explicitlym.kan84.net

m.kan84.net  时间:2021-03-19  阅读:()
EntangledTwo-DimensionalCoordinationNetworks:AGeneralSurveyLuciaCarlucci,*,GianfrancoCiani,DavideM.
Proserpio,*,,TatianaG.
Mitina,andVladislavA.
Blatov*,,§DipartimentodiChimica,UniversitadegliStudidiMilano,ViaC.
Golgi19,20133Milano,ItalySamaraCenterforTheoreticalMaterialsScience,SamaraStateUniversity,Ac.
PavlovStreet1,Samara443011,Russia§ChemistryDepartment,FacultyofScience,KingAbdulazizUniversity,PostOceBox80203,Jeddah21589,SaudiArabia*SSupportingInformationCONTENTS1.
Introduction75572.
AnalysisofCrystalStructuresbyTOPOS75583.
TopologiesandEntanglementsofTwo-Dimen-sionalCoordinationMotifs75593.
1.
Interpenetration75603.
2.
EntanglementsofTwo-DimensionalLayersContaining2-MemberedLoops75633.
3.
ParallelPolycatenation75653.
4.
InclinedPolycatenation75673.
5.
BorromeanLinks75703.
6.
MixedTypesofEntanglementof2DMotifs75734.
Conclusions7576AssociatedContent7576SupportingInformation7576AuthorInformation7576CorrespondingAuthors7576Notes7576Biographies7577Acknowledgments7578References75781.
INTRODUCTIONManycurrentinvestigationsarefocusedonthedesignofnewmolecule-basedfunctionalmaterials.
Agreatvarietyofextendedarchitectureswithpromisingpropertieshasbeenobtainedonthebasisofcrystalengineeringconcepts,bothmetalorganicandinorganicnetworkssupportedbycoordinative/valencebondsandsupramoleculararraysoforganicandmetalorganicmoleculessustainedbyhydrogenbondsorotherweakinteractions.
1Manyofthereportedspeciesexhibittheintriguingfeatureofinterpenetrationorothertypesofentanglements.
Thepropertiesofthesematerialsarerelatednotonlytotheirmolecularstructuresbutalsotothetopologyoftheindividualnetworksaswellastothewayinwhichtheindividualnetsareentangled.
Itisthereforeofbasicrelevancetoanalyzeandclassifytheseentanglements;inthisconcern,manycontributionshaveappearedinrecentyears,dealingwithrationalizationofnetinterpenetrationandelucidationofthedierenttypesofentangledsystems.
2Theextendedspeciesbasedontwo-dimensional(2D)polymericmotifs(seeFigure1fortheevolutionofreported2Dstructuresovertheyears)showparticularlyintriguingstructuresformanyreasons:theyexhibitalargevarietyofdistincttopologiesofsingle2Dnetsand,inaddition,showmanydierententanglementtypes,amongwhichsomepuzzlingcaseswerefoundthatneedadetaileddiscussion.
3WemustmentionheretheverycomplicatedandintriguingcaseoftheH-bondednetworkoftrimesicacid,consistingofunusuallypolycatenatedhoneycomb(hcb)2Dlayers,reportedmanyyearsago(1969).
4Wehavealreadyreportedourstudies,basedontheuseofTOPOS(apackageformultipurposecrystallochemicalanal-ysis),7oninterpenetrationinvalence-bondedcoordination2dandinorganicnetworks,8aswellasinhydrogen-bondedsupra-molecularthree-dimensional(3D)arraysformedbyorganicmolecules9orbymolecularcomplexes(zero-dimensional,0D)andone-andtwo-dimensional(1Dand2D)coordinationpolymers.
10Wereportherethecomprehensiveresultsofouranalysisofentanglementsincoordination2DnetworksfromtheCam-bridgeStructuralDatabase(CSD,version5.
34,November2012)usingthelatestversionofTOPOS.
Onlyvalence-bonded2Dmetal-basedcoordinationnetworksareconsideredhere,thatcanproducedierenttypesofentangledsystems;supramolecularframeworksobtainedbyhydrogenbondsand/orotherweakinteractionslikehalogenbondswillbeconsideredinfuturework.
Accordingtoourpreviousinvestigations,2c,e,fwehaveobservedthatthesedierenttypescanbeclassiedasinterpenetrated,polycatenated(parallelorinclined),orBorromean-linkedarrays.
Indeed,othersubclasseshavebeenevidencedandwillbediscussedbelow.
Received:March14,2014Published:June11,2014Reviewpubs.
acs.
org/CR2014AmericanChemicalSociety7557dx.
doi.
org/10.
1021/cr500150m|Chem.
Rev.
2014,114,75577580TermsofUseAfterthisclassication,wehavealsoexaminedthepotentialfunctionalapplicationsoftheseentangledspeciesinordertopossiblyestablishastructure/propertiesrelationshipdependingonthetypeofentanglement.
Porosityhasbeenoneoftherstrecognizedandinvestigatedpropertiesofcoordinationnetworks,andthesearchforrobustandsecond-generationporouscoordinationnetworkshasbeenstronglypursued,openingperspectivesforrealapplicationofthesecrystallinematerialsinmanytechnologicalelds.
Easytailoringofporesizeandshape,aswellaseasychemicalfunctionalizationofthenetworkedstructures,introducefeaturesnotcharacterizedbeforeforotherporousmaterials.
Flexibility/dynamismisoneofthesefeaturesandthemainoriginfornetworksoftness,atopicofincreasinginterest,addressedintheliteraturebymanyreviewsandarticles.
11Itisassociatedwiththeoccurrenceofareversiblestructuralchangeasaconsequenceofchemicalorphysicalexternalstimulisuchasinteractionwithguestmolecules,pressure,temperature,light,andsoon.
Thisstructuralexibilitycanbeadvantageouslyusedtodevelopporoussoftmaterialswithincreasedguestselectivitytobeused,forexample,assensorsoringasseparationtechnologies.
Entanglementcanbeexploitedtodeveloptailoredexiblematerials.
Reducingtheaccessiblefreespaceofaporousnetworkwasnegativelyconsideredforalongtime,butrecentlyithasregainedalotofinterest.
Infact,itcanbeusedtoincreasenetworkstabilityandtotailortheshapeandsizeofpores,increasingguestadsorptionselectivity;andmoreover,themutualdisplacementofentangledrigidorexiblemotifsisoneofthemechanismsattheoriginofsoftnessincoordinationnetworks.
Inaddition,interpenetrationcanaectthephysicalpropertiesofthematerial,forexample,magnetism.
12Dierentsyntheticprocedureshavebeendevelopedtoattainacertaincontrolofentanglementincoordinationnetworks,andrecentlysomereviewshaveappearedthatarefocusedonfactorsgoverningtheentanglements,havinginmindtheirpotentialapplications;13however,theseanalysesaremostlydevotedto3Dnetworksthankstothegreatwealthofdataoninter-penetration.
2dOntheotherhand,informationonentanglementsin2Dspecies,showingaremarkablerichnessoftypes,isstillmuchscatteredintheliterature(withthepropertiesonlyoccasionallyinvestigated),andageneralsurveyandration-alizationofthephenomenaistimely.
2.
ANALYSISOFCRYSTALSTRUCTURESBYTOPOSAllproceduresonsearch,retrieval,andtopologicalanalysisofthecrystalstructuresaswellastheirrepresentationwereperformedwiththeprogrampackageTOPOS.
7Thefollowinggeneralalgorithmwasused,allstepsofwhichareimplementedasTOPOSprocedures.
Thesesteps(IVI)aredescribedhereinfulldetail,whiletheresultsarediscussedstartinginsection3.
(I)Interatomicbondsweredeterminedbythemethodofintersectingsectorsthatweappliedrecentlyfor3Dcoordinationnetworks.
2d,14ThismethodusesVoronoipolyhedrainadditiontoatomicradiitodeterminevalencebonds;itisbestsuitedfororganicandcoordinationcompounds.
Weconsideredonlycoordinationcompounds;bondswithparticipationofalkalioralkaline-earthmetals(Na,K,Rb,Cs,Ca,Sr,andBa),aswellasallmetalmetalbonds,wereignored.
(II)Forallcoordinationnetworks,wedeterminedtheirperiodicity.
ThefollowingTOPOSalgorithmwasapplied:startingfromanymetalatomAofthenetwork,allthosetranslationallyequivalentATatomsaresearchedthatareconnectedtoAbychainsofbondsA-(L-A′-L)-ATofanylength(whereLisaniteligandofanycomplexityandA′isanatomrelatedtoAbyanontranslationalsymmetryoperation).
Thenumberofindependenttranslations(0,1,2,or3)thatrelateAandATatomsdeterminesthenetworkperiodicity.
Atthenextsteps,wehavetreatedonly2-periodicnetworks.
Inthisreview,weprefertotalkof2Dnetas2-periodic,withthedistinctionof2-periodic2Dnetsfortheonesthathaveaprojectiononaplanewithoutcrossingedgesand/orcoincidentvertices,hencetopologicallyplanarnets,andthicklayersforthe2-periodic3Dnetsthatinsteadcannotbeprojectedonaplanewithoutcrossingedgesand/orcoincidentvertices.
(III)All2Dnetworksweretestedfortheexistenceofentanglements.
WeassumedthatthetopologicalentanglementexistedifatleastoneHopflinkoramultilinkoccurredbetweendierent2Dmotifs.
Separately,wesearchedforBorromeanandBrunnianentanglementsinwhichonlynon-HopfinterweavingexistedwithineachgroupofNnetworksbutallNnetworksFigure1.
(Left)Distributionof2Dentangledcoordinationnetworkssince1994.
Therstexamplewasreportedin1966(notshown)withsilvertricyanomethide,AgC(CN)3[AGMANI],givinga2-foldinterpenetratedhcbnetwork,correctlydescribedbyKonnertandBritton.
5(Right)Distributionofsingle(notentangled)2Dcoordinationnetworkssince1994(dataupto2011weretakenfromref3).
Thetrendsfollowtheexplosionofinterestofresearchintotherealmofcoordinationnetworksandmetalorganicframeworks(MOFs).
6Notefromthegraphsthatnonentangledspeciesareabout8timesmorefrequentthanentangledones.
ChemicalReviewsReviewdx.
doi.
org/10.
1021/cr500150m|Chem.
Rev.
2014,114,755775807558formedatightenedinterlacingarray,withN=3for2DBorromeanandN>3forboth2Dand3DBorromeanorBrunniantypesofentanglement.
Allentangledarraysfoundwerefurtheranalyzedatthenextsteps.
(IV)Thefollowingparametersofentanglementweredetermined:(a)entanglementtype(interpenetration,inclinedorparallelpolycatenation,BorromeanorBrunnianentangle-ment);(b)numberofentanglednetsintheinterpenetratedarray(Z);(c)degreeofcatenation(Doc)2cforinclinedorparallelpolycatenation,implyingevaluationofthenumberoflinks(Hopformultilink)aparticularringofonenetformswithringsofothernetsinthearray;(d)indexofseparation(Is)2cof2Dmotifsinthecaseofparallelpolycatenation,thatis,thenumberofmotifswhichhavetoberemovedtodisjointhearrayintotwoseparateparts;and(e)existenceof2-loops,thatis,ringsinwhichallnodes,buttwo,havecoordination2.
(V)Allthenetworkswerethensimpliedtoobtaintheunderlyingnets,thatis,netsofcentroidsofstructuralgroups.
Wehavetreatedtwotypesofsimplication:theclusterone,wheresomestructuralgroupswerepolynuclearcomplexes,andthestandardone,whereallmetalatomsandligandswereregardedasnodesoftheunderlyingnet.
Iftheunderlyingnetcontained1-or2-coordinatednodes(terminalorbridgestructuralgroups),itwassimpliedfurtherbyremovingtheterminalnodesandreplacingthebridgenodesbynetedges.
Simplicationofanetworkthatcontains2-loopscanleadtocompletedisappear-anceoftheentanglement,andthereforesuchnetworkswerepickedoutintoaseparategroup.
14Wedecidedtoreportonlyonetypeofunderlyingnetforeachstructure;inparticular,aclusterdescriptionwasusedwhenstructuralbuildingunitswereevident(e.
g.
,paddlewheels,dimers,etc.
)15(VI)TheoveralltopologiesofunderlyingnetsweredeterminedwiththeTOPOSTTDcollection,whichcurrentlycontainsmorethan75000nettopologies.
Todesignatethetopologieswehaveusedthreenomenclatures:ReticularChemistryStructureResource(RCSR)three-lettersymbols,16whichwereintroducedforthesimplestplanenets;FischerandKoch'ssymbolsfor2Dpackingofspheres;17andTOPOSNDksymbols,14whichareusedintheTOPOSTTDcollectionforthosetopologiesthatarenotcoveredbythersttwonomenclatures.
3.
TOPOLOGIESANDENTANGLEMENTSOFTWO-DIMENSIONALCOORDINATIONMOTIFSTheresultsofourinvestigationhaverevealedthatthereare7832Dmotifsthatformentangledarrays,representingca.
7%ofthetotalnumberofthestructurallycharacterized2Dspecies.
3Wehave,atrst,analyzedthetopologiesofindividual2Dmotifsformingtheentangledarraysandwefound36distinctnets(allillustratedinFigures3,4,and11andFigureS1inSupportingInformation).
Thedistributionofnetworktopologiesappearingatleasttwotimes(13outofthe36distincttopologiesoverallobserved)isillustratedinFigure2.
Amongthe36dierentnetworktopologiesfoundwithinall783analyzedstructures,sqlisthemostcommon,with465cases,andhcbissecond,with206cases.
Theremaining112structuresshow34dierenttop-ologies,and23ofthesearerepresentedbyasinglestructure.
Nineofthe36characterizedtopologiesareintrinsicallyplanar2-periodic2D(theirprojectiondoesnothaveanyedgecrossings)andaccountfor90%ofallstructures(706/783)(Figure3);allninetopologieshavebeenobservedalsonotentangled.
3The27remainingtopologiesarethicklayersormultilayers(2-periodic3D)andreferto77structures,65ofwhichareparallelpolycatenated(PCAT)with20dierenttopologies,eightinterpenetrated(INT),oneinclinedpolycatenated(ICAT),andthreewithmixedtypesofentanglement.
Thedierenttypesofentanglementdescribedherewereintroducedsomeyearsago;2c,e,ftheyarediscussedindetailbelow.
Acomparisonofsingle3versusentangled2Dnetsshowsthatsqlandhcbarethemostfrequentinbothcases;moreover,10entanglednetsamongtherst11observed(>2)(listedinFigure2)arealsofoundamongtherst14mostfrequentsingle2Dnets.
Tenthick-layernets,including3,3,4,4L30(eightoccurrences)andnineothertopologies(withoneoccurrenceeach),areobservedexclusivelywithinentangledspecies(seeFigures4and11).
Theremaining17thicklayers,observedalsoinnon-entangledspecies,arereportedinFigureS1inSupportingInformation.
Withinthethicklayersthe3-c(82.
10)-KIanet(seeFigure5)ispeculiarsinceitshowstheuncommonphenomenonofdierentrealizationofthesamegraphinspace(embeddings)thatcannotbedeformedintoeachotherwithoutbreakingedges;thispropertyiscalled"non-ambientisotopy".
2e,hWeobservedhereandalsointheanalysisofnonentangledcases(indetail:sevenPCAT,twoINT,and69nonentangledstructures)threedierentnonambientisotopicembeddingsof(82.
10)-KIanet,asillustratedinFigure5.
AllthestatisticsillustratedabovecanbecheckedindetailwiththedataavailableasSupportingInformationTwoplanarnetsthatrankinthetop10listofmostfrequentsingle2Dlayersdonotgiveentanglement:36-hxl(hexagonallattice),likelyduetothepresenceofthesmallest3-ringsand4,4L1,whicharisesfromthestandardrepresentationofthenumerouspaddle-wheeldecoratedsqlnets.
Inthiswork,wechoosetogiveonlyonerepresentationforeachcompound,hence4,4L1netsareherereportedassql(seeFigureS2inSupportingInformation).
Instead,thefourthmostfrequenttype(with485structuresreportedinref3)ofsingle2Dnets,the(3,6)-ckgdnet,hasbeenobservedonlyinonestructure,Zn5(bpib)2(L)4(OH)2(H2O)2{TONFUY,wherebpib=1,4-bis[2-(pyridin-2-yl)-1H-imidazol-1-yl]butaneandH2L=3,3′-methylenebis(oxy)dibenzoicacid}18as2-foldinterpenetrated.
Therhombicgeometryofkgdmakesitlessexible,hamperingentanglement;onlythepresenceofbentligandssupportsthistopologyinTONFUY(seeFigureS3inSupportingInformation).
Othertopologiesobservedinnotentangled2Dnets3areprobablylesssuitedtogiveinterlacedspecies.
Toincludeallthephenomenaobservedhere,weextendthedenitionofentanglementintroducedsomeyearsago:2c,ftogetherwiththeclassicalinterpenetrationandpolycatenationFigure2.
Netdistributionofthe7832Dentangledmotifs.
ChemicalReviewsReviewdx.
doi.
org/10.
1021/cr500150m|Chem.
Rev.
2014,114,755775807559(parallelandinclined)viaHopflinks,weobservedmanyexamplesofentangled2Dnetswith2-loopsviarotaxanelinks.
19Aschemethatincludesallpossibleobservedandnot-yet-observedcasesisgiveninFigure6.
Themaindistinctionillustratedhereisbetweeninterpenetration(INT,leftcolumn)andpolycatenation(parallelPCATorinclinedICAT,rightcolumn).
Thesetwobasictypesofentanglementshowquitedistincttopologicalfeaturesthatarelistedinthetwocolumns.
WithinpolycatenationthedistinctlayerscaninterlaceviaHopflinkseitherinparallelfashion(alllayersareparallel)orininclinedfashion(twoormoresetsofparallellayersformingacertainnonzeroangle);thisdierencewasevidencedsincethe1990sandwaswidelydiscussedinthereviewbyBattenandRobson.
2aIntotal,thereare345interpenetrated(INT),127polycatenatedparallel(PCAT),and222inclined(ICAT)coordinationnetworks.
Theremainingstructures(notincludedintheabovescheme)comprise31Borromeanentangled(BORR),2015species(MIXED)thatcannotbestrictlyassignedtoanyofthepreviousclassesshowingmixedtypeofentanglement,and43structurescontaining2-looprings(ofthese,thereare39INT,twoPCAT,andtwoICAT).
ThepiechartillustratedinFigure7showsanalmostequaldistributionofinterpenetration(345+39=384)andpolycatenation(127+222+2+2=353),withonly5.
9%dierentphenomena(MIXED+BORR).
Polyrotaxaneentanglementvia2-loopsisalsorepresentedbyasmallsample(5.
5%).
The77structures(10%ofthewholesample)thatarerepresentedbythicklayershavemostlypolycatenatedparallelentanglement(84%),showingthatthenonplanarityofalayerfavorsparallelentanglement.
3.
1.
InterpenetrationInterpenetrated2Dlayersrepresentthemostnumerousgroup(overall384entries).
Thistypeofentanglementisgenerallycharacterizedbythepresenceof2Didenticalmotifsthatareinterlaced,sharingthesameaverageplane.
ThedegreeofinterpenetrationZisequaltothetotalnumberofsuchmotifs.
Wehavepreviouslyinvestigatedtheinterpenetrationof3Dcoordinationnetworksandhavesuggestedaclassicationrelatedtothedistinctmodesinwhichindividualidenticalmotifscaninterpenetrate,representedbytheoperationsthatgeneratethewholearrayfromasinglenet(classesI,II,andIII).
2d,8Thoughthisapproachhasapotentialheuristicvalidityandhasbeenusefullyappliedintheanalysisofinterpenetrationinmany3Dsystems,2d,14itisessentiallybasedongeometrical,ratherthantopological,criteriasinceitdescribesinterpenetrationsimplyintermsofcrystallographicsymmetryrelations(wemaycallthem"crystalclassesofinterpenetration").
Takingintoaccountthegrowingtendencytofocusinterestontruetopologicaldescriptionsoftheentanglednetworks,asevidencedbyrecentinvestigationsandnewapproaches,21wehavedecidedtoneglectherethisclassication.
ThemaximumvalueobservedforZis6,foundonlyinhcb[Ag(1,3,5-tris(4-ethynylbenzonitrile)benzene)CF3SO3]·2C6H6(ZABQIC01;22seeFigure8)reportedin1996,wellbelowtheexceptionalrecordsfoundinarecentlyreported3Dmetalorganic103-srsnetwork(54-fold,OYEYOH)23andalsoina3DorganicH-bonded103-srsnetwork(18-fold,SAYMUB01).
24Figure3.
Nineobservedplanarnets(2-periodic2D).
ChemicalReviewsReviewdx.
doi.
org/10.
1021/cr500150m|Chem.
Rev.
2014,114,755775807560HighvaluesofZarerare(onlythree5-foldandseven4-foldcases)andthelargemajorityofexamplesare2-foldinter-penetrated(>79%).
Wemustmentionhereaninterestingcasethatdescribesauniquelinkingmodebetweentheringsofinterpenetratingmotifsinpolymericnetworks.
Inmostcases,theshortestcircuitsofindividualpairsofnetworkscatenateonlywith2-crossing[2]-catenanemotifs,equivalenttothe2-componentlinkwith2-crossing,theHopflink.
However,insix2-foldinterpenetratedstructureswithtopologysql,the4-crossing[2]-catenanemotif(equivalenttothe2-componentlinkwith4-crossingscalledSolomonlink/knot)hasbeenfound:[M(dde)(bpp)]·H2O[wheredde=4,4′-dicarboxydiphenyletherandbpp=1,3-bis(4-pyridyl)propane],withM=Cu(COKPIC),25Ni(COKPOI),25orCo(SOCYEP,26SOCYEP0125),andM(bbmb)2(Cl)(OH)]-(H2O)2[wherebbmb=4,4′-bis(benzimidazol-1-ylmethyl)-biphenyl],withM=Ni(FUYWIG)27andCu(FUYWOM)27(seeFigure9).
Suchmulticrossinglinksarerarelyobservedalsoin3Dinterpenetration;oneknownexampleisthe4-crossing[2]-catenanemotifidentiedfor2-foldquartzqtznets.
28Ananalysisofthe2DinterpenetratingnetslistedbyTOPOSshowsthepresenceofsubgroupsofstructureshavingpeculiargeometricalandtopologicalfeaturesthatmakethemwelldistinctfromtheremainder.
Onesubgroupcomprisesspecieswithlayerscontaining2-nodeloops(2-memberedrings)thatarethreadedbyspacersformingedgesofthe2Dlayers(39entriesinthelist).
Thissubgroup(wecancallthistypeofentanglement"polythreadedinterpenetration")hasbeenthesubjectofarecentreview19andwillbediscussedinmoredetailinsection3.
2.
Inthesecondsubgroup,comprising,atpresent,onlyafewspecies,theinterlacedlayersarenotcoplanarbutshowarelativedisplacementinthestackingdirection.
Byextrapolationfromthefewrealcases,wecanimagineanentirenewclassofnetworksthatcanbeconsideredascutsof3Dparallelpolycatenatedarrays(likethethreeinterlacednetsinFigure10),withanitenumbernofcatenatedlayers(n-catenation).
Whileinterpenetrationoflayersimpliesthateachmotifisinterlacedwithalltheotheronesofthearray,thisisnotthecasefortherstspeciesinFigure10,wheretheaverageplanesofadjacentlayersaredisplacedalongthestackingdirection:thisexampleatpresenthasneverbeenobserved.
Figure4.
Ninenewtopologiesobservedonlywithinentangled2Dnets;sevenareobservedwithinparallelpolycatenation(PCAT),onewithinmixedtype(bottomleft),andonewithininterpenetration(INT).
Refcodesforthenetsobservedinonlyonestructurearegiven.
Figure5.
Threedierent(non-ambientisotopic)embeddingsofKIaobservedin2Dstructures(nineentangledand69single)thatcannotbedeformedintoeachotherwithoutcrossingedges.
ChemicalReviewsReviewdx.
doi.
org/10.
1021/cr500150m|Chem.
Rev.
2014,114,755775807561Wecanincludeinthisnewfamily[Cd2(bpt)(ip)2(H2O)4]·6H2O[wherebpt=4-amino-3,5-bis(4-pyridyl)-1,2,4-triazoleandip=isophthalate](UDIROP)29and{[Cd2(TPOM)-(hpbb)2][whereTPOM=tetrakis(4-pyridyloxy-methylene)-methaneandH2pbb=4,4′-(hexauoroisopropylidene)bis-(benzoicacid)](FAMGEH)30(seeFigure10)thatareboth2-catenatedarrays.
Anotherexampleis[Co2(bipe)1.
5(bta)(H2O)4][Co(bipe)-(bta)](H2O)0.
5[whereH3bta=benzene-1,2,3-tricarboxylicacidandbipe=1,2-bis(4-pyridyl)ethane](EWOTAM)31(seeFigure11),a3-catenatedarrayinwhicha3,3,3L5complexuniquecentralself-catenatedlayer(showninblueinFigure11)isFigure6.
(Top)Completeschemeofclassicationofentanglementinperiodicstructures.
(*)Thisconditionisdisregardedforonlyonestructure,EWOTAM;seetext.
(Bottom)Examplesofentanglementofhcbnetsshowingthedierencebetweeninterpenetrationandpolycatenation(parallelandinclined).
Figure7.
(Left)Distributionofinterpenetrationvspolycatenationin7832Dentangledstructures.
(Right)Distributionofthickandplanarlayersamongthesixtypesofentangledstructures.
Figure8.
Maximuminterpenetrationobservedin6-foldhcb[Ag(1,3,5-tris(4-ethynylbenzonitrile)benzene)CF3SO3]·2C6H6(ZABQIC01).
Figure9.
Rarecaseof2-componentlinkwith4-crossingsobservedinsix2-foldinterpenetratedsqlstructures:(left)[M(dde)(bpp)]·H2Oand(right)M(bbmb)2(Cl)(OH)](H2O)2(seetext).
2527ChemicalReviewsReviewdx.
doi.
org/10.
1021/cr500150m|Chem.
Rev.
2014,114,755775807562interlacedwithtwoequalupperandlowersqllayers(showningreeninFigure11).
Itisnotpossibletospeakhereoftrueinterpenetrationsincethelayersaredierentandtheexternaltwoarenotinterlinked.
Thedicultiesinthestudyofentanglementscanproducewrongdescriptionsintheliterature:forexample,inthestructureofZn3(BIDPE)3(5-HIPA)3·4H2O[whereBIDPE=4,4′-bis-(imidazol-1-yl)diphenyletherand5-HIPA=5-hydroxyisoph-thalate](IXOHOT),32theauthorsdescribethisspeciesasacaseof"nitepolycatenation",consistingofsixcatenatedsqllayers.
Unfortunately,theirclaimthat"thisistherstreportofsixidenticalsheetspolycatenatedstilltoforma2D→2Dnetwork"iswrong;themoreusual2D→3Dparallelpolycatenationisobservedhere,accordingtoanalysiswithTOPOS.
Whenthethreeaboven-catenated(nottrulyinterpenetrated)speciesareneglected,allothercasesoftrueinterpenetrationarecomposedofidenticalcoplanarmotifsexceptfortwoexamples,([Mn(NCS)2(4,4′-bis-pyridylpropane)2]·0.
25H2O;MULFEE33andREDSEZ34),wherethetwointerpenetratinglayersareverysimilarbutcrystallographicallyindependentwithsmalldier-encesinconformationsoftheexibleligands.
Theoccurrenceofdierentinterlaced2Dmotifs,ontheotherhand,ismuchmorefrequentinothertypesofentanglements,suchasinclinedpolycatenation(seesection3.
4).
Interpenetrationofsqllayerssupportssolid-statereactionsviasingle-crystaltosingle-crystal(SCSC)transformation,from4-foldsqlto4-folddia35andguest-drivenligandexchange.
36Wecanmentionherealsothenonlinearoptics(NLO)propertieswithstrongsecondharmonicgeneration(SHG)eectofa2-foldinterpenetratedsqlspecies.
373.
2.
EntanglementsofTwo-DimensionalLayersContaining2-MemberedLoopsAcloserexaminationofthelistofinterpenetrating2DnetworksobtainedfromTOPOSrevealsthepresenceofasignicantnumberofcaseswithlayerscontaining2-memberedrings.
Theyformaspecialsubclasswithininterpenetration(wesuggestthename"polythreadedinterpenetration"),withthepeculiarfeaturethattheentanglementconsistsofthreadingofthe2-nodeloopsbyedgesofadjacentlayers(Table1).
Ifoneappliesthenormalsimplicationprocessusedinthenetworkapproachfortopologicalclassicationofthelayer,theriskistooverviewtheentanglement.
Indeed,therearemany1D,2D,and3Dframeworkscontaining2-noderingsthatarenottopologicallysignicant,butthisisnottrueinthepresentspecies.
AsclearlydiscussedforthersttimebyMa,Batten,andco-workers,38herethe2-nodeloopsmustbeexplicitlyconsidered.
Aspecialtopologicalnotationisrequiredforthesinglelayer:avertexsymbol(VS)thatincludesalsothe2-connectednodesissuggestedinsteadoftheusualVSoftheunderlyingsimplied2Dnet,andthisspecialnotationhasbeenaddedintoTOPOS.
Theseentangledspeciescanbedescribedaspolyrotaxane-likestructuresandwerepreviouslyincludedinthecasesofpolythreading.
2cTwo"older"examplesshowninFigure12havebeenknownsincethemid-1990s,butsince2007manynewfascinatingspeciesofthistypehavebeenreported.
Duringpreparationofthispaper,areview19hasappeareddescribingindetailthesespeciescontaining2-memberedloops,withinterestingcomments.
Theconceptof"nontrivialpolyrotaxane"isintroducedandadenitionisproposed.
19,39Wewillusewhenpossible(inTable1)theclassicationillustratedbytheseauthors.
Allthesespeciesareformedbytheinterlacingoflayersoffourdistincttopologicaltypesonly,illustratedinFigure13,whosesimpliedtopologiesarehcb(2,4L1)andsqlfor2,6L1,2,6L2,and2,10L1,whichdierinthepositionandnumberofthe2-nodeloops.
Inextricableentanglementsoftheselayersexhibitthepresenceofrotaxane-likelinkagesofdierenttypes,dependingonthenumberofrodsandringsinvolved.
Byanalogywiththeclassicationsuggestedformolecularrotaxanes,69wecanadoptwhenpossibleanotationlikethefollowingone:1.
1(onerod,onering),1.
2(onerod,tworings),2.
1(tworods,onering),2.
2(tworods,tworings)andsoon.
Thecasesof2-foldinterpenetration(35entriesoutof43,thelargemajorityinTable1)arealmostequallydistributedbetweenthetwostructuresIandIIshownaboveinFigure12(classiedasIIIaandIIIb,respectively,inref19).
Inthesespecies,theusuallinksarerotaxanesoftype1.
1.
Thereareonlythreerecentexceptions(DAYMEX,41ETEKUK,43andUYOHOG;61seeFigure14);thesecontainthelayers2,10L1withpeculiarstructuralfeaturessuchthatrodsofthesecondlayerarethreadedbytwoadjacentloopsoftherstlayerandviceversa.
Thus,therotaxanelinksareoftype1.
2.
Itisworthmentioningherethatthereisonlyonespecies,atpresent,containinglayersoftype2,6L2:the2-foldinter-penetratedQUQGOZ56(type1.
1rotaxane,seeFigure15).
Theexamplesof3-foldinterpenetrationincludetwospecieswith2,4L1-typelayers(WAGXAFandWAGXEJ)66andtwowith2,6L1typelayers(NUDDEW54andTONGAF60),illustratedinFigure15).
Inthetwoformercases,eachloopisthreadedbytworodsandeachrodthreadsonlyonering(rotaxanetype2.
1),whileinthelattertwocaseseachloopisthreadedbytworodsandFigure10.
Possibleinterpenetrationwiththeequivalentinterlacedlayersnotcoplanarbutwitharelativedisplacementinthestackingdirection.
Onlythe2-fold2-catenatedmotifhasbeenobserved.
Figure11.
Unique3-catenatedarraywithnonequivalentlayersobservedinEWOTAM.
ChemicalReviewsReviewdx.
doi.
org/10.
1021/cr500150m|Chem.
Rev.
2014,114,755775807563Table1.
EntangledTwo-DimensionalNetworksContainingTwo-MemberedLoopsrefcodecompdformulaa,bentanglementtypeclayertopology:dsempl(2-c)linktypeeclassfyear,ref1ANARIR[Cd(bcbpy)(bpdc)0.
5Br]·7H2OINT-2fhcb(2,4L1)1.
1IIIa2011,402ANAROX[Cd(bcbpy)(bpdc)0.
5Cl]·7H2OINT-2fhcb(2,4L1)1.
1IIIa2011,403BOBGEF[Co2(1,3-bix)2(bpea)2]INT-2fhcb(2,4L1)1.
1IIIa2008,384DAYMEX[Mn4(pcp)4(bpye)(DMF)2]INT-2fsql(2,6L1)g1.
22012,415DUCFOX[Co2(btx)2(btx)(H2O)4(β-Mo8O26)]·2H2OINT-2fhcb(2,4L1)1.
1IIIa2009,426DUCFUD[Ni2(btx)2(btx)(H2O)4(β-Mo8O26)]·2H2OINT-2fhcb(2,4L1)1.
1IIIa2009,427DUCHIT[Zn2(btx)2(btx)(H2O)4(β-Mo8O26)]·2H2OINT-2fhcb(2,4L1)1.
1IIIa2009,428ETEKUK[Mn4(dbsf)4(1,4-bix)(H2O)4]·2H2OINT-2fsql(2,6L1)g1.
22011,439ETELAR[Ni(dbsf)(bbi)(H2O)2]·2H2OINT-2fhcb(2,4L1)1.
1IIIa2011,4310EVUSEU[Zn(Hapoxbda)(bpye)]·(DMA)·(DMA)xINT-2fhcb(2,4L1)1.
1IIIa2011,4411EYEYIRZn(Hcboxip)(bipy)1.
5INT-2fsql(2,6L1)1.
1IIIb2011,4512GALKIP[Ni(dbsf)(1,4-bix)(H2O)]·0.
38H2OINT-2fhcb(2,4L1)1.
1IIIa2012,4613GUBZIN[Mn2(H2O)4(btx)2(btx)(SiMo12O40)]·4H2OINT-2fhcb(2,4L1)1.
1IIIa2009,4714GUBZOT[Ni2(H2O)4(btx)2(btx)(SiMo12O40)]·4H2OINT-2fhcb(2,4L1)1.
1IIIa2009,4715GUBZUZ[Co2(H2O)4(btx)2(btx)(SiMo12O40)]·4H2OINT-2fhcb(2,4L1)1.
1IIIa2009,4716IQEJOE[Cd(cpmb)(bbi)0.
5(H2O)]INT-2fsql(2,6L1)1.
1IIIb2011,4817KEZPIP[Cd(cpmb)(bbi)0.
5(H2O)]INT-2fsql(2,6L1)1.
1IIIb2007,4918LALFOV[Fe(bipe){Au(CN)}{Au(CN)}·MeOH]INT-2fhcb(2,4L1)1.
1IIIa2010,5019MARMID[Co(oba)(bib)]·H2OINT-2fsql(2,6L1)1.
1IIIb2012,5120MUNPIV[Co(bih)(bpdc)]INT-2fhcb(2,4L1)1.
1IIIa2009,5221MUNPUH[Co(1,4-bix)(bpdc)]INT-2fhcb(2,4L1)1.
1IIIa2009,5222NEBSUI[Zn(1,4-bix)(1,4-bix)(NO3)2]·4.
5H2OINT-2fhcb(2,4L1)1.
1IIIa1997,5323NUDDAS[Zn(1,2-bbomb)(bipy)0.
5]INT-2fsql(2,6L1)1.
1IIIb2009,5424OVIDAZ[Zn(cpds)(bipe)0.
5INT-2fsql(2,6L1)1.
1IIIb2011,5525QUQGOZ[Zn3(OH)2(dhbbdc)2(bipy)(H2O)2]·H2OINT-2fsql(2,6L2)1.
1IIIc2010,5626RUBGIF[Ni(dbsf)2(bipy)]·H2OINT-2fsql(2,6L1)1.
1IIIb2009,5727SULKEQ[Zn(dbsf)2(bipy)]·H2OINT-2fsql(2,6L1)1.
1IIIb2009,5828TAHNIB[Zn2(dbsf)2(bpimb)]·H2OINT-2fsql(2,6L1)1.
1IIIb2010,5929TONFIM[Cd2(1,4-bix)2(dpb)2]INT-2fhcb(2,4L1)1.
1IIIa2008,6030TONFOS[Cd(mbd)(bpimb)0.
5(H2O)]INT-2fsql(2,6L1)1.
1IIIb2008,6031UYOHOG[Mn4(dba)4(1,4-bix)]INT-2fsql(2,6L1)g1.
22011,6132UZAWEY[Cd4(Hidc)2Cl4(bbi)2(bbi)]INT-2fsql(2,6L1)1.
1IIIb2011,6233WOCKOP[Cd(bpp)(tp)(H2O)]·nH2OINT-2fhcb(2,4L1)1.
1IIIa2008,6334WODGUS[Cd2(pca)2(bbi)]INT-2fsql(2,6L1)1.
1IIIb2008,6435YOCPEL[Mn2(p-xbp)2(p-xbp)](ClO4)2INT-2fsql(2,6L1)1.
1IIIb1995,6536NUDDEW[Zn2(1,3-bbomb)2(bipy)]INT-3fsql(2,6L1)2.
2IIId2009,5437TONGAF[Zn(obbd)(bpib)0.
5]INT-3fsql(2,6L1)2.
2IIId2008,6038WAGXAF[Zn(H2tfpbbp)(fip)]·H2OINT-3fhcb(2,4L1)2.
12010,6639WAGXEJ[Zn2(H2tfpbbp)2(nip)2]·H2OINT-3fhcb(2,4L1)2.
12010,6640NUDDIA[Zn4(1,2-bbomb)4(bpp)2]PPROThsql(2,6L1)iIVa2009,5441UHUROF[Co2(pcp)2(bpp)]·2CH3OHPCAThsql(2,6L1)jIVb2009,6742BOBGIJ[Cd4(1,4-bix)4(bpea)4]·4H2OIPROTkhcb(2,4L1)1.
1IVc2008,3843CUXTIZ[Zn(Hcboxip)(bimb)]·2H2OIPROTlhcb(2,4L1)1.
1IVc2010,68aLigandsformingthe2-loopsareshowninboldfacetype;ligandsactingasrodsareshowninitalictype.
bAbbreviationsforligands:bbi=1,1′-butane-1,4-diylbis(1H-imidazole);bib=1,4-bis(2-methylimidazol-1-yl)butane;bih=1,1′-hexane-1,6-diylbis(1H-imidazole);bipe=4,4′-ethane-1,2-diyldipyridine;bipy=4,4′-bipyridine;bpib=1,4-bis[2-(pyridin-2-yl)-1H-imidazol-1-yl]butane;bpimb=2,2′-[1,4-phenylenebis(methylene-1H-imidazole-1,2-diyl)]dipyridine;bimb=1,1′-(1,4-phenylene)bis(1H-imidazole);bpp=4,4′-propane-1,3-diyldipyridine;bpye=4,4′-ethene-1,2-diyldipyridine;btx=1,1′-[1,4-phenylenedi(methylene)]bis(1H-1,2,4-triazole);p-xbp=1,1′-[1,4-phenylenedi(methylene)]dipyridin-4(1H)-one;1,4-bix=1,1′-[1,4-phenylenedi(methylene)]bis(1H-imidazole);1,2-H2bbomb=4,4′-[1,2-phenylenebis(methyleneoxy)]dibenzoicacid;1,3-bix=1,1′-[1,3-phenylenedi(methylene)]bis(1H-imidazole);1,3-H2bbomb=4,4′-[1,3-phenylenebis(methyleneoxy)]dibenzoicacid;Hbcbpy=1-(4-carboxybenzyl)-4-pyridin-4-ylpyridinium;H2bpdc=biphenyl-4,4′-dicarboxylicacid;H2dpb=4-[(4-carboxybenzyl)oxy]benzoicacid;H2p=5-uoroisophthalicacid;H2nip=5-nitroisophthalicacid;H2pca=4,4′-methylenebis(3-hydroxy-2-naphthoicacid);H2bpea=4,4′-ethene-1,2-diyldibenzoicacid;H2cpds=6,6′-dithiodinicotinicacid;H2cpmb=3-[(4-methylbenzyl)amino]benzoicacid;H2dba=4,4′-methylenebis(benzoicacid);H2dbsf=4,4′-sulfonyldibenzoicacid;H2dhbbdc=4,4′-(1,2-dihydroxyethane-1,2-diyl)dibenzoicacid;H2mbd=4,4′-[methylenebis(oxy)]-dibenzoicacid;H2oba=4,4′-[1,2-ethanediylbis(oxy)]dibenzoicacid;H2obbd=4,4′-[oxybis(ethane-2,1-diyloxy)]dibenzoicacid;H2pcp=4,4′-[propane-1,3-diylbis(oxy)]dibenzoicacid;H2tfpbbp=N,N′-[(2,3,5,6-tetrauoro-1,4-phenylene)dimethylene]diisonicotinamide;H2tp=terephthalicacid;H3cboxip=5-[(4-carboxybenzyl)oxy]isophthalicacid;H3apoxbda=5-[2-(acetylamino)-4-carboxyphenoxy]isophthalicacid;H3idc=imidazole-4,5-dicarboxylicacid.
cINT-2f=2-foldinterpenetrated;PPROT=parallelentangledpolyrotaxane;IPROT=inclinedentangledpolirotaxane.
dNotation:(2,6L1)correspondstoa2,6-cnetwithpointsymbol22.
48.
65,(2,4L1)correspondstoa2,4-cnetwithpointsymbol2.
65,and(2,4L2)correspondstoa2,6-cnetwithpointsymbol22.
49.
64.
eRotaxanelinktype:1.
1foronerod/onering;1.
2foronerod/tworings;2.
2fortworods/tworings.
fClassicationaccordingtoBattenetal.
19gDimers.
hDegreeofcatenation2;indexofseparation1.
iHalfloops2.
1andhalfnotthreaded.
jAll2-loopsarecatenatedviaHopflinks.
kDegreeofcatenation2/2;angle31.
9°.
lDegreeofcatenation2/2;angle42.
5°.
ChemicalReviewsReviewdx.
doi.
org/10.
1021/cr500150m|Chem.
Rev.
2014,114,755775807564eachrodthreadstworingsfromdierentlayers:wecancallittype2.
2.
Itmustbestressedthattheseinextricableentanglementsarecompletelydistinctfromthemoreusualtopologicalclassesdiscussedintheremainderofthisreview,thoughtheyarereminiscentofotherentanglementsoflayerswithout2-memberedloops.
Allthespeciesdescribedcanbeclassiedasexamplesof"polythreadedinterpenetration"(2D+2D→2D).
Ontheotherhand,afewotherspecialcaseshavealsobeenrecentlydiscoveredcontaining2Dlayerswith2-memberedloopsthat,viatheinvolvementoftheserings,give3Dnetworks.
Asinthecasesofpolycatenation,theyshowanincreaseofdimensionalitywithrespecttothebasicconstituentmotifs(i.
e.
,2D+2D→3D)(seeFigure6).
Intwocasesofthese2D+2D→3Dentanglements(BOBGIJ38andCUXTIZ68),thelayersinterlaceinaninclinedfashionthroughrotaxaneinteractionsoftype1.
1.
Twosetsofparallel2Dlayersoftype2,4L1crossatanangleof31.
9°forBOBGIJand42.
5°forCUXTIZwithpolythreadingtoproducethe3Darray.
Inbothcases,allthe2-loopsarethreadedbyrodsoftheinclinedlayerswhileonlyhalfofthesingleedgesareinvolvedinthreading.
Wecandescribethesecasesas"inclinedentangledpolyrotaxanes"(IPROT,seeTable1).
Indeed,thetwospeciesshowsomedierencesifweconsiderthedensityofentanglement,sinceinBOBGIJeachwindowofalayerisinterlacedwithtwolayersoftheinclinedset(andviceversa),whileinCUXTIZeachwindowofalayerisinterlacedwiththreelayersoftheinclinedset,asshowninFigure16.
AquitedierentsituationisobservedinNUDDIA.
54Thetopologyofthe2Dlayersisofthe2,6L1typebutwithtwoorientationsoftheloops(showninredandyellowinFigure17).
Theindividuallayersareentangledwithtwoothers(aboveandbelow)inaparallelfashion,givinganintriguing2D+2D→3Darchitecturethatresemblesthecasesofparallelpolycatenation.
Here,however,thelinksaretwo-rodrotaxanes(oftype2.
1)thatinvolveonlyhalfoftheloops(theredonesinFigure17)thatarethreadedbyonerodoftheupperandonerodofthelowerlayer.
Allthesingleedgesofthelayersareusedinthesethreadinginteractions.
Thisuniqueentanglementcanbedescribedasa"parallelentangledpolyrotaxane"(PPROT,seeTable1),withanindexofseparationIs=1(seesection3.
3forthedenition).
Also,UHUROF67isuniqueinthatthe2-memberedloopsofits2,6L1-typelayersgiveHopflinkswiththeloopsoftwoadjacentlayers(aboveandbelow),thusresultinginaparallelpolycatenated3Darray,withindexofseparationIs=1anddegreeofcatenationDoc=2(seesection3.
3fordenition).
Thisismadepossiblebythefactthatthelayersstackwithmutualrotation,inanABABsequence(seeFigure18).
703.
3.
ParallelPolycatenationTheresultsoftheanalysisusingTOPOSshowthatthereisagroupof127casesthatexhibitparallelpolycatenation;thatis,the2Dlayersareinterlacedinaparallelfashionbystackingwithosetoftheiraverageplanes.
Thistypeofentanglementisessentiallymadepossiblebythefactthattheindividuallayersdisplayacertainthickness.
Therearetworeasonsfortheoccurrenceofthicksheets:theyaremarkedlyundulatedversionsoftheplanar2DlayersillustratedinFigure3ortheyaremultiplelayers(rigorously2-periodic3D),likethoseshowninFigure4.
Theanalysisofthedistributionoftopologiesrevealsthatthethicklayers(multiplelayers)haveamarkedpreferencefortheformationofentanglementswithparallelpolycatenation(85%;seeFigure7).
Thedominanttopologyinthistypeofentanglementissql(54outofthe127examples),butthethicklayersrepresentca.
50%ofallthecases(seeFigure7).
Toachieveabetterrationalizationofthesesystems,wehaveintroducedinapreviouspaper2canindexofthe"degreeofcatenation"(Doc),denedbythenumberofmotifsnentangledtoeachsinglemotif;moreover,wehavealsosuggestedtoestablishwithinparallelpolycatenationthenumberofmotifsthatmustbe"removed"inordertoseparatethewholearrayintotwodistinctparts(indexofseparation,Is).
Inalmostallcases(withonlyveexceptions)weobserveDoc=2andIs=1;thatis,eachFigure12.
Twooldestexamplesofentanglementofpolyrotaxane-likestructuresobservedinthe1990s:NEBSUI53andYOCPEL.
65Figure13.
Fourdierentlayertopologiesobservedinpolyrotaxane-likestructures.
Figure14.
Uniquerotaxanetype1.
2(onerod,tworings).
ChemicalReviewsReviewdx.
doi.
org/10.
1021/cr500150m|Chem.
Rev.
2014,114,755775807565layeriscatenatedwithothertwo(theupperandlowernearestneighbors)andthearraycanbedividedintotwohalvesbyeliminationofonelayer.
Itisworthmentioningbrieytheseveexceptionalcases.
In[Cu(I)2Cu(II)(bipy)2(pydc)2]·4H2O[wherebipy=4,4′-bipyr-idineandpydc=pyridine-2,4-dicarboxylate](WUVBUK71),theindividualmotifsarehcbhighlyundulatedlayers(seeFigure19)thatarecatenatedtofouradjacent(twoupperandtwolower)layers,resultinginDoc=4andIs=3.
Ontheotherhand,[Co5(bipe)9(H2O)8(SO4)4](SO4)·14H2O[wherebipe=1,2-bis(4-pyridyl)ethane](MEBBIE72)iscom-Figure15.
Threeexamplesofinterpenetratedpolyrotaxane-likestructureswithdierentrotaxanetypeofentanglementsofthe2-loops.
Figure16.
Twoexceptionalexamplesofinclinedpolythreadedentanglements.
Figure17.
Uniqueexampleofparallelpolythreadedentanglement.
Figure18.
UniqueexampleofparallelpolycatenationviaHopflinksof2-loops.
Figure19.
Exceptionalcaseofparallelpolycatenationobservedin[CuI2CuII(bipy)2(pydc)2]·4H2O,showingDoc=4withthefourredlayerscatenatedwiththereferenceone(blue)andtheremovalofthreenumberedlayersresultinginIs=3.
ChemicalReviewsReviewdx.
doi.
org/10.
1021/cr500150m|Chem.
Rev.
2014,114,755775807566posedofveryhighve-deckedmultiple2Dlayerswithacomplexuniquetopologythatcanbedescribedasave-layersectionofthechiralthree-dimensionalfour-connectedframeworkof(75.
9)-qzdtopology.
ThesemultiplelayersareinterlacedinparallelfashionwithfoursuchadjacentlayerswithindexesDoc=4andIs=2(seeref72fordetailedgures).
Twootherexamplesexhibitahighdegreeofcatenation(Doc=4,Is=2):,Cu4(dicyanamide)4(bipy)3(MeCN)2(LOT-QUG73)and[Ag3L2][PF6]3·1.
6THF·0.
5C6H6·CH2Cl2[whereL=tetrakis(4-cyanophenyl)silane](NORDAZ,74therstcaseofparallelpolycatenation,reportedin1997).
Bothshowthesame3,4L88topologyoftheirthicksheetsthatarebilayersrepresentingacutofdiamonddia(seeFigure20).
Bilayerswiththistopologyarerelativelycommoninthistypeofentanglement.
Therearevecases(XODJOQ,75BOQSEG,76BURGAX,77OKEJIY,78andWAVTEU79)allhavingDoc=2andIs=1,veryprobablyduetothedecreaseofcagedimensions.
AspecialcaseisthatofWUJDIO,80apuzzlingspeciesshowingparallelpolycatenationofKIathicklayers,withDoc=2butIs=2,whichwillbediscussedlater.
Arecentarticle81illustratesararebreathingbehaviorsupportedbyparallelpolycatenation.
Manydynamicporoussystemshavebeencharacterizeduptonowevidencingthatdierentmechanismsareattheoriginofthisphenomenon,alsocalledgate-opening(withstepwiseisotherms).
Interestingly,thesetypesofnewadsorptionproleswererstrecognizedforstacked2Dcoordinationlayers.
82In2001,LiandKaneko82aintroducedtheterm"gateopeningpressure"toexplainthegasadsorptionisothermsmeasuredonthestackedsquarelayers[Cu(bipy)2(BF4)2](bipy=4,4′-bipyridine)thatunusuallyshowednoadsorptionbelowthe"gatepressure"valueandasteepincreaseatthisvalue.
83InthesameyearKepertandco-workers84reportedanextensivegasandvaporsadsorptionstudyontheexibleinterdigitatedlayersof(82.
10)-KIatopology[Ni2(4,4′-bipyridine)3(NO3)4]showingstepadsorptioniso-therms.
Aftertheseearlyreports,manyotherexamplesofexible2Dcoordinationnetworkshavebeenreported.
85Ithasbeenwelldocumentedthatthedynamisminstacked2Dcoordinationnetworksisassociatedwithexpansion/shrinkageorslidingofthelayersaswellasthebreathingphenomenon;itfollowsthat2Dlayerspolycatenated(undulatedorthick)maybegoodcandidatesforsuchdynamicbehavior.
863.
4.
InclinedPolycatenationThisisaquitelargefamilyofpolycatenated2Dframesthatinclude222cases,manyofwhichwerealreadyreviewedindetailpreviously.
2acItisthesecondlargestgroupafterthatofinterpenetratedarrays(29%vs49%)asshowninFigure7.
Themajorityofthesespeciesconsistoftwoidenticalsetsof2Dparallellayersspanningtwodierentstackingdirections.
Theyarecharacterizedbyanincreaseofdimensionality(2D→3D)andeachindividualmotifiscatenatedwithaninnitenumberofotherinclinedlayersbut,obviously,notwithalltheframescontainedinthe3Darray.
Alsoforthistypeofentanglementwecandenea"degreeofcatenation"(Doc),asymboloftype(a/b/.
.
.
),wherea,b,.
.
.
arethenumbersof"external"ringscatenatedtoasingleringintherst,second,.
.
.
,motif,inorderofincreasingvalue.
2cAnalysisofthetopologiesofsingle2Dmotifsshowsthatalimitednumberofnetsisobserved:sql(159),hcb(45),fes(10),3,4L13(4),4,4L28(1),andthreewithlayersofdierenttopologies(seebelow).
The3,4L13and4,4L28topologiesareillustratedinFigure21.
Cu4(ODPA)2(bpye)4(H2O)10·2H2O[whereH4ODPA=3,3′,4,4′-oxidiphthalicacidandbpye=4,4′-ethene-1,2-diyldipyridine](WAVVIA87)isauniquespeciesexhibitinginclinedpolycatenationofthicklayers(of4,4L28topology),atdierencefromwhatobservedinparallelpolycatenationwhereinterlockingofthicklayersisacommonfeature.
3,4L13isaplanarnetobservedforthefourisomorphousM(MPDCO)(TPB)0.
5(H2O)·(H2O)x,whereMPDCO=6-methylpyridine-2,4-dicarboxylicacidN-oxide,TPB=1,2,3,4-tetra-(4-pyridyl)butane,andM=Co(JITHUQ),Ni(JITJAY),Zn(JITJEC),orCd(JITJIG).
88Becausethedominanttopologyofthelayersissql(morethan70%),particularattentionhasbeendevotedsincethebeginningtoclassicationofthedierentwaysofinterlockingoftwoindependentsets.
Threepossiblearrangementshavebeensuggested,withalargelyacceptednotation:parallelparallel(pp),paralleldiagonal(pd),anddiagonaldiagonal(dd),dependingontherelativeorientationoftheframes.
2c,89AmoredetailedandautomaticclassicationispossiblewiththenewFigure20.
Thicklayer3,4L88anditsobservedparallelpolycatenationinsevenstructures.
Figure21.
Raretopologiesofinclinedpolycatenationobservedinvestructures.
ChemicalReviewsReviewdx.
doi.
org/10.
1021/cr500150m|Chem.
Rev.
2014,114,755775807567topologicalanalysisofHopfringnets21thatwillbereportedinfuturepapers.
Withintheinclinedpolycatenationcategory,manypeculiarsituationsareobservedthatdeservegreaterattention.
Thisisduetothepossiblepresenceof(I)layersofdierentnature(i.
e.
,dierentbytopologyorbychemicalcompositionorevenonlybyligandconformationthat,moreover,canbepresentindierentratios),(II)morethantwointerlacedparallelstackingsets,or(III)unusualvaluesoftheDocindexes.
Insomecases,acombinationofmoreoftheabovefeaturescanbeobservedtogether.
ParticularlyintriguingarethethreecasesexhibitinginclinedpolycatenationoflayerswithdierenttopologiesthatareillustratedinFigure22.
EHOVON,90Ni2(btec)(azpy)2(H2O)6]-[Ni2(btec)(azpy)(H2O)4][whereH4btec=1,2,4,5-benzenete-tracarboxylicacidandazpy=4,4′-azobis(pyridine)],containshcband3,4L13layersinratio1:1andwithDoc=1/1.
Theothertwocases,[Ni(azpy)2(NO3)2]2[Ni2(azpy)3(NO3)4](MA-HYID91)and[Zn(tp)(1,3-bix)]2[Zn2(tp)2(1,3-bix)](GIM-GEP92)[wheretp=terephthalateand1,3-bix=1,3-bis-(imidazol-1-ylmethyl)benzene],bothcontainsqlandhcbinratio2:1.
ThisdierentratioaectsthevaluesofDoc,whichare1/2and1.
5/3,respectively.
ThelatternonintegervalueofDocarisesfromtheuniqueentanglementinGIMGEP:thesqlarerepresentedbytwoindependent4-ringsthatintotalcatenatewiththree6-ringsofhcb(3/2=1.
5),whiletheunique6-ringofthehcbcatenateswiththree4-ringsofthreesql(3),resultinginDoc1.
5/3.
Sixspeciescontaininterlacedlayersofthesamesqltopologybutdierentchemicalcomposition(MOVSEW,93SARFOH,94andVIRYIF95)orligandconformation(MUPZON,96EWAX-UV,97andKOLPEH98).
Indetail:(1)VIRYIF:95Doc1/1,ratio1:1,[Cu(bbi)2][Cu(bbi)V4O12],wherebbi=1,1′-(butane-1,4-diyl)bis(imidazole)(2)MOVSEW:93Doc1/2,ratio1:1,rectangularandsquaresql,[Cu2(5-HIPA)2(4,4′-bipy)2(H2O)2][Cu3(5-HI-PA)2(pyridine-2-carboxylate)2(bipy)2(H2O)4],where5-HIPA=5-hydroxyisophthalateandbipy=4,4′-bipyridine(3)SARFOH:94Doc0.
5/1,ratio1:2,rectangularandsquaresql,[Co2(pico)2(4,4′-bpy)(H2O)2][Co(pico)(4,4′-bpy)]2,wherepico=3-hydroxypicolinate(4)MUPZON:96Doc1/2,ratio1:2,[Ni(bipe)(ip)(H2O)]-[Ni(bipe′)(ip′)(H2O)]2,wherebipe=1,2-bis(4-pyridyl)ethaneandip=isophthalate(5)EWAXUV:97Doc2/2,ratio1:1,planarsqlwithdierentplanarsymmetryc2mmandp4gm,[Cu(1,4-bix)2(SO4)][Cu(1,4-bix′)2(SO4)],where1,4-bix=1,4-bis(1-imidazolylmethyl)-benzene(6)KOLPEH:98Doc1/1,ratio1:1,planarandundulatedsql,[Zn(dbsf)(bimb)][Zn(dbsf′)(1,2-bix′)],whereH2dbsf=4,4′-dicarboxybiphenylsulfoneand1,2-bix=1,2-bis(1-imidazolylmethyl)benzeneAnotherpeculiarsituationconsistsofthepresenceofmorethantwo(asusual)crossingsetsofparallellayers,summarizedinFigure23.
Theanalysisrevealsthatsevencasesshowthisfeature.
Fiveofthemarecomposedofthreesetsofsqlwhosestackingdirectionsliecoplanar;fourofthesehaveDoc2/2/2whileDoc2/2/4isobservedonlyfor{[Ni-(bipe)2(H2O)2]2[Ni2(bipe)3(H2O)6][Ni2(bipe)3(H2O)6]}-(SO4)6[wherebipe=1,2-bis(4-pyridyl)ethane](EJAXOC99),whichpresentsthethreesqlintheratio2:1:1withsquare:rectangular:rectangularwindows.
Thesimplerexampleof[Ni(4,4′-bipyridine)(4-carboxylatocinnamato)](VUX-XOC100)isillustratedinFigure23).
Theothertwocases(outoftheseven)aredierent:[Fe(bpb)2(NCS)2],wherebpb=1,4-bis(4-pyridyl)butadiyne(QOVYEF101),containsthreesetsofsqlthatstackinthreeperpendiculardirectionswithratio1:1:2,givingaDocof3/5/5;and[Co2(4,4′-azopyridine)3(NO3)4](REBWUQ102)exhibitsfourequalsetsofhcb,whosestackingFigure22.
Theonlythreecasesexhibitinginclinedpolycatenationoflayerswithdierenttopologies.
Figure23.
Inclinedpolycatenationwithmorethantwocrossingsetsofparallellayers.
ChemicalReviewsReviewdx.
doi.
org/10.
1021/cr500150m|Chem.
Rev.
2014,114,755775807568directionsaredisposedarounda4-foldcrystallographicaxis,givingaDocof3/3/3/3(seeFigure23).
WecannowbrieyexaminethevaluesoftheindexDoc.
The"normal"caseswithDoc=1/1appearfor123structuresover222,andmarkedlydecreaseuponpassingtoDoc=2/2(71structures)andtoDoc=3/3(12structures).
Withinthe"normal"casesthesqltopologyisdominant(86%),whileinthecaseswithDoc=2/2thesqlandhcbtopologiesarealmostequallypopulated.
WithDoc=3/3,thefestopologyisobserved10timesversusoneinstanceeachforhcbandsql.
AllthreedistincttypesareshowninFigure24.
Thetrendcouldberationalizedbyconsideringthattheincreaseindegreeofcatenationcanbefavoredbyanincreaseofthedimensionsofthenetwindowsuponpassingfromsquares(sql)tohexagons(hcb)andnallytooctagons(fes),onmaintainingthesameedge.
ItisworthmentioningthatthereisonlyonecasewithDoc=4/4:[Zn2(SO4)2(2,6-ndc)(L)][where2,6-H2ndc=2,6-naphthalenedicarboxylicacidandL=N,N′-bis(pyridin-4-yl)hexanediamide](OTUYAE103),basedonsqllayerswithlargerectangularmeshes.
Particularlyintriguingisthestructureof(CuCN)20(piperazine)7(NIMQOQ;104seeFigure25),withastrangeDocvalueof1/6thatisbasedontheinclinedpolycatenationoftwosetsofhcblayersofquitedierentnatureanddimensions.
OnelayercontainsverylargeringsconsistingofCu18(CN)16(piperazine)2macrocyclesthatarecatenatedbysixlayersofthesecondtype,composedofhexagonalCu6(CN)4(piperazine)2units.
ThoughgenerallyallthewindowsofalayershowthesamevalueofDoc,afewexceptionshavealsobeenobservedandareillustratedinFigure25.
WehavealreadymentionedGIMGEP,92withDoc=1.
5/3,amongthethreecaseswithlayersofdierenttopology(seeFigure23).
Moreover,wecanciteSARFOH,94whereonlyhalfthesquarewindowsofonesetarecatenatedandhencewecanreasonablyassumeDoc=0.
5/1,andMUPZON,96wherethedierentconformationoftheligandcreatesadierentratioofthesqlwithrectangularshape,givinganasymmetriccatenationwithDoc=1/2.
Similarly,in[M(terephthalato)-(bispyridylpropane)],whereM=Co(BIYFAR)105orZn(GIDMUC),106bothwithundulatedsqltopology,alllayershavehalfthesquarewindowsdoublycatenatedandtheremainderonlysinglycatenated,henceDoc=1.
5/1.
5.
Theinclinedpolycatenationcategoryshowsmanyexampleswithinterestingmagneticproperties.
Kepertandco-workers107studiedaseriesofironsqlwithDoc=1/1exhibitinginclinationanglesbetweenlayersintherange53.
590°.
Twocobaltcompoundswithsqltopologyalsoshowsimilarproperties:SARFOH,94discussedpreviously,andUNEGEA,108withDoc=2/2.
Otherinterestingpropertieshavebeenobservedinthisclass,veryprobablyduetotheexibilityoftheentanglement:Figure24.
Topologiesobservedin10casesofinclinedpolycatenationwithDoc=3/3.
Figure25.
Inclinedpolycatenationexampleswithunusualvaluesofdegreeofcatenation.
HighlightedinredareringsnotcatenatedinSARFOHandthetworingswithdierentcatenationinBIYFARandGIDMUC.
ChemicalReviewsReviewdx.
doi.
org/10.
1021/cr500150m|Chem.
Rev.
2014,114,755775807569breathingbehavior,109solidstatereaction[2+2]photo-dimerizationbetweentheinclinedsqlnets,110andsingle-crystaltosingle-crystalguestexchangeinhcbwithDoc=2/2.
1113.
5.
BorromeanLinksMolecularringscangiveinextricableentanglementsnotonlyviatopologicalHopflinks;analternativewayinvolvingatleastthreeclosedcircuitsatatimeisrepresentedbytheBorromeanlink(seeFigure26).
TheconstructionofmolecularBorromeanringshasbeenrealizedbyStoddartandco-workers112withanall-in-onesyntheticstrategy.
TheexistenceofBorromeanlinks(insteadoftheusualHopflinks)inentangledcoordinationframeworkswasnoticedsomeyearsago.
2c,20Thisndinghasprobablystimulatedinvestigationsonthesubject,andsincethenseveralnewexampleshavebeendiscoveredintheareaofcoordinationpolymers(seeTable2).
ManystudieshavealsobeendevotedinrecentyearstotherationalsynthesisofBorromeannetworksoforganicmolecularspeciesviaweakcontacts,includingavarietyofsupramolecularinteractionslikehydrogenbonds,halogenbonding,π···πstacking,andM···M(metallophilic)interactions.
TobuildBorromeanstructures,thehoneycombnet(hcb)seemsessentialinanysyntheticstrategy.
113InTable2wereportonlythespeciessustainedbycoordinativebondsandbelongingtotherealmofcoordinationframeworks.
Theseinclude2D(15cases)and3D(12cases)Borromeanentanglements.
Fourotherexamplesexhibitingpeculiarfeaturesarealsolisted;moreover,twocaseshavealsobeenrecognized,forthersttime,tocontain5-Borromeancoplanarentanglementswithacomplex"non-Brunnian"link(seebelow).
135Alltheindividuallayersshowthehcbtopology,andasiswell-known,20inthesearrays(exceptinMUHVOBandMUH-VOB01)125eachlayerisentangledwithtwoothers(one"above"andone"below").
Adjacentlayers,however,arenotcatenatedbutarelinkedviaBorromeanlinks,inwhichnotwoindividualringsareinterlocked.
Theselinkscanproduce2DBorromeanentanglements(2D→2D)(Figure27)aswellas3Dentanglements(2D→3D)(Figure28).
Inthe2Dentanglementsanitenumberoflayers(n≥3)areinterlockedbymeansofn-Borromeanlinks,whileinthe3Dentanglementsthewholearrayrepresentsaninnitecaseofn-Borromeanlinks(Figure28).
Chainsofringsofthiskindaresuchthatnooneringiscatenatedtootherones(Doc=0)butcannotbeseparated.
Inbothcaseswehavetwopossibilities:(i)thearraycanbecompletelyseparatedintothecomponentmotifsbyeliminatingonlyonelayer,thatis,itpossessesthe"Brunnian"property(wedenethisasan-Brunniansystem);136or(ii)thearraydoesnotshowtheBrunnianproperty,thatis,theeliminationofonemotifdoesnotseparatethesystemintofreecomponents(asinan-BorromeansystemlikethechaininFigure28,whereoneeliminationsplitsthesystemintotwohalvesbutleavesalltheothermotifsinextricablyentangled).
ObviouslythreeBorromeanrings,aswellasany3-fold2DBorromeanarray,musthavetheBrunnianproperty(Figure27).
Themajorgroup(15entries)inTable2consistsof2D3-foldentangledBorromeanlayers.
Theyareusuallycharacterizedbythepresenceofmoderatelyundulatedhoneycomblayers(ofacertainthickness,rangefrom3.
0uptoca.
9.
6);thisstructuralfeatureisveryprobablythemainfactorthatfavorstheformationof2Dversus3Dsystems,whichalwaysexhibithighlyundulatedlayers(rangefrom9.
4uptoca.
19.
8)(seebelow).
ItisworthmentioningherethecaseofDOJFUD,(CuCl)2(η2,η2-p-divinylbenzene),reportedmanyyearsagoin1985.
137OuranalyseshaverevealedthatifweconsiderasnodestheCu3Cl3hexagonalunits[CuCledgesof2.
275(3)and2.
323(3)]andasspacersthe(Cu-η2bonded)p-divinylbenzenemolecules,weobtainhcblayersthatgivea2DBorromeanentanglement.
Tothebestofourknowledge,thisistheoldestexampleofsuchentanglementthatwewereabletondwithincoordinationnetworks.
However,anyCu3Cl3hexagonissuperimposedonanidentical(butrotated)unit,thusgivingahexagonalprismaticCu6Cl6clusterwithinterhexagonaldistances[CuCl2.
757(3)]muchlongerthantheanalogousintra-hexagonalcontacts.
Whentheseinteractions(ca.
0.
4shorterthanthesumofvanderWaalsradii)arealsotakenintoaccount,thewholearraybecomesaunique2Dself-catenatedcomplexsheet.
Duetothisuncertainty(orarbitraryselection),wehavedecidedtoexcludeDOJFUDfromTable2.
Thehoneycombnetsofthese2Dlayersareratherdistortedwithrespecttotheidealplanargeometry,andinsteadachairconformationofthe6-ringisobserved(seeFigures27and28).
Inprinciple,2DlayersofanytopologycouldbelinkedintoBorromeanentanglements,andsometheoreticalexamplesinvolvingmotifswithsqlwindows(likeladders)werepreviouslysuggested.
20Thoughallthereportedcases(withincoordinationpolymers)containlayerswiththesamehcbtopology,anoteworthyspecieshasbeenrecentlydescribed:[Ni-(H2O)4(Bpybc)(phthalate)]·9H2O[whereBpybc=1,10-bis(4-carboxybenzyl)-4,4′-bipyridinium](UGUGAF138),whichissustainedbyH-bondsjoiningdimericNi2nodesandrevealstheBorromeaninterlacingofthreesqllayers(seeFigure29).
Inthe3DBorromeanentanglements(12entries),theadjacenthighlyundulatedlayersaredisplacedalongthestackingdirection,adierencefromthe3-fold2DBorromeanarrayswhereallthelayerssharethesameaverageplane.
Thelayersarecharacterizedbyhexagonalwindowsinthechairconformationwithverylongedges;itcomesoutthattheydisplayapronouncedthickness(seeTable2)thatcanfavortheinterlacingofadjacentlayers.
Asinthecaseofthe2DspeciesYUXGOO,126BorromeanentanglementsseemfavoredbythepresenceofargentophilicAg···Agshortcontacts(wellbelowthesumofthevanderWaalsradiioftwoAgatoms),asevidencedinthe3DHOFXOPandHOFXUV.
128InthesespeciesthesilvernodesshowinterlayerAg···Agunsupportedinteractionsof2.
934(2)and2.
946(2),respectively.
Whentheseargentophiliccontactswithinthebondingschemearealsotakenintoaccount,indeed,asingle3Darrayresults(assuggestedbytheauthors):theuniqueself-catenateddia,anonambientisotopicembeddingofthediamondoidnet.
2e,h,20Thestructureof3DWIYMIA131isexceptionalinthattheedgesofthehcblayersare"rotaxane-like"unitswiththreadedcucurbiturilmolecularbeads.
ItisthereforeauniqueexampleofFigure26.
Twopossibleinextricableentanglementsforathree-componentlink:ontheleft,theringsareentangledincouplesbyHopflinks(asobservedin6-ringsfroma3-foldinterpenetratedhcb);ontheright,aBorromeanlinkispresented.
ChemicalReviewsReviewdx.
doi.
org/10.
1021/cr500150m|Chem.
Rev.
2014,114,755775807570Table2.
BorromeanLinkedArraysrefcodecompdformulaaentanglementrecognizedbyauthors(Y/N)layertopology,stackingdirection,nodeedgeofhcb();thicknessb()spacegroupyear,ref1DAPPAN{[Ni(hatcd)]3(tcba)2}BOR(2D→2D)Yhcb,[001],tcba318.
12;7.
05R32012,1142GUWXIF{Ni(cyclam)]3(tcpeb)2}·6py·4H2OBOR(2D→2D)Nhcb,[102],tcpeb324.
90and25.
08;3.
43P21/c2003,1153ICIWOG[Cu(tmeda)]2[Au(CN)2]3ClO4BOR(2D→2D)Nhcb,[001],Cu10.
12and10.
20;6.
78R322001,1164IWENII[Zn(bmb)(tp)2·3H2OBOR(2D→2D)Yhcb,[010],Zn11.
12,14.
69,and11.
00;5.
78P12011,1175LIKBIR[WOS3Cu3(bipy)3]IBOR(2D→2D)Yhcb,[001],WOS3Cu3cluster15.
27;8.
80R3c2007,1186NEQDET[Ag2(bismin)3](CF3SO3)2BOR(2D→2D)Yhcb,[001],Ag14.
62,3.
22P32006,1197PUNRUM[Zn2(bppu)3](SO4)2·xH2OBOR(2D→2D)Yhcb,[001],Zn17.
81,9.
47R32010,1208RESHUT[Hg1I2(bippyr)Hg2I2(bippyr)0.
5]BOR(2D→2D)Yhcb,[011],Hg115.
55,22.
42,and20.
18;8.
92P12006,1219SAVCAU[Ag2(bismin)3](BF4)2BOR(2D→2D)Yhcb,[001],Ag14.
30;3.
06P32005,12210TANJEZ[(Cu4I4)2(biethiop)3(H2O)2]·4H2OBOR(2D→2D)Nhcb,[001],Cu4I4cluster19.
31;9.
58R3c2011,12311WOCXIW[Ag2(ethapu)3](NO3)2·2MeCN·xSBOR(2D→2D)Yhcb,[001],Ag16.
39and16.
04;3.
40C2/c2008,12412WOCXOCAg2(ethapu)3](NO3)2·7H2OBOR(2D→2D)Yhcb,[001],Ag16.
39and16.
04;3.
81P21/c2008,12413,14MUHVOB/01[Pb2(obed)2(bipy)]BOR5f(2D→2D)Nhcb,[100],Pb12.
31and17.
95;5.
14P21/c2009,12515YUXGOO[Ag2(bisox)3](ClO4)2BOR(2D→2D)Yhcb,[001],Ag15.
14;3.
00cP32010,12616AHIDEA[Ag2(bipycox)3OH][ClO4]·2.
5H2O3DBOR(2D→3D)Nhcb,[001],Ag18.
54,18.
72,and19.
08;16.
61P322002,12717HOFXOP[Ag2(H2bisalic)3](NO3)23DBOR(2D→3D)Nhcb,[001],Ag12.
88;9.
41dR31999,12818HOFXUV[Ag2(H2bisalic)3](ClO4)23DBOR(2D→3D)Nhcb,[001],Ag12.
13;9.
49dR31999,12819KAVDAN[(bpybc)3Mn2(H2O)6](OH)4·15H2O3DBOR(2D→3D)Nhcb,[001],Mn22.
19;19.
74R32005,12920KAVDER[(bpybc)3Ni2(H2O)6](OH)4·15H2O3DBOR(2D→3D)Nhcb,[001],Ni21.
86;19.
37R32005,12921KAVDIV[(bpybc)3Co2(H2O)6](OH)4·15H2O3DBOR(2D→3D)Nhcb,[001],Co22.
00;19.
48R32005,12922UZAZUR[Zn4(bpybc)6(H2O)12](OH)8·9H2O3DBOR(2D→3D)Nhcb,[001],Zn22.
03;19.
67R32011,13024YANWOB[Eu4(bpybc)6(H2O)9(SO4)3]·(OH)6·51.
5H2O3DBOR(2D→3D)Yhcb,[001],Eu22.
22;19.
54R32012,13225YANWUH[Mn4(bpybc)6(H2O)12](tp)3·(OH)2·30H2O3DBOR(2D→3D)Yhcb,[001],Mn22.
10;19.
82R32012,13226,27YANXAO/01[Mn2(bpybc)3(H2O)6](SO4)2·21H2O3DBOR(2D→3D)Yhcb,[001],Mn22.
32;18.
44R32012,13228GIQGAP{[Ag3(tibimt)2][Ag2(tibimt)2)]}(SbF6)5·CHCl3·H2O2D+2DBOR+2DYFor2DBOR:hcb,[001],tibimt.
For2D:hcb,[001],tibimtandAg.
For2DBOR:19.
89;8.
88.
For2D:10.
67;2.
88.
P63222007,13329GIQGET{[Ag3(tibimb)2][Ag2(tibimb)2)]}(SbF6)5·1.
5H2O2D+2DBOR+2DYFor2DBOR:hcb,[001],tibimb.
For2D:hcb,[001],tibimbandAg.
For2DBOR:19.
95;8.
76.
For2D:10.
81;3.
13.
P63222007,13330ISAROK[Ag2(bisox)3](BF4)2·1.
2Et2O2DBOR/cageYhcb,[001],Ag14.
72;3.
06eP63/m2011,13431YUXGUU[Ag2(bisox)3](ClO4)2·1.
2Et2O2DBOR/cageYhcb,[001],Ag14.
76;3.
04fP63/m2010,126aAbbreviationsforligands:biethiop=4,4′-bis(ethylthiomethyl)biphenyl;bippyr=N,N′-bis(4-pyridylmethyl)pyromelliticdiimide;bipy=4,4′-bipyridine;cox=N,N′-Bis(3-pyridinecarboxamide)-1,6-hexane;bismin=1,4-bis[(2-methylimidazol-1-yl)methyl]benzene;bisox=1,4-bis[(3,5-dimethylisoxazol-4-yl)methyl]benzene;bmb=1,4-bis(2-methylbenzimidazol-1-ylmethyl)benzene;bppu=N,N′-bis(3-pyridyl)-p-phenylenebis(urea);CB=cucurbit[6]uril;cyclam=1,4,8,11-tetraazacyclotetradecane;ethapu=L1=N,N″-ethane-1,2-diylbis(3-pyridin-3-ylurea);hactd=3,10-bis(2-uorobenzyl)-1,3,5,8,10,12-hexaazacyclotetradecane;tibimb=1,3,5-tris{4-[(2-methylbenzimidazol-1-yl)methyl]phenyl}benzene;tibimt=2,4,6-tris{4-[(2-methylbenzimidazol-1-yl)methyl]phenyl}-1,3,5-triazine;tmeda=N,N,N′,N′-tetramethylethylenediamine;H2bisalic=N,N′-bis(salicylidene)-1,4-diaminobutane;H2bpyab(NO3)2=N,N′-bis(4-carboxyphenyl)-1,4-diammoniobutanedinitrate;H2bpybcCl2=1,1′-bis(4-carboxybenzyl)-4,4′-bipyridiniumdichloride;H2obed=3,3′-[oxybis(ethane-2,1-diyloxy)]dibenzoicacid;H2tp=terephthalicacid(1,2-benzenedicarboxylicacid);H3tcba=tri(4-carboxybenzyl)amine;H3tcpeb=1,3,5-tris[2-(4-carboxyphenyl)-1-ethynyl]benzene;Et2O=diethylether;py=pyridine.
bThicknessisevaluatedasthedistancebetweenthetwoplanespassingthroughthenodesofthehcblayer.
cAg···Ag=2.
999.
dWithAg···Aginteractionsself-catenateddia.
eAg···Ag=3.
06and3.
32.
fAg···Ag=3.
04and3.
32.
ChemicalReviewsReviewdx.
doi.
org/10.
1021/cr500150m|Chem.
Rev.
2014,114,755775807571"Borromeanpolyrotaxane",unnoticedbytheauthors(Figure30).
Fourspeciescontaining2DBorromean3-foldentangledlayersshouldbediscussedseparatelybecausetheyexhibitparticularandfascinatingadditionalstructuralfeatures.
InthepairGIQGAPandGIQGET,133therearetwodistincttypesofhcbnetworksinthesamecrystal:oneisasinglehcbnetwithshorteredgesandratheratconformation,whilethesecondonehaslongeredgesandachairconformationandisinvolvedina3-foldBorromeanentanglement.
ThecrystalpackingconsistsofstackingoftheBorromeanlayersintercalatedbytwosinglelayersthatareplacedface-to-faceonthetwosidesoftheBorromeanentanglements,thusgiving"sandwichedBorromeansheets"(Figure31).
Thesetwospeciescouldbealsoincludedinthetableofmixedentanglementsdiscussedinsection3.
6.
Anotherpairof(verysimilar)compounds,ISAROK134andYUXGUU,126showinterestingstructuresconsistingof2DBorromeanlayersintercalatedbyAg2L3cages(withthesamecompositionofthehcblayers)thatjoinadjacententangledsheetsviaweakargentophiliccontacts.
Pillaringof2DBorromeansheetsisalsoobservedin[Cd3(bfcs)3(tttmb)2(H2O)4]·8H2O[wheretttmb=1,3,5-tris(1,2,4-triazol-1-ylmethyl)-2,4,6-trime-thylbenzeneandH2bfcs=1,1′-bis(3-carboxy-1-oxopropyl)-ferrocene](FUWVUP)139withinterlayerferrocenylbridges.
ThesametypeofbridgeispresentalsowithintheBorromeansheets(intralayer),leadingtoanarraydenedbytheauthorsas"interlockedBorromeanlayers",whichoverallresultsinasingletrinodalself-catenated3Dnetoftopology3,4,4T93.
ForthisreasonwehavenotincludedFUWVUPinTable2.
Inveryrecenttimes,severalentanglementsbasedonn-Borromeanlinkshavebeenobservedthatexhibitincreasedcomplexity.
Thereisanentireworldtobediscoveredinthefutureofnewintriguingandstimulatingentangledsystemsofthistypethatwillneedsomerationalization.
140Forexample,theexcitingcaseofMUHVOB(andoftheidenticalMUH-VOB01)125representsanimportanttopologicalnovelty,inthatitis,atpresent,theuniqueexampleofa2D5-Borromeanentanglement.
ItconsistsoftheinterweavingofvecoplanarhcblayersjoinedexclusivelyviaBorromeanlinks(theauthorsdescribedthesystemsimplyintermsof2D5-foldinter-penetration).
Similartothemoreusual3-Borromean(3-Brunnian)sheets,allthelayerssharethesameaverageplane,butincontrast,theentanglementisdrasticallymorecomplexandnon-Brunnian.
Intheanalysisofthesecomplexlinks,asomewhathelpfulapproachmaybethecompletecharacterizationoftopologicalpropertiesofthe"basic"or"fundamental"linkthatcomprisesallFigure27.
2DBorromeanentanglementshowingtheBrunnianproperty.
Figure28.
3DBorromeanentanglementobserved(noticethatitisnotBrunnian).
Figure29.
2DBorromeanentanglementofsqlobservedinH-bondedUGUGAF.
Figure30.
Exceptional3DBorromeanpolyrotaxane:grayringsrepresentcucurbiturilmolecules.
ChemicalReviewsReviewdx.
doi.
org/10.
1021/cr500150m|Chem.
Rev.
2014,114,755775807572theringsentangledwiththebasicone(ifthereisonlyoneindependentring),illustratedinFigure32.
Usingtheconceptsoftheknotsandlinkstheory,wecanfollowthesuggestionsbyLiangandMislow135inordertondacuttingpathwayandtherelevantBrunn'scuttingnumbersμandM.
Theminimumcuttingnumberμisthesmallestnumberofcutsthatsucetounlinkalltheremaininguncutlinks,whilethemaximumcuttingnumberMisthelargestpossiblenumberofcutsthatcanbeappliedtounlinkalltheremaininguncutrings.
Thus,thedistinctionbetweenBorromeanlinkswithandwithouttheBrunnianpropertyisthatμ=M=1fortheformerandM>1forthelatter.
Inthepresentcase(seeFigure32),eliminationofoneringleavesvepossibledierent,allnontrivial4-Borromeanlinks,whileeliminationoftworingsproduces10dierententangle-mentsofwhichvearetrivialandveare3-Borromeanlinks.
Thus,μ=2andM=3.
Theseresultsarereferredtothesingle5-Borromeanfundamentallink.
Obviously,itcomesoutthatifthefundamentallinkisnon-Brunnian,thesameholdsfortheentireentanglement.
Otherextrapolationsfromthefundamentallinktothewholeentanglement,ontheotherhand,arediculttoformulate,andfurtherstudiesonthissubjectaresurelyneeded.
Itseemsalsothatifweremovetwoselectedappropriatelayerswecangetthreeseparatedlayers,sobyanalogyIs=2.
AnevenmorecomplexcaseisthatoftheH-bondedorganicmoleculesinthecocrystal[2TCA·3dpyb][whereTCA=1,3,5-tris(4-carboxyphenyl)adamantaneanddpyb=1,4-di(pyridin-4-yl)benzene](FUYBUX141)thatwemustmentionherebecauseofitsintriguingtopology,thoughitdoesnotbelongtotherealmofcoordinationnetworksobservedinthisreview.
AgainthestructureiscomposedofparallelhoneycomblayersthatareentangledexclusivelyviaBorromeanlinkstogiveanoverall3Dsystem(2D→3D).
Wecanrationalizethearrayasconsistingofstacked7-foldentangledsheets(seeFigure33).
These7-Borromeansheetscontainsevenhcbcoplanarlayers.
Thus,wecaninterestinglycomparethefundamentallinkinthreesituationsofincreasingcomplexitythatcontainthree(any3-Borromean),ve(MUHVOB),andseven(FUYBUX)layersthatsharethesameaverageplanebutshowagrowingnumberoftripletsinvolvedintheentanglement(1,10,and35perfundamentallink,respectively).
AtripletisasystemcomprisingthreeBorromeanlinkedrings;thenumberoftripletscanbeassumedasthenumberofcombinations(viaBorromeanlinks)ofNringstakenthreeatatime.
Moreover,these7-Borromeansheetsareinterlinkedwiththetwoadjacent(upperandlower)sheetsviaotherBorromeanlinks.
Indetail,eachindividuallayerofa7-foldsheetislinkedwithtwoindividualmotifsoftheupperandwithtwoofthelowerentangledsheet,resultinginthiswayinanoverall3Darchitecture.
Thesituationcanbecomparedwiththatofthepreviouslydescribed3DBorromeanspecies(inTable2),withthenotabledierence[2D(7-fold)→3D]insteadof[2D(single)→3D].
3.
6.
MixedTypesofEntanglementof2DMotifsInthislastsection,weexaminethepossiblepresenceofmorethanonetypeofentanglementof2Dmotifs(equalordierentinnature)inthesamecrystalspecies.
Intheprevioussectionswehaveunderlinedthattheentanglementscaninvolve2Dlayersthatdierintopology,composition,orconformationoftheligandsbutthatareentangledinonemanneronly.
Averylimitednumberofcases,however,cannotbeincludedintheabovelistedgroups(illustratedinFigure7)becauseofthecontemporaryFigure31.
Alternated2DBorromeanlayers.
Figure32.
2D5-Borromeannon-Brunnianlayers.
Figure33.
3DBorromeanentanglementof2D7-foldBorromeanintheH-bondedFUYBUX.
Atthetop,asideviewofa7-foldBorromeansheetisillustratedthatrevealsalsotheinterlinkofonemotifofthecentral7-foldsheetwithonemotifoftheadjacentupperandonemotifoftheloweridenticalsheets.
ChemicalReviewsReviewdx.
doi.
org/10.
1021/cr500150m|Chem.
Rev.
2014,114,755775807573presenceofdierenttypesofentanglementofthelayers(seeTable3).
Anextremesituationconsistsofthepresenceofbothsingleandinterpenetrated2Dlayerssimultaneously.
Threeofthesespecies(FAGCASandFAGCEW143andVAMXEO01144)showthestackingofalternatesingleand2-foldinterpenetratedlayers.
Interestingly,[Zn(tp)(bphy)](VAMXEO)156wasalsoisolatedwithoutclathratesolventsandconsistsofthesame2-foldlayersasVAMXEO01144butwithoutintercalationofsingleones,thedierencearisingfromtheconditionsandratioofreactantsusedinthesolvothermalsynthesis.
Ontheotherhand,inACUCAC142weobservetwodistinctsinglelayersintercalatingintothestacked2-foldinterpenetratedlayers(seeFigure34).
Otherspecies(XOFYUM157andOWUFOC158)containingpolymeric1Dmotifsintercalatedwithin2-foldinterpenetratedlayershavebeenomittedhereandconsideredonlyfromthepointofviewoftheinterpenetrationphenomenon.
Themostpopulatedgroup(eightentries)consistsofn-foldinterpenetratedlayersthatarefurtherpolycatenatedinaparallelfashiontogivetheoverall3Dstructure(PCATof2-foldor3-foldinterpenetratedlayers).
Hereweobservebothinterpenetrationandparallelpolycatenationof2Dlayers,thatis,twodistincttypesofentanglementinthesamespecies.
159Then-foldinter-penetratedmotifs(2-foldinsixcasesand3-foldintwocases)arecharacterizedbythecoplanarityoftheinvolvedlayers(thatsharethesameaverageplane,asdiscussedabove).
Thesearefurthercatenatedwiththeadjacent(upperandlower)identical(parallelbutoset)interpenetratedmotifstogivethe3Darray.
Theentanglementsherediscussedcontainindividualmotifsthatareeithermarkedlyundulatedsinglelayersorthickdoublelayers.
Itisinterestingtocomparethe2-foldinterpenetratedspecies(seeFigure35).
TherearetwodistinctgroupsdependingTable3.
MixedEntanglementsof2DLayersrefcodecompdformulaatypeofentanglementblayertopology,stackingdirection,nodeyear,ref1ACUCAC[Zn4(peba)8]·(Hpeba)·H2OINT-2f(A)/2D(B)/2D(C)csql,[001],Zn2001,1422FAGCAS[Ag(bpp)2]AsF6INT-2f(A)/2D(B)dsql,[001],Ag2002,1433FAGCEW[Ag(bpp)2]PF6INT-2f(A)/2D(B)dsql,[001],Ag2002,1434VAMXEO01[Zn3(tp)3(bphy)3]·2DMF·10H2OINT-2f(A)/2D(B)dsql,[010],Zn2012,1445ISABUZ[Ag(tcphb)(CF3SO3)]·0.
5H2OPCATofINT-2fehcb,[010],Agandtcphb2004,1456VAJSIK[Zn(nip)(1,4-bpeb)]·2H2OPCATofINT-2fesql,[101],Zn2010,1467WAPCIBCd2(nbpdc)2(1,3-bix)2H2OPCATofINT-2fe3,4L127,[001],Cd2012,1478KAXTUA[Ag6(tipa)4(β-Mo8O26)][H2(β-Mo8O26)]·5H2OPCATofINT-2ff3,3L20,[112],Agandtipa2012,1489MATJIC[Ni5(pda)5(bpp)5]·12H2OPCATofINT-2ffsql,[001],Ni2012,14910OHAYOM[Zn(mfda)(bpp)]PCATofINT-2ffsql,[010],Zn2009,15011XOPLEU[Cd(pyada)2(ClO4)2(CH3CH2OH)2]PCATofINT-3fgsql,[001],Cd2009,15112VUHCUX[Ag3(tppt)2](ClO4)3·8DMSOPCATofINT-3fhhcb,[102],tppt2009,15213CAXVAA[Zn10(bbc)5(bpdc)2(H2O)10]NO3(DEF)28(H2O)8PCAT+INT(hcb)ihcb,3,3,4,5L14,[001];bbc,Zn2(COO)32012,15314PAQCOZ[Ag(cpba)2]SbF6ICATofINT-2fjsql,[110]and[110],Ag1998,15415REBBUX[Zn2(L1)(H2O)]·NO3·DMFICATofINT-2fkhcb,[100]and[010],L1andZn2(COO)32012,155aAbbreviationsforligands:bphy=1,2-bis(4-pyridyl)hydrazine;bpp=4,4′-propane-1,3-diyldipyridine1,3-bis(4-pyridyl)propane;cpba=3-cyanophenyl4-cyanobenzoate;pyada=N,N′-di(4-pyridyl)adipoamide;tcphb=1,3,5-tris(4-cyanophenoxymethyl)-2,4,6-trimethylbenzene;tipa=tris(4-imidazolylphenyl)amine;tppt=2,4,6-tris[4-(pyridin-4-ylthio)methyl]phenyl-1,3,5-triazine;1,3-bix=1,3-bis(imidazol-1-ylmethyl)benzene;1,4-bpeb=1,4-bis[2-(4-pyridyl)ethenyl]benzene;Hpeba=3-[2-(4-pyridyl)ethenyl]benzoicacid;H2bpdc=biphenyl-4,4′-dicarboxylicacid;H2mfda=9,9-dimethyluorene-2,7-dicarboxylicacid;H2nbpdc=2,2′-dinitro-4,4′-biphenyldicarboxylacid;H2nip=5-nitroisophthalicacid;H2pda=phenylenediacrylicacid;H2tp=terephthalicacid;H3bbc=4,4′,4″-[benzene-1,3,5-triyl-tris(benzene-4,1-diyl)]tribenzoate;H3L1=4′,4″,4-[(2,4,6-trimethylbenzene-1,3,5-triyl)tris(methyleneoxy)]tribiphenyl-4-carboxylicacid;DMF=dimethylformamide;DMSO=dimethylsulfoxide.
bINT-nf=n-foldinterpenetratedcStackingsequenceABCABC.
dStackingsequenceABAB.
eDoc=3(1+1+1);Is=2.
fDoc=5(2+2+1);Is=2.
gDoc=8(3+3+2);Is=3.
hDoc=10(2+2+2+2+2);Is=6.
i2hcb+3,3,4,5L14withDoc=2andIs=1.
jAngle83.
5°,viewdown[001];Doc=3/3.
kAngle90°,viewdown[001];Doc=5/5.
Figure34.
Entanglementswiththepresenceofbothsingleandinterpenetrated2Dlayerssimultaneously.
Figure35.
Parallelpolycatenationof2-foldinterpenetratedlayers.
ChemicalReviewsReviewdx.
doi.
org/10.
1021/cr500150m|Chem.
Rev.
2014,114,755775807574onthewayinwhichtheinterpenetratedlayersarestacked,leadingtodierentvaluesofthedegreeofcatenation(Doc).
InhcbISABUZ145andsqlVAJSIK,146alltheundulatedlayersstack,maintainingthesamedirectionoftherunningwaves(stackingnearlyinaAAAAsequence),andthesamehappensforthethicklayer3,4L127inWAPCIB.
147Itturnsoutthateachindividuallayeriscatenatedtoonlyonemotifoftheupper2-foldlayerandoneofthelower2-foldlayerinadditiontothatinterpenetratedinthesameplane(1+1+1),givingDoc=3.
Ontheotherhand,insqlMATJIC,149sqlOHAYOM,150andthethicklayer3,3L20KAXTUA,148uponpassingfromaninterpenetratedlayertotheupperandloweradjacentones,thewaveschangedrasticallytheirrunningdirection(i.
e.
,thestackingsequenceisABAB).
Asaconsequence,eachindividuallayeriscatenatedtoallthemotifsoftheupperandlower2-foldlayersinadditiontothatinterpenetratedinthesameplane(2+2+1),givingDoc=5.
Thetwoexamplesofpolycatenation(XOPLEU151andVUHCUX152)of3-foldinterpenetratedlayersaremorecomplicated.
InXOPLEU,the3-foldinterpenetratedlayersstackinanABABsequence(seeFigure36).
Thisimpliesthateachindividuallayeriscatenatedtoallthreemotifsoftheupperandlowerinterpenetratedlayersinadditiontotwointhesameplane(3+3+2).
Itwascorrectlyobservedthateachsquarewindowofonemotifiscatenatedtosixringsonly:twobelongingtotwomotifsintheupperlayer,twobelongingtotwomotifsinthelowerlayer,andtwointhesameplane.
Nonetheless,thevalueofDocis8,asstatedabove.
Thetwostatements,however,arenotconictingsincethecatenationofonemotifwithanadjacent(upperorlower)motifinvolvesonly2/3oftherings.
InthecaseofVUHCUX,the3-foldinterpenetratedlayersshowadierentstackingwhencomparedwithXOPLEU,thatis,oftheAAAAtype(seeFigure36).
Eachindividualmotifiscatenatedtotwoofthethreemotifsoftheupperandlowerinterpenetratedlayersinadditiontotwointhesameplane.
Moreover,ascorrectlydescribedbytheauthors,the3-foldinterpenetratedlayersareinterlockednotonlywiththetwonearest-neighboringlayersbutalsowiththesecond-nearest-neighboringlayers(seeFigure36).
Therefore,theoverallpolycatenationmotifis(2+2+2+2+2);thatis,theDocvalueis10.
AuniquecaseofmixedentanglementisthatofCAXVAA.
153Inthisspecieswehaveararesimultaneousoccurrenceofbothpolycatenation(involvinghoneycombtriplelayers3,3,4,5L14withDoc=2andIs=1)andinterpenetrationoffourhcblayersforeachofthetripleones,asshowninFigure37.
Thesimultaneousexistenceofinterpenetrationandinclinedpolycatenationisaquiterareevent,andauniquestructurehasbeenknownformanyyearssince1998(PAQCOZ).
154Onlyin2012wasthesecondcasereported(REBBUX).
155Inbothspecies,twosetsof2D2-foldinterpenetratedlayersofsqlandhcbtopology,respectively,areinterlacedinaninclinedfashion.
ThedierenceintheentanglementsconsistsmainlyofthefactthatinPAQCOZeachsquareringiscatenatedwiththreeringsofthreeotherlayers(1+1+1),givingDoc=3/3,whileinREBBUXeachhcbringiscatenatedwithveringsofveotherlayers(1+2+2),givingDoc=5/5(seeFigure38).
Intheformerspeciesaringiscatenatedwithoneinclined2-foldinterpenetratedlayer,whileinthelatterspeciesitiscatenatedwithtwosuchinterpenetratedlayers.
Finally,wemustbrieymentioninthissectionthecaseofAg2[1,2-bis(4-pyridyl)ethane]2(4,4′-biphenyldicarboxylate)(WUJDIO80)thatisincludedinthegroupofparallelFigure36.
Parallelpolycatenationof3-foldinterpenetratedlayers.
Figure37.
Uniqueexampleofparallelpolycatenationofthicklayers(blueandgreen)withinterpenetrationofsinglehcb(red).
ChemicalReviewsReviewdx.
doi.
org/10.
1021/cr500150m|Chem.
Rev.
2014,114,755775807575polycatenatedframeworks.
Itwaspreviouslydiscussedingreatdetailforitsunusualandpuzzlingtopologicalfeatures.
2cThestructureiscomposedoftwodistinctsetsofparallelpolycatenated2Dbilayersof(82.
10)-KIatopologythatappearinextricablyentangled.
However,eachindividual2Dmotifisinterlockedonlybythetwonearest-neighboringonesofthesamesetand,quitesurprisingly,nomotifsofonesetarecatenated(viaHopflinks)byindividualmotifsoftheotherset(seeFigure39).
EachpolycatenatedsethasDoc=2andIs=1,whilethewholearrayhasDoc=2andIs=2.
Theexactnatureofthelinkagebetweenthetwosetsoflayersstillawaitsacorrecttopologicalclassication.
Certainlythecatenationoftheringsofonesetpreventsthedisentanglementoftheothersetandviceversa.
Thesituationisideallycomparabletothatofarecentlyreportedexceptionalspeciesformedbypolycatenationof0Dmetalorganicadamantane-likecages,producinga2-foldinterpene-trated3Dpcunetwork:herethe0Dmotifsarecatenatedonlywithotheronesofthesame3Dnet,buttheircatenationdoesnotallowthedisentanglementoftheentirearchitecture.
2f,1604.
CONCLUSIONSTheinvestigationofentangledtwo-dimensionalframeworkshasshownthatthisisanumerousfamilyincluding783cases(CSD,version5.
34,November2012).
Theentangledphenomenaaccountforabout10%ofthetotal2Dsample,whileinterpenetrationin3Dstructuresaccountsforabout17%.
Inspiteofthisdecrease,thespeciesdiscussedhereareparticularlyintriguingbecauseoftherichnessofthe2Dnettopologyandthevarietyofobservedtypesofentanglement.
Inadditiontothewell-establishedphenomenaofinterpenetration(thedominantone),polycatenation(parallelandinclined),andBorromeanlinkedsystems,otherclassesexhibitingpuzzlingtopologieshavebeenobservedanddiscussed.
Thus,wehaveenvisagedthepossibilityofanewtypeofentanglement,intermediatebetweeninterpenetrationandparallelpolycatena-tion,thatiscomposedofanitenumberoflayerscatenatedinaparallelfashion(n-catenanes),withonlyafewcasespresentlyknown.
Aseparatesectionhasbeendevotedtothedetailedanalysisofentangledlayerscontaining2-nodeloopsthreadedbyedgesofadjacentlayers(43examples).
WithinBorromeanlinkedsystems,inadditiontothewell-knownexamplesofBorromean2DwavesorBorromean3Dframes,wedescribeafewexceptionalcasesofn-foldBorromean(non-Brunnian)layerswithn=5and7.
Wehavealsosystematicallyclassiedforthersttimeallthecasesexhibitingdierenttypesofentanglementinthesamestructure.
Finally,fromthepointofviewofpropertiesandpotentialapplications,theseentangled2Dmotifsshowbehaviorthatcanbeessentiallyconsideredtypicalofdynamic/exibleporousframeworks(softporousmaterials)thatcanrespondtoexternalstimuliofvarioustypesbychangingtheirporosity.
Thisleadstoguest-inducedtransformations,solid-statereactions,breathingbehavior,selectivemolecularrecognition,anddierentmagneticproperties.
Interestingly,ofthedierenttypesofentanglement,polycatenatedspecies(parallelandinclined)seemthemorepromising.
Thoughsomeoftheseraretypesofentanglementmaynowappearsomewhatexotic,webelievethatotherexamplesofsuchunusualsystemswillbeobservedinthenearfutureandthatarationalizationoftheircomplexitycanbeausefulcontributiontotheengineeringofcoordinationpolymersandmetalorganicframeworksandtheirproperties,consideringtheexplosivegrowthofthisareainrecentyears.
ASSOCIATEDCONTENT*SSupportingInformationReferencesandclassicationforall783structuresexamined(xls);onetable,listingthedistributionofnetworktopologiesamongPCATentanglement,andthreegures,showing17thicklayersalreadyobservednonentangled,VUKHEPintwopossiblerepresentations,andasinglekgdobservedin2-foldinter-penetratedTONFUY(pdf).
ThismaterialisavailablefreeofchargeviatheInternetathttp://pubs.
acs.
org.
AUTHORINFORMATIONCorrespondingAuthors*E-maillucia.
carlucci@unimi.
it.
*E-maildavide.
proserpio@unimi.
it.
*E-mailblatov@samsu.
ru.
NotesTheauthorsdeclarenocompetingnancialinterest.
Figure38.
Inclinedpolycatenationof2-foldinterpenetratedhcblayers.
Ontherightthecatenationofone6-ring(inred)withveringsfromvedierentlayersshowstheoriginofDoc5/5from5=2+2+1.
Figure39.
ParallelpolycatenationoftwosetsofKIalayersobservedinWUJDIO.
ChemicalReviewsReviewdx.
doi.
org/10.
1021/cr500150m|Chem.
Rev.
2014,114,755775807576BiographiesLuciaCarlucciwasborninItalyin1963.
Sheobtainedthe"Laurea"degreeinIndustrialChemistry(1989)andaPh.
D.
inChemicalSciences(1993)fromtheUniversityofBologna.
ShemovedtotheUniversityofMilanin1993.
Since2010shehasbeenAssociateProfessorofGeneralandInorganicChemistryattheDepartmentofChemistryofthesameuniversity.
Afterearlyinterestsinorganometallicchemistry,herresearchactivitywasorientedtoporouscoordinationpolymersandfocusedonthedevelopmentofnewdesignedligandsandsyntheticstrategies,X-raydiraction,andtopologicalandentanglementanalyses.
GianfrancoCianiwasborninFerrara(Italy)in1944.
Heretiredfromacademicactivityin2010afterbeingFullProfessorofInorganicChemistryattheUniversityofMilanoandDirectorofDCSSI.
Since1969inMilano,hisactivitywasdevotedtoX-raycrystallographicstudiesofcoordinationandorganometalliccompounds,mainlycarbonylmetalclusters.
Since1993hismaininteresthasbeendevotedtothestudyofcoordinationnetworksandtheirtopologiesandtothecrystalengineeringofmineralomimeticandnanoporous2Dand3Dnetworks.
Heistheauthorofover236publications.
DavideM.
ProserpiowasborninItalyin1962.
In1986heearnedthe"'Laurea'"degreeinChemistryattheUniversityofPavia.
InthenextveyearshewasactiveintheeldofappliedtheoreticalchemistryunderthesupervisionofCarloMealli(CNR,Florence,Italy)andRoaldHomann(CornellUniversity,Ithaca,NY).
Since1991hehasbeenattheUniversityofMilano,asanAssociateProfessorfrom2003,withspecialinterestintopologicalcrystalchemistry:interpenetration,polycatena-tion,andpolythreadingofnets.
TatyanaG.
Mitinawasbornin1988inMednogorsk,Orenburgregion,Russia.
ShegraduatedfromSamaraStateUniversityin2010andnowisaresearcheratSamaraCenterforTheoreticalMaterialsScience.
Herresearchinterestsconcerntopologicalanalysisoftwo-periodiccoordinationpolymersandapplicationsofcomputermethodstothedesignofnewmaterials.
VladislavA.
Blatovwasbornin1965inSamara(formerlyKuibyshev),Russia.
HegraduatedfromSamaraStateUniversity(1987)andearneddegreesofCandidate(1991)andDoctorinChemistry(1998)fromtheInstituteofGeneralandInorganicChemistry(Moscow).
HehasbeenaFullProfessorintheSSUChemistryDepartmentsince1998andChemicalReviewsReviewdx.
doi.
org/10.
1021/cr500150m|Chem.
Rev.
2014,114,755775807577directoroftheSamaraCenterforTheoreticalMaterialsSciencesince2013.
HisresearchandeducationalinterestsconcerngeometricalandtopologicalmethodsincrystalchemistryandtheircomputerimplementationintheprogrampackageTOPOS,beingdevelopedsince1989.
ACKNOWLEDGMENTSD.
M.
P.
,T.
G.
M.
,andV.
A.
B.
thanktheRussiangovernment(Grant14.
B25.
31.
0005)andtheRussianFoundationforBasicResearch(Grant13-07-00001)forsupport.
REFERENCES(1)(a)Long,J.
,Yaghi,O.
,GuestEds.
2009MetalOrganicFrameworksIssue.
Chem.
Soc.
Rev.
2009,38(5).
(b)Zhou,H.
-C,Long,J.
,Yaghi,O.
,GuestEds.
2012MetalOrganicFrameworksIssue.
Chem.
Rev.
2012,112,6731268.
(c)Batten,S.
R.
;Neville,S.
M.
;Turner,D.
R.
CoordinationPolymers:Design,AnalysisandApplication;RoyalSocietyofChemistry:Cambridge,U.
K.
,2009.
(d)Farrusseng,D.
MetalOrganicFrameworksApplicationsfromCatalysistoGasStorage;Wiley:Weinheim,Germany,2011.
(e)MetalOrganicFrameworksDesignandApplication;MacGillivray,L.
R.
,Ed.
;Wiley:Hoboken,NJ,2010.
(f)Batten,S.
R.
;Champness,N.
R.
;Chen,X.
-M.
;Garcia-Martinez,J.
;Kitagawa,S.
;Ohrstrom,L.
;O'Keeffe,M.
;Suh,M.
P.
;Reedijk,J.
PureAppl.
Chem.
2013,85,1715.
(2)(a)Batten,S.
R.
;Robson,R.
Angew.
Chem.
,Int.
Ed.
1998,37,1460.
(b)Batten,S.
R.
Curr.
Opin.
SolidStateMater.
Sci.
2001,5,107.
(c)Carlucci,L.
;Ciani,G.
;Proserpio,D.
M.
Coord.
Chem.
Rev.
2003,246,247.
(d)Blatov,V.
A.
;Carlucci,L.
;Ciani,G.
;Proserpio,D.
M.
CrystEngComm2004,6,377.
(e)Carlucci,L.
;Ciani,G.
;Proserpio,D.
M.
InMakingCrystalsbyDesign:Methods,TechniquesandApplications;Braga,D.
,Grepioni,G.
,Eds.
;WileyVCH:Weinheim,Germany,2007;Chapt.
1.
3.
(f)Proserpio,D.
M.
Nat.
Chem.
2010,2,435.
(g)Forgan,R.
S.
;Sauvage,J.
-P.
;Stoddart,J.
F.
Chem.
Rev.
2011,111,5434.
(h)Delgado-Friedrichs,O.
;Foster,M.
D.
;O'Keeffe,M.
;Proserpio,D.
M.
;Treacy,M.
M.
J.
;Yaghi,O.
M.
J.
SolidStateChem.
2005,178,2533.
(3)Mitina,T.
G.
;Blatov,V.
A.
Cryst.
GrowthDes.
2013,13,1655.
(4)Duchamp,D.
J.
;Marsh,R.
E.
ActaCrystallogr.
1969,B25,5.
(5)AGMANI:Konnert,J.
;Britton,D.
Inorg.
Chem.
1966,5,1193.
(6)Furukawa,H.
;Cordova,E.
K.
;O'Keeffe,M.
;Yaghi,O.
M.
Science2013,341,No.
1230444.
(7)Blatov,V.
A.
;Shevchenko,A.
P.
;Proserpio,D.
M.
Cryst.
GrowthDes.
2014,DOI:10.
1021/cg500498k.
(8)Baburin,I.
;Blatov,V.
A.
;Carlucci,L.
;Ciani,G.
;Proserpio,D.
M.
J.
SolidStateChem.
2005,178,2452.
(9)Baburin,I.
A.
;Blatov,V.
A.
;Carlucci,L.
;Ciani,G.
;Proserpio,D.
M.
Cryst.
GrowthDes.
2008,8,519.
(10)Baburin,I.
A.
;Blatov,V.
A.
;Carlucci,L.
;Ciani,G.
;Proserpio,D.
M.
CrystEngComm2008,10,1822.
(11)(a)Foo,M.
L.
;Matsuda,R.
;Kitagawa,S.
Chem.
Mater.
2014,26,310.
(b)Horike,S.
;Shimomura,S.
;Kitagawa,S.
Nat.
Chem.
2009,1,695.
(c)Uemura,K.
;Matsuda,R.
;Kitagawa,S.
SolidStateChem.
2005,178,2420.
(d)Kitagawa,S.
;Uemura,K.
Chem.
Soc.
Rev.
2005,34,109.
(12)Miller,J.
S.
;Vos,T.
E.
;Shum,W.
W.
Adv.
Mater.
2005,17,2251.
(13)(a)Jiang,H.
-L.
;Makal,T.
A.
;Zhou,H.
-C.
Coord.
Chem.
Rev.
2013,257,2232.
(b)Yang,G.
-P.
;Hou,L.
;Ma,L.
-F.
;Wang,Y.
-Y.
CrystEngComm2013,15,2561.
(14)Alexandrov,E.
V.
;Blatov,V.
A.
;Kochetkov,A.
V.
;Proserpio,D.
M.
CrystEngComm2011,13,3947.
(15)(a)O'Keeffe,M.
;Yaghi,O.
A.
Chem.
Rev.
2012,112,675.
(b)Li,M.
;Li,D.
;O'Keeffe,M.
;Yaghi,O.
A.
Chem.
Rev.
2014,114,1343.
(16)(a)O'Keeffe,M.
;Peskov,M.
A.
;Ramsden,S.
J.
;Yaghi,O.
M.
Acc.
Chem.
Res.
2008,41,1782.
(b)Blatov,V.
A.
;O'Keeffe,M.
;Proserpio,D.
M.
CrystEngComm2010,12,44.
(c)http://rcsr.
anu.
edu.
au/.
(17)(a)Koch,E.
;Fischer,W.
Z.
Kristallogr.
1978,148,107.
(b)Koch,E.
;Fischer,W.
;Sowa,H.
ActaCrystallogr.
2006,A62,152.
(18)TONFUY:Lan,Y.
-Q.
;Li,S.
-L.
;Qin,J.
-S.
;Du,D.
-Y.
;Wang,X.
-L.
;Su,Z.
-M.
;Fu,Q.
Inorg.
Chem.
2008,47,10600.
(19)Yang,J.
;Ma,J.
-F.
;Batten,S.
R.
Chem.
Commun.
2012,48,7899.
(20)Carlucci,L.
;Ciani,G.
;Proserpio,D.
M.
CrystEngComm.
2003,5,269.
(21)Alexandrov,E.
V.
;Blatov,V.
A.
;Proserpio,D.
M.
ActaCrystallogr.
2012,A68,484.
(22)ZABQIC01:Venkataraman,D.
;Lee,S.
;Moore,J.
S.
;Zhang,P.
;Hirsch,K.
A.
;Gardner,G.
B.
;Covey,A.
C.
;Prentice,C.
L.
Chem.
Mater.
1996,8,2030.
(23)OYEYOH:Wu,H.
;Yang,J.
;Su,Z.
-M.
;Batten,S.
R.
;Ma,J.
-F.
J.
Am.
Chem.
Soc.
2011,133,11406.
(24)SAYMUB01:Shattock,T.
R.
;Vishweshwar,P.
;Wang,Z.
;Zaworotko,M.
J.
Cryst.
GrowthDes.
2005,5,2046.
(25)COKPIC,COKPOI,andSOCYEP01:Liu,J.
-Q.
;Wang,Y.
-Y.
;Ma,L.
-F.
;Wen,G.
-L.
;Shi,Q.
-Z.
;Batten,S.
R.
;Proserpio,D.
M.
CrystEngComm2008,10,1123.
(26)SOCYEP:Hu,Y.
;Li,G.
;Liu,X.
;Hu,B.
;Bi,M.
;Gao,L.
;Shi,Z.
;Feng,S.
;Shi,Z.
;Feng,S.
CrystEngComm2008,10,888.
(27)FUYWIGandFUYWOM:Chang,Y.
;Xu,H.
;Xie,S.
;Li,J.
;Xue,X.
;Hou,H.
Inorg.
Chem.
Commun.
2010,13,959.
(28)DelgadoFriedrichs,O.
;O'Keeffe,M.
;Yaghi,O.
M.
SolidStateSci.
2003,5,73.
(29)UDIROP:Du,M.
;Jiang,X.
-J.
;Zhao,X.
-J.
Inorg.
Chem.
2007,46,3984.
(30)FAMGEH:Hu,J.
-S.
;Qin,L.
;Zhang,M.
-D.
;Yao,X.
-Q.
;Li,Y.
-Z.
;Guo,Z.
-J.
;Zheng,H.
-G.
;Xue,Z.
-L.
Chem.
Commun.
2012,48,681.
(31)EWOTAM:Ma,L.
-F.
;Li,C.
-P.
;Wang,L.
-Y.
;Du,M.
Cryst.
GrowthDes.
2011,11,3309.
(32)IXOHOT:Hu,J.
;Huang,L.
;Yao,X.
;Qin,L.
;Li,Y.
;Guo,Z.
;Zheng,H.
;Xue,Z.
Inorg.
Chem.
2011,50,2404.
(33)MULFEE:Hou,H.
;Wei,Y.
;Song,Y.
;Zhu,Y.
;Li,L.
;Fan,Y.
J.
Mater.
Chem.
2002,12,838.
(34)REDSEZ:Gao,E.
-Q.
;Xu,Y.
-X.
;Cheng,A.
-L.
;He,M.
-Y.
;Yan,C.
-H.
Inorg.
Chem.
Commun.
2006,9,212.
(35)MAVNOO:Liang,W.
;Peng,C.
;Wenbin,L.
Chem.
Commun.
2012,48,2846.
(36)NULJOU,NULJOU01,NULJUA:Zhuang,C.
-F.
;Zhang,J.
;Wang,Q.
;HuaChu,Z.
;Fenske,D.
;Su,C.
-Y.
Chem.
Eur.
J.
2009,15,7578.
(37)SAQFOG:Ye,Q.
;Li,Y.
-H.
;Song,Y.
-M.
;Huang,X.
-F.
;Xiong,R.
-G.
;Xue,Z.
Inorg.
Chem.
2005,44,3618.
(38)BOBGEFandBOBGIJ:Yang,J.
;Ma,J.
-F.
;Batten,S.
R.
;Su,Z.
-M.
Chem.
Commun.
2008,2233.
(39)Thesuggesteddenitionisasfollows:a"nontrivialpolyrotaxane"isanysystemwithatleastonepolymericcomponentwherethecomponentscannotbeseparatedwithoutthebreakingoflinksandwheretheentanglementissuchthat2-memberedringsofonecomponentarepenetratedbyrodsofanother.
(40)ANARIRandANAROX:Jin,X.
-H.
;Sun,J.
-K.
;Cai,L.
-X.
;Zhang,J.
Chem.
Commun.
2011,47,2667.
(41)DAYMEX:Liu,J.
-Q.
;Wu,J.
;Wang,Y.
-Y.
;Ma,D.
-Y.
Coord.
Chem.
2012,65,1303.
(42)DUCFOX,DUCFUD,andDUCHIT:Dong,B.
-X.
;Xu,Q.
Inorg.
Chem.
2009,48,5861.
(43)ETEKUKandETELAR:Chen,H.
;Xiao,D.
;He,J.
;Li,Z.
;Zhang,G.
;Sun,D.
;Yuan,R.
;Wang,E.
;Luo,Q.
-L.
CrystEngComm2011,13,4988.
(44)EVUSEU:Karmakar,A.
;Titi,H.
M.
;Goldberg,I.
Cryst.
GrowthDes.
2011,11,2621.
(45)EYEYIR:Chen,L.
;Shao,K.
-Z.
;Yuan,G.
;Yang,G.
-S.
;Zang,H.
-Y.
;Xu,G.
-J.
;Wang,X.
-L.
;Su,Z.
-M.
Z.
Anorg.
Allg.
Chem.
2011,637,1414.
(46)GALKIP:Liu,G.
-X.
;Xu,H.
;Zhou,H.
;Nishihara,S.
;Ren,X.
-M.
CrystEngComm2012,14,1856.
(47)GUBZIN,GUBZOT,andGUBZUZ:Dong,B.
-X.
;Xu,Q.
Cryst.
GrowthDes.
2009,9,2776.
(48)IQEJOE:Liu,Y.
-Y.
;Wang,Z.
-H.
;Bo,L.
;Liu,Y.
-Y.
;Ma,J.
-F.
CrystEngComm2011,13,3811.
ChemicalReviewsReviewdx.
doi.
org/10.
1021/cr500150m|Chem.
Rev.
2014,114,755775807578(49)KEZPIP:Zhuang,W.
-J.
;Sun,C.
-Y.
;Jin,L.
-P.
Polyhedron2007,26,1123.
(50)LALFOV:Xu,H.
;Juhasz,G.
;Yoshizawa,K.
;Takahashi,M.
;Kanegawa,S.
;Sato,O.
CrystEngComm2010,12,4031.
(51)MARMID:Liu,J.
-Q.
;Wang,Y.
-Y.
;Wu,T.
;Wu,J.
CrystEngComm2012,14,2906.
(52)MUNPIVandMUNPUH:Liu,Y.
;Qi,Y.
;Lv,Y.
-Y.
;Che,Y.
-X.
;Zheng,J.
-M.
Cryst.
GrowthDes.
2009,9,4797.
(53)NEBSUI:Hoskins,B.
F.
;Robson,R.
;Slizys,D.
A.
Angew.
Chem.
,Int.
Ed.
1997,36,2336.
(54)NUDDAS,NUDDEW,andNUDDIA:Cao,X.
-Y.
;Yao,Y.
-G.
;Batten,S.
R.
;Ma,E.
;Qin,Y.
-Y.
;Zhang,J.
;Zhang,R.
-B.
;Cheng,J.
-K.
CrystEngComm2009,11,1030.
(55)OVIDAZ:Zhang,Y.
-N.
;Liu,P.
;Wang,Y.
-Y.
;Wu,L.
-Y.
;Pang,L.
-Y.
;Shi,Q.
-Z.
Cryst.
GrowthDes.
2011,11,1531.
(56)QUQGOZ:Ma,Y.
;Cheng,A.
-L.
;Gao,E.
-Q.
Cryst.
GrowthDes.
2010,10,2832.
(57)RUBGIF:Wang,J.
;Zhang,Y.
;Ji,Y.
SolidStateSci.
2009,11,364.
(58)SULKEQ:Li,N.
;Chen,L.
;Lian,F.
-Y.
;Jiang,F.
-L.
;Hong,M.
-C.
JiegouHuaxue(Chin.
J.
Struct.
Chem.
)2009,28,1417.
(59)TAHNIB:Liu,G.
-X.
;Xu,Y.
-Y.
;Wang,Y.
;Nishihara,S.
;Ren,X.
-M.
Inorg.
Chim.
Acta2010,363,3932.
(60)TONFIM,TONFOS,andTONGAF:Lan,Y.
-Q.
;Li,S.
-L.
;Qin,J.
-S.
;Du,D.
-Y.
;Wang,X.
-L.
;Su,Z.
-M.
;Fu,Q.
Inorg.
Chem.
2008,47,10600.
(61)UYOHOG:Liu,G.
-X.
;Cha,X.
-C.
;Li,X.
-L.
;Zhang,C.
-Y.
;Wang,Y.
;Nishihara,S.
;Ren,X.
-M.
Inorg.
Chem.
Commun.
2011,14,867.
(62)UZAWEY:Liu,H.
-W.
;Lu,W.
-G.
WujiHuaxueXuebao(Chin.
J.
Inorg.
Chem.
)2011,27,1810.
(63)WOCKOP:Wang,G.
-H.
;Li,Z.
-G.
;Jia,H.
-Q.
;Hu,N.
-H.
;Xu,J.
-W.
Cryst.
GrowthDes.
2008,8,1932.
(64)WODGUS:Luo,F.
;Yang,Y.
-T.
;Che,Y.
-X.
;Zheng,M.
CrystEngComm2008,10,981.
(65)YOCPEL:Goodgame,D.
M.
L.
;Menzer,S.
;Smith,A.
M.
;Williams,D.
J.
Angew.
Chem.
,Int.
Ed.
1995,34,574.
(66)WAGXAFandWAGXEJ:Zhang,Z.
-H.
;Chen,S.
-C.
;Mi,J.
-L.
;He,M.
-Y.
;Chen,Q.
;Du,M.
Chem.
Commun.
2010,46,8427.
(67)UHUROF:Liu,J.
-Q.
;Wang,Y.
-Y.
;Liu,P.
;Dong,Z.
;Shi,Q.
-Z.
;Batten,S.
R.
CrystEngComm2009,11,1207.
(68)CUXTIZ:Chen,L.
;Xu,G.
-J.
;Shao,K.
-Z.
;Zhao,Y.
-H.
;Yang,G.
-S.
;Lan,Y.
-Q.
;Wang,X.
-L.
;Xu,H.
-B.
;Su,Z.
-M.
CrystEngComm2010,12,2157.
(69)Yerin,A.
;Wilks,E.
S.
;Moss,G.
P.
;Harada,A.
PureAppl.
Chem.
2008,80,2041.
(70)Inref19thisspecieshasbeenconsideredasacaseof"nontrivialpolyrotaxane",oftypeIVb,sinceitdoesfulllallthecriteriaproposedforthistypeofentanglement,accordingtothedenitiongiven.
38Nevertheless,thepresenceofHopflinksinvolvingtheshortestcircuitsofthenetsseemstousagoodreasontopreferaclassicationlikeparallelpolycatenation.
(71)WUVBUK:Zhang,X.
-M.
;Chen,X.
-M.
Eur.
J.
Inorg.
Chem.
2003,413.
(72)MEBBIE:Carlucci,L.
;Ciani,G.
;Proserpio,D.
M.
;Rizzato,S.
Chem.
Commun.
2000,1319.
(73)LOTQUG:Batten,S.
R.
;Harris,A.
R.
;Jensen,P.
;Murray,K.
S.
;Ziebell,A.
J.
Chem.
Soc.
,DaltonTrans.
2000,3829.
(74)NORDAZ:Liu,F.
-Q.
;Tilley,T.
D.
Inorg.
Chem.
1997,36,5090.
(75)XODJOQ:Li,M.
-X.
;Miao,Z.
-X.
;Shao,M.
;Liang,S.
-W.
;Zhu,S.
-R.
Inorg.
Chem.
2008,47,4481.
(76)BOQSEG:Ashiry,K.
O.
;Zhao,Y.
-H.
;Shao,K.
-Z.
;Su,Z.
-M.
;Xu,G.
-J.
Polyhedron2009,28,975.
(77)BURGAX:Han,Z.
-B.
;Zhang,G.
-X.
CrystEngComm2010,12,348.
(78)OKEJIY:Qin,L.
;Hu,J.
-S.
;Huang,L.
-F.
;Li,Y.
-Z.
;Guo,Z.
-J.
;Zheng,H.
-G.
Cryst.
GrowthDes.
2010,10,4176.
(79)WAVTEU:Zhao,X.
;Dou,J.
;Sun,D.
;Cui,P.
;Sun,D.
;Wu,Q.
DaltonTrans.
2012,41,1928.
(80)WUJDIO:Fu,Z.
-Y.
;Wu,X.
-T.
;Dai,J.
-C.
;Hu,S.
-M.
;Du,W.
-X.
NewJ.
Chem.
2002,26,978.
(81)Zhao,X.
;Liu,F.
;Zhang,L.
;Sun,D.
;Wang,R.
;Ju,Z.
;Yuan,D.
;Sun,D.
Chem.
Eur.
J.
2014,20,649.
(82)(a)Li,D.
;Kaneko,K.
Chem.
Phys.
Lett.
2001,335,50.
(b)Cheng,Y.
;Kondo,A.
;Noguchi,H.
;Kajiro,H.
;Urita,K.
;Ohba,T.
;Kaneko,K.
;Kanoh,H.
Langmuir.
2009,25,4510.
(83)Kondo,A.
;Noguchi,H.
;Ohnishi,S.
;Kajiro,H.
;Tohdoh,A.
;Hattori,Y.
;Xu,W.
C.
;Tanaka,H.
;Kanoh,H.
;Kaneko,K.
NanoLett.
2006,6,2581.
(84)Fletcher,A.
J.
;Cussen,E.
J.
;Prior,T.
J.
;Rosseinsky,M.
J.
;Kepert,C.
J.
;Thomas,K.
M.
J.
Am.
Chem.
Soc.
2001,123,10001.
(85)Kajiro,H.
;Kondo,A.
;Kaneko,K.
;Kanoh,H.
Int.
J.
Mol.
Sci.
2010,11,3803.
(86)(a)XAFCUE,XAFDAL,XAFDEP,XAFDIT,XAFDOZ,andXAFDUF:Aijaz,A.
;Lama,P.
;Bharadwaj,P.
K.
Eur.
J.
Inorg.
Chem.
2010,3829.
(b)VULWEF:Higuchi,M.
;Tanaka,D.
;Horike,S.
;Sakamoto,H.
;Nakamura,K.
;Takashima,Y.
;Hijikata,Y.
;Yanai,N.
;Jungeun,K.
I.
M.
;Kato,K.
;Kubota,Y.
;Takata,M.
;Kitagawa,S.
J.
Am.
Chem.
Soc.
2009,131,10336.
(87)WAVVIA:Gong,Y.
;Qin,J.
B.
;Wu,T.
;Li,J.
-H.
;Yang,L.
;Cao,R.
DaltonTrans.
2012,41,1961.
(88)JITHUQ,JITJAY,JITJEC,andJITJIG:Lin,J.
-G.
;Su,Y.
;Tian,Z.
-F.
;Qiu,L.
;Wen,L.
-L.
;Lu,Z.
-D.
;Li,Y.
-Z.
;Meng,Q.
-J.
Cryst.
GrowthDes.
2007,7,2526.
(89)Zaworotko,M.
J.
Chem.
Commun.
2001,1.
(90)EHOVON:Zhao,L.
-M.
;Zhai,B.
;Gao,D.
-L.
;Shi,W.
;Zhao,B.
;Cheng,P.
Inorg.
Chem.
Commun.
2010,13,1014.
(91)MAHYID:Carlucci,L.
;Ciani,G.
;Proserpio,D.
M.
NewJ.
Chem.
1998,22,1319.
(92)GIMGEP:Tian,Z.
;Lin,J.
;Su,Y.
;Wen,L.
;Liu,Y.
;Zhu,H.
;Meng,Q.
-J.
Cryst.
GrowthDes.
2007,7,1863.
(93)MOVSEW:Cao,X.
-Y.
;Lin,Q.
-P.
;Qin,Y.
-Y.
;Zhang,J.
;Li,Z.
-J.
;Cheng,J.
-K.
;Yao,Y.
-G.
Cryst.
GrowthDes.
2009,9,20.
(94)SARFOH:Zeng,M.
-H.
;Zhang,W.
-X.
;Sun,X.
-Z.
;Chen,X.
-M.
Angew.
Chem.
,Int.
Ed.
2005,44,3079.
(95)VIRYIF:Qi,Y.
-F.
;Xiao,D.
;Wang,E.
;Zhang,Z.
;Wang,X.
Aust.
J.
Chem.
2007,70,871.
(96)MUPZON:Hulvey,Z.
;Furman,J.
D.
;Turner,S.
A.
;Tang,M.
;Cheetham,A.
K.
Cryst.
GrowthDes.
2010,10,2041.
(97)EWAXUV:Carlucci,L.
;Ciani,G.
;Proserpio,D.
M.
;Spadacini,L.
CrystEngComm2004,6,96.
(98)KOLPEH:Liu,G.
-X.
;Zhu,K.
;Chen,H.
;Huang,R.
-Y.
;Ren,X.
-M.
CrystEngComm2008,10,1527.
(99)EJAXOC:Carlucci,L.
;Ciani,G.
;Proserpio,D.
M.
;Rizzato,S.
CrystEngComm2003,5,190.
(100)VUXXOC:Wang,S.
;Wang,D.
;Dou,J.
;Li,D.
ActaCrystallogr.
2010,C66,m141.
(101)QOVYEF:Moliner,N.
;Munoz,C.
;Letard,S.
;Solans,X.
;Menendez,N.
;Goujon,A.
;Varret,F.
;Real,J.
A.
Inorg.
Chem.
2000,39,5390.
(102)REBWUQ:Kondo,M.
;Shimamura,M.
;Noro,S.
;Minakoshi,S.
;Asami,A.
;Seki,K.
;Kitagawa,S.
Chem.
Mater.
2000,12,1288.
(103)OTUYAE:Gong,Y.
;Li,J.
;Qin,J.
B.
;Wu,T.
;Cao,R.
;Li,J.
H.
Cryst.
GrowthDes.
2011,11,1662.
(104)NIMQOQ:Pike,R.
D.
;deKrafft,K.
E.
;Ley,A.
N.
;Tronic,T.
A.
Chem.
Commun.
2007,3732.
(105)BIYFAR:Wang,Y.
-H.
;Li,Y.
-W.
;Chen,W.
-L.
;Li,Y.
-G.
;Wang,E.
-B.
J.
Mol.
Struct.
2008,877,56.
(106)GIDMUC:Chen,S.
-M.
;Zhang,J.
;Lu,C.
-Z.
CrystEngComm2007,9,390.
(107)(a)GUTDOO,GUTDOO01,andGUTDUU:Halder,G.
J.
;Kepert,C.
J.
;Moubaraki,B.
;Murray,K.
S.
;Cashion,J.
D.
Science2002,298,1762.
(b)CEZDAN,CEZDAN01,andCIDGEC:Neville,S.
M.
;Moubaraki,B.
;Murray,K.
S.
;Kepert,C.
J.
Angew.
Chem.
,Int.
Ed.
2007,46,2059.
(c)YOBZAR,YOBYUKandYOBYUK01:Neville,S.
M.
;Halder,G.
J.
;Chapman,K.
W.
;Duriska,M.
B.
;Southon,P.
D.
;Cashion,J.
D.
;Letard,J.
-F.
;Moubaraki,B.
;Murray,K.
S.
;Kepert,C.
J.
J.
Am.
Chem.
Soc.
2008,130,2869.
(d)DORCIX01,DORCIX02,andDORCIX03:Halder,G.
J.
;Chapman,K.
W.
;Neville,S.
M.
;Moubaraki,B.
;Murray,K.
S.
;Letard,J.
-F.
;Kepert,C.
J.
J.
Am.
Chem.
Soc.
2008,130,ChemicalReviewsReviewdx.
doi.
org/10.
1021/cr500150m|Chem.
Rev.
2014,114,75577580757917552.
(e)OHOSEK,OHOSIO,OHOSOU01,andOHOSUA01:Neville,S.
M.
;Halder,G.
J.
;Chapman,K.
W.
;Duriska,M.
B.
;Moubaraki,M.
;Murray,K.
S.
;Kepert,C.
J.
J.
Am.
Chem.
Soc.
2009,131,12106.
(108)UNEGEA:Xu,B.
;Lin,X.
;He,Z.
;Lin,Z.
;Cao,R.
Chem.
Commun.
2011,47,3766.
(109)(a)ILUXODandILUXIX:Polunin,R.
A.
;Kolotilov,S.
V.
;Kiskin,M.
A.
;Cador,O.
;Mikhalyova,E.
A.
;Lytvynenko,A.
S.
;Golhen,S.
;Ouah,L.
;Ovcharenko,V.
I.
;Eremenko,I.
L.
;Novotortsev,V.
M.
;Pavlishchuk,V.
V.
Eur.
J.
Inorg.
Chem.
2010,5055.
(b)Polunin,R.
A.
;Kolotilov,S.
V.
;Kiskin,M.
A.
;Cador,O.
;Golhen,S.
;Shvets,O.
V.
;Ouahab,L.
;Dobrokhotova,Z.
V.
;Ovcharenko,V.
I.
;Eremenko,I.
L.
;Novotortsev,V.
M.
;Pavlishchuk,V.
V.
Eur.
J.
Inorg.
Chem.
2011,4985.
(c)AQOSOP:Wang,S.
;Li,L.
;Zhang,J.
;Yuan,X.
;Su,C.
-Y.
Mater.
Chem.
2011,21,7098.
(110)(a)UZIZOT:Poong,J.
I.
;Koo,H.
G.
;Pak,H.
M.
;Jang,S.
P.
;Lee,Y.
J.
;Kim,C.
;Kim,S.
-J.
;Kim,Y.
Inorg.
Chim.
Acta2011,376,605.
(b)KUPFEHandKUPFIL:Miao,X.
-H.
;Zhu,L.
-G.
DaltonTrans.
2010,39,1457.
(111)AKAXIU,AKAXOA,AKAXUG,AKAYAN,AKAYER:Yang,R.
;Li,L.
;Xiong,Y.
;Li,J.
-R.
;Zhou,H.
-C.
;Su,C.
-Y.
Chem.
AsianJ.
2010,5,2358.
(112)Chichak,K.
S.
;Cantrill,S.
J.
;Pease,A.
R.
;Chiu,S.
H.
;Cave,G.
W.
V.
;Atwood,J.
L.
;Stoddart,J.
F.
Science2004,304,1308.
(113)(a)Liantonio,R.
;Metrangolo,P.
;Meyer,F.
;Pilati,T.
;Navarrini,W.
;Resnati,G.
Chem.
Commun.
2006,1819.
(b)Men,Y.
-B.
;Sun,J.
;Huang,Z.
-T.
;Zheng,Q.
-Y.
Angew.
Chem.
,Int.
Ed.
2009,48,2873.
(c)Jang,J.
-J.
;Li,L.
;Yang,T.
;Kuang,D.
-B.
;Wang,W.
;Su,C.
-Y.
Chem.
Commun.
2009,2387.
(114)DAPPAN:Jiang,L.
;Meng,X.
-R.
;Xiang,H.
;Ju,P.
;Zhong,D.
-C.
;Lu,T.
-B.
Inorg.
Chem.
2012,51,1874.
(115)GUWXIF:Suh,M.
P.
;Choi,H.
J.
;So,S.
M.
;Kim,B.
M.
Inorg.
Chem.
2003,42,676.
(116)ICIWOG:Leznoff,D.
B.
;Xue,B.
-Y.
;Batchelor,R.
J.
;Einstein,F.
W.
B.
;Patrick,B.
O.
Inorg.
Chem.
2001,40,6026.
(117)IWENII:Xu,C.
;Guo,Q.
;Wang,X.
;Hou,H.
;Fan,Y.
Cryst.
GrowthDes.
2011,11,1869.
(118)LIKBIR:Li,J.
;Song,L.
;Du,S.
Inorg.
Chem.
Commun.
2007,10,358.
(119)NEQDET:Dobrzanska,L.
;Lloyd,G.
O.
;Jacobs,T.
;Rootman,I.
;Oliver,C.
L.
;Bredenkamp,M.
W.
;Barbour,L.
J.
Mol.
Struct.
2006,796,107.
(120)PUNRUM:Adarsh,N.
N.
;Dastidar,P.
Cryst.
GrowthDes.
2010,10,483.
(121)RESHUT:Lu,X.
-Q.
;Pan,M.
;He,J.
-R.
;Cai,Y.
-P.
;Kang,B.
-S.
;Su,C.
-Y.
CrystEngComm2006,8,827.
(122)SAVCAU:Dobrzanska,L.
;Raubenheimer,H.
G.
;Barbour,L.
J.
Chem.
Commun.
2005,5050.
(123)TANJEZ:Zhang,J.
;Xue,Y.
-S.
;Li,Y.
-Z.
;Du,H.
-B.
;You,X.
-Z.
CrystEngComm2011,13,2578.
(124)WOCXIWandWOCXOC:Byrne,P.
;Lloyd,G.
O.
;Clarke,N.
;Steed,J.
W.
Angew.
Chem.
,Int.
Ed.
2008,47,5761.
(125)MUHVOBandMUHVOB01:Jiang,Y.
-Y.
;Ren,S.
-K.
;Ma,J.
-P.
;Liu,Q.
-K.
;Dong,Y.
-B.
Chem.
Eur.
J.
2009,15,10742.
(126)YUXGOOandYUXGUU:Burrows,A.
D.
;Frost,C.
G.
;Mahon,M.
F.
;Raithby,P.
R.
;Richardson,C.
;Stevenson,A.
J.
Chem.
Commun.
2010,46,5064.
(127)AHIDEA:Muthu,S.
;Yip,J.
H.
K.
;Vittal,J.
J.
Chem.
Soc.
,DaltonTrans.
2002,4561.
(128)HOFXOPandHOFXUV:Tong,M.
-L.
;Chen,X.
-M.
;Ye,B.
-H.
;Ji,L.
-N.
Angew.
Chem.
,Int.
Ed.
1999,38,2237.
(129)KAVDAN,KAVDER,andKAVDIV:Sun,Y.
-Q.
;Zhang,J.
;Ju,Z.
-F.
;Yang,G.
-Y.
Cryst.
GrowthDes.
2005,5,1939.
(130)UZAZUR:Chen,J.
-X.
;Lin,W.
-E.
;Zhou,C.
-Q.
;Yau,L.
F.
;Wang,J.
-R.
;Wang,B.
;Chen,W.
-H.
;Jiang,Z.
-H.
Inorg.
Chim.
Acta2011,376,389.
(131)WIYMIA:Lee,E.
;Heo,J.
;Kim,K.
Angew.
Chem.
,Int.
Ed.
2000,39,2699.
(132)YANWOB,YANWUH,YANXAO,andYANXAO01:Sun,J.
-K.
;Yao,Q.
-X.
;Tian,Y.
-Y.
;Wu,L.
;Zhu,G.
-S.
;Chen,R.
-P.
;Zhang,J.
Chem.
Eur.
J.
2012,18,1924.
(133)GIQGAPandGIQGET:Zhang,X.
-L.
;Guo,C.
-P.
;Yang,Q.
-Y.
;Wang,W.
;Liu,W.
-S.
;Kang,B.
-S.
;Su,C.
-Y.
Chem.
Commun.
2007,4242.
(134)ISAROK:Burrows,A.
D.
;Kelly,D.
J.
;Mahon,M.
F.
;Raithby,P.
R.
;Richardson,C.
;Stevenson,A.
J.
DaltonTrans.
2011,40,5483.
(135)Liang,C.
;Mislow,K.
J.
Math.
Chem.
1994,16,27.
(136)(a)Baas,N.
A.
;Seeman,N.
C.
J.
Math.
Chem.
2012,50,220.
(b)Baas,N.
A.
Int.
J.
Gen.
Syst.
2013,42,137.
(137)DOJFUD:Zavalii,P.
Y.
;Olijnik,V.
V.
;Mys'kiv,M.
G.
;Chikhrii,S.
I.
;Zavalii,A.
Y.
Crystallogr.
Rep.
1985,30,1081.
(138)UGUGAF:Yao,Q.
-X.
;Jin,X.
-H.
;Ju,Z.
-F.
;Zhang,H.
-X.
;Zhan,J.
CrystEngComm.
2009,11,1502.
(139)FUWVUP:Shi,X.
;Wang,W.
;Hou,H.
;Fan,Y.
Eur.
J.
Inorg.
Chem.
2010,3652.
(140)Forsomerecentattempts,see(a)Evans,M.
E.
Ph.
D.
Thesis,AustralianNationalUniversity,2011;https://digitalcollections.
anu.
edu.
au/handle/1885/9502.
(b)Evans,M.
E.
;Robins,V.
;Hyde,S.
T.
ActaCrystallogr.
2013,A69,241.
(141)FUYBUX:Men,Y.
-B.
;Sun,J.
;Huang,Z.
-T.
;Zheng,Q.
-Y.
Chem.
Commun.
2010,46,6299.
(142)ACUCAC:Evans,O.
R.
;Lin,W.
Chem.
Mater.
2001,13,3009.
(143)FAGCASandFAGCEW:Carlucci,L.
;Ciani,G.
;Proserpio,D.
M.
;Rizzato,S.
CrystEngComm2002,4,121.
(144)VAMXEO01:Liu,X.
-M.
;Lin,R.
-B.
;Zhang,J.
-P.
;Chen,X.
-M.
Inorg.
Chem.
2012,51,5686.
(145)ISABUZ:Banfi,S.
;Carlucci,L.
;Caruso,E.
;Ciani,G.
;Proserpio,D.
M.
Cryst.
GrowthDes.
2004,4,29.
(146)VAJSIK:Liu,D.
;Li,H.
-X.
;Liu,L.
-L.
;Wang,H.
-M.
;Li,N.
-Y.
;Ren,Z.
-G.
;Lang,J.
-P.
CrystEngComm2010,12,3708.
(147)WAPCIB:Li,B.
;Yang,F.
;Zhang,Y.
;Li,G.
;Zhou,Q.
;Hua,J.
;Shi,Z.
;Feng,S.
DaltonTrans.
2012,41,2677.
(148)KAXTUA:Wu,H.
;Yang,J.
;Liu,Y.
-Y.
;Ma,J.
-F.
Cryst.
GrowthDes.
2012,12,2272.
(149)MATJIC:Xu,X.
;Zhang,X.
;Liu,X.
;Wang,L.
;Wang,E.
CrystEngComm2012,14,3264.
(150)OHAYOM:Guo,H.
;Qiu,D.
;Guo,X.
;Batten,S.
R.
;Zhang,H.
CrystEngComm2009,11,2611.
(151)XOPLEU:Hsu,Y.
-F.
;Hu,H.
-L.
;Wu,C.
-J.
;Yeh,C.
-W.
;Proserpio,D.
M.
;Chen,J.
-D.
CrystEngComm2009,11,168.
(152)VUHCUX:Yang,Q.
-Y.
;Zheng,S.
-R.
;Yang,R.
;Pan,P.
;Cao,R.
;Su,C.
-Y.
CrystEngComm2009,11,680.
(153)CAXVAA:Hauptvogel,I.
M.
;Bon,V.
;Grunker,R.
;Baburin,I.
A.
;Senkovska,I.
;Mueller,U.
;Kaskel,S.
DaltonTrans.
2012,41,4172.
(154)PAQCOZ:Hirsch,K.
A.
;Wilson,S.
R.
;Moore,J.
S.
Chem.
Commun.
1998,13.
(155)REBBUX:Chen,L.
;Tan,K.
;Lan,Y.
-Q.
Chem.
Commun.
2012,48,5919.
(156)VAMXEO:Wang,H.
;Szeto,L.
;Chan,W.
T.
K.
;Yeung,H.
-L.
;Wong,K.
-L.
;Wong,W.
-T.
Can.
J.
Chem.
2012,90,100.
(157)XOFYUM:Ayyappan,P.
;Evans,O.
R.
;Lin,W.
Inorg.
Chem.
2002,41,3328.
(158)OWUFOC:Tian,L.
;Zhang,Z.
-J.
;Yu,A.
;Shi,W.
;Chen,Z.
;Cheng,P.
Cryst.
GrowthDes.
2010,10,3847.
(159)Polycatenationofinterpenetratedlayers(sharingthesameaverageplane),waspreviouslyobservedinanexceptionalorganicarray(POVJAL)sustainedbyhydrogenbondsandderivedbytheself-assemblyof1,1,1-tris(4-hydroxyphenyl)ethaneand4,4′-bipyridyl,togivea2:3adduct.
Thehcbpuckered2Dnetsgiveparallel(2D→2D)5-foldinterpenetratedsheetsthatarepolycatenatedintoaunique3Darray.
Eachlayerisinterlinkedwith10others,thatis,foursharingthesameaverageplane,plusthreeoftheve"above"andthreeoftheve"below"(Doc=10).
Benyei,A.
C.
;Coupar,P.
I.
;Ferguson,G.
;Glidewell,C.
;Longh,A.
J.
;Meehan,P.
R.
ActaCrystallogr.
1998,C54,1515.
(160)Kuang,X.
;Wu,X.
;Yu,R.
;Donahue,J.
P.
;Huang,J.
;Lu,C.
-Z.
Nat.
Chem.
2010,2,461.
ChemicalReviewsReviewdx.
doi.
org/10.
1021/cr500150m|Chem.
Rev.
2014,114,755775807580

ProfitServer$34.56/年,5折限时促销/可选西班牙vps、荷兰vps、德国vps/不限制流量/支持自定义ISO

ProfitServer怎么样?ProfitServer好不好。ProfitServer是一家成立于2003的主机商家,是ITC控股的一个部门,主要经营的产品域名、SSL证书、虚拟主机、VPS和独立服务器,机房有俄罗斯、新加坡、荷兰、美国、保加利亚,VPS采用的是KVM虚拟架构,硬盘采用纯SSD,而且最大的优势是不限制流量,大公司运营,机器比较稳定,数据中心众多。此次ProfitServer正在对...

EtherNetservers年付仅10美元,美国洛杉矶VPS/1核512M内存10GB硬盘1Gpbs端口月流量500GB/2个IP

EtherNetservers是一家成立于2013年的英国主机商,提供基于OpenVZ和KVM架构的VPS,数据中心包括美国洛杉矶、新泽西和杰克逊维尔,商家支持使用PayPal、支付宝等付款方式,提供 60 天退款保证,这在IDC行业来说很少见,也可见商家对自家产品很有信心。有需要便宜VPS、多IP VPS的朋友可以关注一下。优惠码SUMMER-VPS-15 (终身 15% 的折扣)SUMMER-...

iON Cloud七月促销适合稳定不折腾的用户,云服务器新购半年付8.5折,洛杉矶/圣何塞CN2 GT线路,可选Windows系统

iON Cloud怎么样?iON Cloud今天发布了7月份优惠,使用优惠码:VC4VF8RHFL,新购指定型号VPS半年付或以上可享八五折!iON的云服务器包括美国洛杉矶、美国圣何塞(包含了优化线路、CN2 GIA线路)、新加坡(CN2 GIA线路、PCCW线路、移动CMI线路)这几个机房或者线路可供选择,有Linux和Windows系统之分,整体来说针对中国的优化是非常明显的,机器稳定可靠,比...

m.kan84.net为你推荐
openeuler手机里的安全性open.wpapsk分别是什么意思梦之队官网NBA梦之队是什么游戏?www.44ri.comwww.yydcsjw.commole.61.com摩尔大陆?????抓站工具大家在家用什么工具练站?怎么固定?面壁思过?在医院是站站立架www.ca800.comPLC好学吗javlibrary.comSSPD-103的AV女主角是谁啊1!!!!求解sodu.tw今天sodu.org为什么打不开了?www.k8k8.com谁能给我几个街污网站我去自己学莱姿蔓圣诗蔓有祛痘功效吗
in域名注册 过期域名查询 国外vps主机 免费申请域名 hostigation 高防dns bbr Dedicated godaddy域名转出 嘉洲服务器 qingyun 什么是刀片服务器 免费全能主机 爱奇艺vip免费领取 如何安装服务器系统 根服务器 免费外链相册 789 论坛主机 lamp怎么读 更多