行列式17世纪日本与18_19世纪欧洲的行列式_消元式与判别式_英文_

欧洲的的英文  时间:2021-05-06  阅读:()

2003年6月 西北大学学报(自然科学版) Jun 2003第33卷第3期 Journal of Northwest U niversity(Natural Science Edit ion) Vo l 33 N o 3

D eterm inan ts,resultan ts and d iscr iminan ts in Japanin the seven teen th cen tury and in Europe in thee igh teen th and n ineteen th cen tur ies

T akefum i GO TO,H iko sabu ro KOM A T SU

(Departm en t of M athem atics, Science U n iversity of Tokyo,W akam iya2cho,Sh injuku2ku,Tokyo, 16220827 Japan)

Abstract: It is by now w ell know n that Japanese mathem atician s in t roduced dete rminan ts in theseventeenth centu ry bu t it is no t necessarily understood well why and how they made u se of de2term inan t s.T heir calcula t ion s are fo llow ed and what they did is show ed,wh ich is essent ia lly thesame as the eliminat ion method of aux ilia ry variab les from systems of algeb raic equat ion s withm o re than one unknow n s as deve lop ed in Eu rope in the eigh teen th and n ineteen th cen tu rie s.

Key words:dete rminan t; resu ltan t; discrim inan t; Japanese mathem atics in the seventeenth centu2ry; Eu ropean m athem atics in the eigh teen th and n ineteen th cen turies

CLC number:NO 9 Documentcode:A Article ID: 10002274X(2003)0320363205ficientsΑi. Since this arrangement comes from the1 Chinese mathematics as the back- Chinese way of writ ing,we will here denote theground same

[Α0 Α1 Αn] (3)

Japan impo rted mathematics fromCh inatw ice of coefficien t s.The f irstp lace fo r the con stan t isin her h isto ry. In the ancien t t ime it was thepracti2 called sh i实, the second fo r the linear te rm fangcal m athem atics rep resen ted by th, ,

The second impo rtat iontookp lace around the Inth is te rmino logy a po lynomia lf(x) cou ldyear 1600 and Japanese learned algeb raic equat ion s no t be distingu ished from the equat ionf(x)=0. Itfrom books Yáng HuīSuàn2Fǎ[杨3 ]辉算法[2] and seems that th is cau sed somet imes carelessness ofSuán2X uãqǐ2M ãng 算学启蒙 . In these books an Japanese mathematician s in the signs of po lynom i2algebraic equation als.f(x)=Α0+Α1x+ +Αnx n=0 (1) Given a′numberΦ,they cou ld calcu la te the co2isdenotedbya column efficientsΑi of the sh′ifted′equation

of calculating rods rep resenting the numerical coef2 smaller and smalle r.W e no te that they knew

Receiveddate:2002- 11-01

Author:後藤武史(1975-) ,男,日本东京人,日本东京理科大学理学院研究生,从事数学史研究。

· 364 · 西北大学学报(自然科学版) 第33卷

Α1′=f′ (Φ)=Α1+ 2Α2Φ+ + nΑnΦn- 1. (5) were inherited in Seki′ sschoolof mathematicians.W

The seventeenth century was thet ime when ithout giving a precise terminology Seki[4]the m ass educat io n started in Japan.T here w as, defines the determinantof n equations of order n-therefo re,a la rge demand of textbook s of mathe2 1

lem s became very comp lica ted.Some needed an e2 that is,quat ion of deg

Thebookst ion s of one unknown w ithnumerical coefficien ts. %

unknowns.He invented exp ressions of po lynomials quat ion by the cofacto r of c20 , , the last equat ion

田中由真(1651—1719) and other Japanese mathe2 T he con stan t te rm of the equat ion is equal to thematician s deve lop ed a systematic theo ry of elimina2 dete rminan t and the o ther terms van ish.There2tion w ith use of determinants. IsekiTomotoki井关 fo re,h is dete rminan t is the same as in Eu rop e.It is知辰pub lished the f irst book[ 6 ]on elim inat io n in clear fromth is defin it ionthat the dete rminant van2

1690. ishes whe′never sy4stem (6) has acommon roo t.

Seki sbook[ ]makes anerro rin the expan sion2 Determinants and resultants of dete rminants of order≥5 as pointed ou tby

M ikam i[ 19 ] ,Ho riuch i[21 ]and m any o thers since the

Sek iclassified mathematical p rob lems in to the year 1715.W e remark,however, th[a6t] the erro r hadfo llow ing th ree: the exp licit p rob lemscan be so lved w ith arithm etic, the imp licitp rob lem s

needs algeb raic equat ion s with mo re than one un2 To eliminate a variab le x,we u sually startknowns,and wrote for each class a bookof solu2 withtwoequat ions:t io)f irst t ime in M)

B ooks ofMa them a tics大成算经[ 7 ]w rit ten in 1683 quat ion s (6)of o rder less than n and then app liesth rough 1710 by Sek i and h is pup ils T akebe the dete rminant.

Kataakira建部贤明( 1661—1716) and Takebe Asexh ibited inMikami[ 19 ]andHo riuch i[21 ] theKatah iro建部贤弘(1664—1739).Unfortunately first transformed equation

)

第3期 · 365 ·

is ob nt-amined by elim inating the top te rms off(x ) as show n by Cauchy[ 14]and m any o thers. T here2andx g(x) , that is, n-m fore, the eliminatedequat ionh1 (x)= bmf(x) - anx g(x). (101) R(f,g)=0 (15)Then, thei2thtransformedequat ion n- 1 gives a necessary and sufficien t condit ion in orderh i(x)=di,0+di, 1x+ +di,n- 1x =0 (9i) that the systemof two equat ion s (7) and (8)havefor 1< i≤m isdefinedby n-m a solutioninanalgebraicallyclosedfieldcontainingh i(x)=xh i- 1 (x)+bm- i+ 1f(x) - an- i+ 1x g(x ) all coefficients of the equat ion s in thesystem.

· 366 · 西北大学学报(自然科学版) 第33卷

R(f,f

This is divisib lebyΑn as seen from( 13). In SEKI′ s CollectedWorks edited with Explanations

(18) ka: Ikedaya and N aganoya, 1690bu t Sek i and h is pup ils paid lit t le atten t io n to the [7] SEK I T akakazu关孝和,TA KEBE Kataak ira建部贤

of[7 ] there is ana lmo stco rrect list of 59te rms of deux lignes des o rdres quelquonques peuven t sethe discrim inantD(f) of a quintic equation. co

T he sub jects of M ethods of E quation Mod if i2 [C] L au sanne:O rell FüssliT urici, 1953 46259cations[5] are first to count the number of po sitive [ 9 ] GABRIEL Cramer Appendices I, II ′ de l′o r rea

cien t of an equat ion w ith real roo t s.Yet, Sek idoes Opera Omnia,Ser IVol6[C]Berlin:T eubner, 1921no t seemto have no t iced the fact that the sign of 1972211the discrim inan t decides the number of real roo ts of [ 1 1 ] BEZOU T E R′ echerches sur le degrãde s ãquat ionsa real quadratic equat io n,w h ich everybody know s rãsultan tes de ′l ãvanou issem′en t des inconnues, et sur

References: 2882338

第3期 · 367 ·

Ph il T ran sRoyal Soc L ondon, 1853, 143:4072548 家并びに支那の算法と の关系及び′ 比较(Relations

[ 17] CA YL EY A M emo ir on the resu ltan t of atwo equat ion s [J ]Ph il T ran s Royal Soc L ondon, 1857, M ethods of M athem atics by M athem2atician s in Kyo to

147: 7032715 andOsaka and thoseinChina)Part [J ]TōyōGakuhō

tono Kankei oyob i H ikaku关孝和の业绩と京阪の算

後藤武史,小松彦三郎

(东京理科大学理学部,东京 16220827,日本)

摘要:认为日本数学家在17世纪引入了行列式的概念,为什么和如何使用行列式却并未被人们所深刻地理解,故通过对和算家当时的具体计算的分析,表明他们所使用的方法正是18—19世纪欧洲的数学家创立的对于超过一个未知量的方程组的辅助变量的消元法。

关 键 词:行列式;消元式;判别式; 17世纪的日本数学; 18—19世纪的欧洲数学

(上接第362页)

Compar isonof prokaryot icexpress ionresults of d ifferen t connect ionmanners of Han taan v irus M and S gene segments

LU O W en,XU Zhi2kai,ZHAN G Fang2lin,YAN Yan,

W U X ing2an,L IU Yong,BA IW en2tao′,W AN G H ai2tao

(Departm ent ofM icrobiology,Fourth M ilitary M edical U n iversity,X i an 710032,Shaanx i P rovince,Ch ina)Abstract:To compare the p rokaryotic exp ression results of different connection manners of Hantaan virusglycop ro tein G1 and nucleop r′o tein fragm en t including major an t igen sites,G1 gene segmen t encoded byMgene and 0.7 kb segmentof 5 terminal in Sgene reg ion from H antann viru s 762118 strain were connectedand cloned into pGEX24T2 to construct the prokaryotic fusion exp ression vectors pGEX24T22G1S0. 7 andp GEX 24T22S0.7G1. T he exp ressio n of the fu sion p ro tein GST 2G1S0. 7 o r GST- S0. 7G1 was induced in

E.coli XL 12B lue.A fter IPT G induct ion,EL ISA resu lts showed that bo th fusion p ro teins could b ind specifi2cally to the han taviru s nucleop ro tein specific mA b, and the fu sio n p ro tein GST 2G1S0.7 cou ld b ind H an2taan viru s glycop ro tein specific mA b.W estern blot resu lts showed that the fusion p ro tein GST 2G1S0.7orGST 2S0.7G1 w as exp ressedafter induct ion,and the exp ressionp roduct of chimeric gene G1S0.7degradat2ed relatively less than the one of S0. 7G1.The result s suggest that two differen tchimeric genes both canexp ress b iologically active fu sio np rotein s inE.coli,bu tw ith differen t exp ressio n efficiency. Ithas laid thefoundation for develop ing Hantaan virus genetic engineering vaccine.

Key words:Han taan virus; p rokaryo t ic exp ression; fu sion p ro tein

快云科技:夏季大促销,香港VPS7.5折特惠,CN2 GIA线路; 年付仅不到五折巨惠,续费永久同价

快云科技怎么样?快云科技是一家成立于2020年的新起国内主机商,资质齐全 持有IDC ICP ISP等正规商家。我们秉承着服务于客户服务于大众的理念运营,机器线路优价格低。目前已注册用户达到5000+!主营产品有:香港弹性云服务器,美国vps和日本vps,香港物理机,国内高防物理机以及美国日本高防物理机!产品特色:全配置均20M带宽,架构采用KVM虚拟化技术,全盘SSD硬盘,RAID10阵列, 国...

hostkvm:美国VPS,三网强制CU-VIP线路,$5/月,1G内存/1核/15gSSD/500g流量

hostkvm在2021年3月新上线洛杉矶新VPS业务,强制三网接入中国联通优化线路,是当前中美之间性价比最高、最火热的线路之一,性价比高、速度非常好,接近联通AS9929和电信AS4809的效果,带宽充裕,晚高峰也不爆炸。 官方网站:https://hostkvm.com 全场优惠码:2021(全场通用八折,终身码,长期) 美国 US-Plan0【三网联通优化线路】 内存:1G CPU:...

Kinponet是谁?Kinponet前身公司叫金宝idc 成立于2013年 开始代理销售美国vps。

在2014年发现原来使用VPS的客户需求慢慢的在改版,VPS已经不能满足客户的需求。我们开始代理机房的独立服务器,主推和HS机房的独立服务器。经过一年多的发展,我们发现代理的服务器配置参差不齐,机房的售后服务也无法完全跟上,导致了很多问题发生,对使用体验带来了很多的不便,很多客户离开了我们。经过我们慎重的考虑和客户的建议。我们在2015开始了重大的改变, 2015年,我们开始计划托管自己...

欧洲的的英文为你推荐
University163朗科ios5229.254route参考手册NDXS和ND5XS网络音频播放器中文目录developedandroid三星苹果5photoshop技术PS技术是干什么的,如何使用PS技术?联通版iphone4s苹果4S移动版和联通版有什么不同win7关闭135端口如何用命令关闭135端口win7关闭135端口如何关闭135端口,关闭它有什么影响么?
3322动态域名注册 如何注册中文域名 plesk justhost hostgator raksmart windows主机 suspended 英语简历模板word 速度云 服务器干什么用的 太原网通测速平台 卡巴斯基破解版 paypal注册教程 根服务器 360云服务 cloudlink 国外网页代理 黑科云 tracker服务器 更多