美国php空间 500m空间 毫秒英文 百度云加速 免费php空间 电信主机托管 hdsky 腾讯服务器 .htaccess ncp 装修瓦工培训 电脑主机 上海服务器托管 更多