suceswww.qqq147.com

www.qqq147.com  时间:2021-03-20  阅读:()
SUBTREEPRUNEANDRE-GRAFT:AREVERSIBLEREALTREEVALUEDMARKOVPROCESSSTEVENN.
EVANSANDANITAWINTERAbstract.
WeuseDirichletformmethodstoconstructandanalyzeareversibleMarkovprocess,thestationarydistributionofwhichistheBrowniancontinuumrandomtree.
Thisprocessisinspiredbythesub-treepruneandre-graft(SPR)Markovchainsthatappearinphylogeneticanalysis.
AkeytechnicalingredientinthisworkistheuseofanovelGromov–Hausdortypedistancetometrizethespacewhoseelementsarecom-pactrealtreesequippedwithaprobabilitymeasure.
Also,theinvesti-gationoftheDirichletformhingesonanewpathdecompositionoftheBrownianexcursion.
Shorttitle:Subtreepruneandre-graft1.
IntroductionMarkovchainsthatmovethroughaspaceofnitetreesareanimpor-tantingredientforseveralalgorithmsinphylogeneticanalysis,particularlyinMarkovchainMonteCarloalgorithmsforsimulatingdistributionsonspacesoftreesinBayesiantreereconstructionandinsimulatedannealingalgo-rithmsinmaximumlikelihoodandmaximumparsimony1treereconstruction(see,forexample,[Fel03]foracomprehensiveoverviewoftheeld).
Usually,suchchainsarebasedonasetofsimplerearrangementsthattransformatreeintoa"neighboring"tree.
Onewidelyusedsetofmovesisthenearestneigh-borinterchanges(NNI)(see,forexample,[Fel03,BRST02,BHV01,AS01]).
Twootherstandardsetsofmovesthatareimplementedinseveralphyloge-neticsoftwarepackagesbutseemtohavereceivedlesstheoreticalattentionarethesubtreepruneandre-graft(SPR)movesandthetreebisectionandre-connection(TBR)movesthatwererstdescribedin[SO90]andarefurtherdiscussedin[Fel03,AS01,SS03].
WenotethatanNNImoveisaparticularDate:August10,2005.
2000MathematicsSubjectClassication.
Primary:60J25,60J75;Secondary:92B10.
Keywordsandphrases.
Dirichletform,continuumrandomtree,Brownianexcursion,phylogenetictree,MarkovchainMonteCarlo,simulatedannealing,pathdecomposition,excursiontheory,Gromov-Hausdormetric,Prohorovmetric.
SNEsupportedinpartbyNSFgrantsDMS-0071468andDMS-0405778.
1Maximumparsimonytreereconstructionisbasedonndingthephylogenetictreeandinferredancestralstatesthatminimizethetotalnumberofobligatoryinferredsubstitutioneventsontheedgesofthetree.
12STEVENN.
EVANSANDANITAWINTERtypeofSPRmoveandthatanSPRmoveisparticulartypeofTBRmove,and,moreover,thateveryTBRoperationiseitherasingleSPRmoveorthecompositionoftwosuchmoves(see,forexample,Section2.
6of[SS03]).
Chainsbasedonothermovesareinvestigatedin[DH02,Ald00,Sch02].
InanSPRmove,abinarytreeT(thatis,atreeinwhichallnon-leafverticeshavedegreethree)iscut"inthemiddleofanedge"togivetwosubtrees,sayTIandTP.
AnotheredgeischoseninTI,anewvertexiscreated"inthemiddle"ofthatedge,andthecutedgeinTPisattachedtothisnewvertex.
Lastly,the"pendant"cutedgeinTIisremovedalongwiththevertexitwasattachedtoinordertoproduceanewbinarytreethathasthesamenumberofverticesasT.
Figure1.
AnSPRmove.
Thedashedsubtreetreeattachedtovertexxinthetoptreeisre-attachedatanewvertexythatisinsertedintotheedgepb,cqinthebottomtreetomaketwoedgespb,yqandpy,cq.
Thetwoedgespa,xqandpb,xqinthetoptreearemergedintoasingleedgepa,bqinthebottomtree.
Asremarkedin[AS01],SUBTREEPRUNEANDRE-GRAFT3TheSPRoperationisofparticularinterestasitcanbeusedtomodelbiologicalprocessessuchashorizontalgenetrans-fer2andrecombination.
Section2.
7of[SS03]providesmorebackgroundonthispointaswellasacommentontheroleofSPRmovesinthetwophenomenaoflineagesortingandgeneduplicationandloss.
Inthispaperweinvestigatetheasymptoticsofthesimplestpossibletree-valuedMarkovchainbasedontheSPRmoves,namelythechaininwhichthetwoedgesthatarechosenforcuttingandforre-attachingarechosenuniformly(withoutreplacement)fromtheedgesinthecurrenttree.
Intu-itively,thecontinuoustimeMarkovprocesswediscussarisesaslimitwhenthenumberofverticesinthetreegoestoinnity,theedgelengthsarere-scaledbyaconstantfactorsothatinitialtreeconvergesinasuitablesensetoacontinuousanalogueofacombinatorialtree(morespecically,acom-pactrealtree),andthetimescaleoftheMarkovchainisspedupbyanappropriatefactor.
Wedonot,infact,provesuchalimittheorem.
Rather,weuseDirichletformtechniquestoestablishtheexistenceofaprocessthathasthedynamicsonewouldexpectfromsuchalimit.
Unfortunately,althoughDirichletformtechniquesprovidepowerfultoolsforconstructingandanalyzingsymmetricMarkovprocesses,theyarenotoriouslyinadequateforprovingconvergencetheorems(asopposedtogeneratorormartingaleproblemcharacterizationsofMarkovprocesses,forexample).
Wethereforeleavetheproblemofestab-lishingalimittheoremtofutureresearch.
TheMarkovprocessweconstructisapurejumpprocessthatisreversiblewithrespecttothedistributionofAldous'scontinuumrandomtree(thatis,therandomtreewhicharisesasthere-scalinglimitofuniformrandomtreeswithnverticeswhennVandwhichisalso,uptoaconstantscalingfactor,therandomtreeassociatednaturallywiththestandardBrownianexcursion–seeSection4formoredetailsaboutthecontinuumrandomtree,itsconnectionwithBrownianexcursion,andreferencestotheliterature).
Somewhatmoreprecisely,butstillratherinformally,theprocesswecon-structhasthefollowingdescription.
Tobeginwith,Aldous'scontinuumrandomtreehastwonaturalmea-suresonitthatcanbothbethoughtofasarisingfromthemeasureonanapproximatingnitetreewithnverticesthatplacesaunitmassateachvertex.
Ifwere-scalethemassofthismeasuretogetaprobabilitymeasure,theninthelimitweobtainaprobabilitymeasureonthecontinuumrandomtreethathappenstoassignallofitsmasstotheleaveswithprobabilityone.
Wecallthisprobabilitymeasuretheweightonthecontinuumtree.
Ontheotherhand,wecanalsore-scalethemeasurethatplacesaunitmassateachvertextoobtaininthelimitaσ-nitemeasureonthecontinuum2Horizontalgenetransferisthetransferofgeneticmaterialfromonespeciestoanother.
Itisaparticularlycommonphenomenonamongbacteria.
4STEVENN.
EVANSANDANITAWINTERtreethatrestrictstoone-dimensionalLebesguemeasureifwerestricttoanypaththroughthecontinuumtree.
Wecallthisσ-nitemeasurethelength.
Thecontinuumrandomtreeisarandomcompactrealtreeofthesortinvestigatedin[EPW04](wedenerealtreesanddiscusssomeoftheirpropertiesinSection2).
Anycompactrealtreehasananalogueofthelengthmeasureonit,butingeneralthereisnocanonicalanalogueoftheweightmeasure.
Consequently,theprocessweconstructhasasitsstatespacethesetofpairspT,νq,whereTisacompactrealtreeandνisaprobabilitymeasureonT.
LetbethelengthmeasureassociatedwithT.
OurprocessjumpsawayfromTbyrstchoosingapairofpointspu,vqTTaccordingtotheratemeasureνandthentransformingTintoanewtreebycuttingothesubtreerootedatuthatdoesnotcontainvandre-attachingthissubtreeatv.
Thisjumpkernel(whichtypicallyhasinnitetotalmass–sothatjumpsareoccurringonadensecountableset)ispreciselywhatonewouldexpectforalimit(asthenumberofverticesgoestoinnity)oftheparticularSPRMarkovchainonnitetreesdescribedaboveinwhichtheedgesforcuttingandre-attachmentarechosenuniformlyateachstage.
TheframeworkofDirichletformsallowsustotranslatethisdescriptionintorigorousmathematics.
Animportantpreliminarystepthatweaccom-plishinSection2istoshowthatitispossibletoequipthespaceofpairsofcompactrealtreesandtheiraccompanyingweightswithaniceGromov–Hausdorlikemetricthatmakesthisspacecompleteandseparable.
WenotethataGromov–Hausdorlikemetriconmoregeneralmetricspacesequippedwithmeasureswasintroducedin[Stu04].
ThelattermetricisbasedontheWassersteinL2distancebetweenmeasures,whereasoursisbasedontheProhorovdistance.
Moreover,weneedtounderstandindetailtheDirichletformarisingfromthecombinationofthejumpkernelwiththecontinuumrandomtreedistributionasareferencemeasure,andweaccom-plishthisinSections5and6,whereweestablishtherelevantfactsfromwhatappearstobeanovelpathdecompositionofthestandardBrownianexcursion.
WeconstructtheDirichletformandtheresultingprocessinSec-tion7.
WeusepotentialtheoryforDirichletformstoshowinSection8thatfromalmostallstartingpoints(withrespecttothecontinuumrandomtreereferencemeasure)ourprocessdoesnothitthetrivialtreeconsistingofasinglepoint.
WeremarkthatexcursionpathvaluedMarkovprocessesthatarere-versiblewithrespecttothedistributionofstandardBrownianexcursionandhavecontinuoussamplepathshavebeeninvestigatedin[Zam03,Zam02,Zam01],andthattheseprocessescanalsobethoughtofasrealtreevalueddiusionprocessesthatarereversiblewithrespecttothedistributionofthecontinuumrandomtree.
However,weareunawareofadescriptioninwhichtheselatterprocessesariseaslimitsofnaturalprocessesonspacesofnitetrees.
SUBTREEPRUNEANDRE-GRAFT52.
WeightedR-treesAmetricspacepX,dqisarealtree(R-tree)ifitsatisesthefollowingaxioms.
Axiom0(Completeness)ThespacepX,dqiscomplete.
Axiom1(Uniquegeodesics)Forallx,yXthereexistsauniqueisometricembeddingφx,y:r0,dpx,yqsXsuchthatφx,yp0qxandφx,ypdpx,yqqy.
Axiom2(Loop-free)Foreveryinjectivecontinuousmapψ:r0,1sXonehasψpr0,1sqφψp0q,ψp1qpr0,dpψp0q,ψp1qqsq.
Axiom1sayssimplythatthereisaunique"unitspeed"pathbetweenanytwopoints,whereasAxiom2impliesthattheimageofanyinjectivepathconnectingtwopointscoincideswiththeimageoftheuniqueunitspeedpath,sothatitcanbere-parameterizedtobecometheunitspeedpath.
Thus,Axiom1issatisedbymanyotherspacessuchasRdwiththeusualmetric,whereasAxiom2expressesthepropertyof"treeness"andisonlysatisedbyRdwhend1.
Wereferthereaderto([Dre84,DT96,DMT96,Ter97,Chi01])forbackgroundonR-trees.
Inparticular,[Chi01]showsthatanumberofotherdenitionsareequivalenttotheoneabove.
AparticularlyusefulfactisthatametricspacepX,dqisanR-treeifandonlyifitiscomplete,path-connected,andsatisestheso-calledfourpointcondition,thatis,(2.
1)dpx1,x2qdpx3,x4q¤maxtdpx1,x3qdpx2,x4q,dpx1,x4qdpx2,x3quforallx1,x4X.
LetTdenotethesetofisometryclassesofcompactR-trees.
InordertoequipTwithametric,recallthattheHausdordistancebetweentwoclosedsubsetsA,BofametricspacepX,dqisdenedas(2.
2)dHpA,Bq:inftε0:AUεpBqandBUεpAqu,whereUpCq:txX:dpx,Cq¤εu.
Basedonthisnotionofdistancebetweenclosedsets,wedenetheGromov-Hausdordistance,dGHpX,Yq,betweentwometricspacespX,dXqandpY,dYqastheinmumoftheHaus-dordistancedHpXI,YIqoverallmetricspacesXIandYIthatareisomor-phictoXandY,respectively,andthataresubspacesofsomecommonmetricspaceZ(compare[Gro99,BH99,BBI01]).
Adirectapplicationofthepreviousdenitionrequiresanoptimalem-beddingintoaspaceZwhichitisnotpossibletoobtainexplicitlyinmostexamples.
Wethereforegiveanequivalentreformulationwhichallowsustogetestimatesonthedistancebylookingfor"matchings"betweenthetwospacesthatpreservethetwometricsuptoanadditiveerror.
Inordertobemoreexplicit,werequiresomemorenotation.
AsubsetXYissaid6STEVENN.
EVANSANDANITAWINTERtobeacorrespondencebetweensetsXandYifforeachxXthereexistsatleastoneyYsuchthatpx,yq,andforeachyYthereexistsatleastonexXsuchthatpx,yq.
Thedistortionofisdenedby(2.
3)dispq:supt|dXpx1,x2qdYpy1,y2q|:px1,y1q,px2,y2qu.
Then(2.
4)dGHppX,dXq,pY,dYqq12infdispq,wheretheinmumistakenoverallcorrespondencesbetweenXandY(see,forexample,Theorem7.
3.
25in[BBI01]).
ItisshowninTheorem1in[EPW04]thatthemetricspacepT,dGHqiscompleteandseparable.
InthefollowingwewillbeinterestedincompactR-treespT,dqTequippedwithaprobabilitymeasureνontheBorelσ-eldBpTq.
WecallsuchobjectsweightedcompactR-treesandwriteTwtforthespaceofweight-preservingisometryclassesofweightedcompactR-trees,wherewesaythattwoweighted,compactR-treespX,d,νqandpXI,dI,νIqareweight-preservingisometricifthereexistsanisometryφbetweenXandXIsuchthatthepush-forwardofνbyφisνI:(2.
5)νIφν:νφ1.
Itisclearthatthepropertyofbeingweight-preservingisometricisanequiv-alencerelation.
WewanttoequipTwtwithaGromov-Hausdortypeofdistancewhichincorporatestheweightsonthetrees,butrstweneedtointroducesomenotionsthatwillbeusedinthedenition.
Anε-(distorted)isometrybetweentwometricspacespX,dXqandpY,dYqisa(possiblynon-measurable)mapf:XYsuchthat(2.
6)dispfq:supt|dXpx1,x2qdYpfpx1q,fpx2qq|:x1,x2Xu¤εandfpXqisanε-netinY.
ItiseasytoseethatiffortwometricspacespX,dXqandpY,dYqandε0wehavedGHpX,dXq,pY,dYq¨ε,thenthereexistsan2ε-isometryfromXtoY(compareLemma7.
3.
28in[BBI01]).
ThefollowingLemmastatesthatwemaychoosethedistortedisometrybetweenXandYtobemeasurableifweallowaslightlybiggerdistortion.
Lemma2.
1.
LetpX,dXqandpY,dYqbetwocompactrealtreessuchthatdGHpX,dXq,pY,dYq¨εforsomeε0.
Thenthereexistsameasurable3ε-isometryfromXtoY.
Proof.
IfdGHpX,dXq,pY,dYq¨ε,thenby(2.
4)thereexistsacorrespon-dencebetweenXandYsuchthatdispq2ε.
SincepX,dXqiscom-pactthereexistsaniteε-netinX.
Weclaimthatforeachsuchniteε-netSX,εtx1,.
.
.
,xNεuX,anysetSY,εty1,.
.
.
,yNεuYsuchthatSUBTREEPRUNEANDRE-GRAFT7pxi,yiqforallit1,2,.
.
.
,Nεuisan3ε-netinY.
Toseethis,xyY.
Wehavetoshowtheexistenceofit1,2,.
.
.
,NεuwithdYpyi,yq3ε.
ForthatchoosexXsuchthatpx,yq.
SinceSX,εisanε-netinXthereex-istsanit1,2,.
.
.
,NεusuchthatdXpxi,xqε.
pxi,yiqimpliesthereforethat|dXpxi,xqdYpyi,yq|¤dispq2ε,andhencedYpyi,yq3ε.
FurthermorewemaydecomposeXintoNεpossiblyemptymeasurabledisjointsubsetsofXbylettingX1,ε:Bpx1,εq,X2,ε:Bpx2,εqzX1,ε,andsoon,whereBpx,rqistheopenballtxIX:dXpx,xIqru.
ThenfdenedbyfpxqyiforxXi,εisobviouslyameasurable3ε-isometryfromXtoY.
WealsoneedtorecallthedenitionoftheProhorovdistancebetweentwoprobabilitymeasures(see,forexample,[EK86]).
GiventwoprobabilitymeasuresandνonametricspacepX,dqwiththecorrespondingcollectionofclosedsetsdenotedbyC,theProhorovdistancebetweenthemisdPp,νq:inftε0:pCq¤νpCεqεforallCCu,whereCε:txX:infyCdpx,yqεu.
TheProhorovdistanceisametriconthecollectionofprobabilitymeasuresonX.
Thefollowingresultshowsthatifwepushmeasuresforwardwithamaphavingasmalldistortion,thenProhorovdistancescan'tincreasetoomuch.
Lemma2.
2.
SupposethatpX,dXqandpY,dYqaretwometricspaces,f:XYisameasurablemapwithdispfq¤ε,andandνaretwoprobabilitymeasuresonX.
ThendPpf,fνq¤dPp,νqε.
Proof.
SupposethatdPp,νqδ.
Bydenition,pCq¤νpCδqδforallclosedsetsCC.
IfDisaclosedsubsetofY,thenfpDqpf1pDqq¤pf1pDqq¤νpf1pDqδqδνpf1pDqδqδ.
(2.
7)NowxIf1pDqδmeansthereisxPXsuchthatdXpxI,xPqδandfpxPqD.
Bytheassumptionthatdispfq¤ε,wehavedYpfpxIq,fpxPqqδε,andhencefpxIqDδε.
Thus(2.
8)f1pDqδf1pDδεqandwehave(2.
9)fpDq¤νpf1pDδεqqδfνpDδεqδ,sothatdPpf,fνq¤δε,asrequired.
8STEVENN.
EVANSANDANITAWINTERWearenowinapositiontodenetheweightedGromov-Hausdordis-tancebetweenthetwocompact,weightedR-treespX,dX,νXqandpY,dY,νYq.
Forε0,set(2.
10)FεX,Y:2measurableε-isometriesfromXtoY@.
Put(2.
11)GHwtpX,Yq:inf5ε0:existfFεX,Y,gFεY,XsuchthatdPpfνX,νYq¤ε,dPpνX,gνYq¤εC.
Notethatthesetontherighthandsideisnon-emptybecauseXandYarecompact,andhencebounded.
ItwillturnoutthatGHwtsatisesallthepropertiesofametricexceptthetriangleinequality.
Torectifythis,let(2.
12)dGHwtpX,Yq:inf5n1i1GHwtpZi,Zi1q14C,wheretheinmumistakenoverallnitesequencesofcompact,weightedR-treesZ1,.
.
.
ZnwithZ1XandZnY.
Lemma2.
3.
ThemapdGHwt:TwtTwtRisametriconTwt.
Moreover,12GHwtpX,Yq14¤dGHwtpX,Yq¤GHwtpX,Yq14forallX,YTwt.
Proof.
Itisimmediatefrom(2.
11)thatthemapGHwtissymmetric.
Wenextclaimthat(2.
13)GHwtpX,dX,νXq,pY,dY,νYq¨0,ifandonlyifpX,dX,νXqandpY,dY,νYqareweight-preservingisometric.
The"if"directionisimmediate.
Noterstfortheconversethat(2.
13)impliesthatforallε0thereexistsanε-isometryfromXtoY,andtherefore,byLemma7.
3.
28in[BBI01],dGHpX,dXq,pY,dYq¨2ε.
ThusdGHpX,dXq,pY,dYq¨0,anditfollowsfromTheorem7.
3.
30of[BBI01]thatpX,dXqandpY,dYqareisometric.
Checkingtheproofofthatresult,weseethatwecanconstructanisometryf:XYbytakinganydensecountablesetSX,anysequenceoffunctionspfnqsuchthatfnisanεn-isometrywithεn0asnV,andlettingfbelimkfnkalonganysubsequencesuchthatthelimitexistsforallxS(suchasubsequenceexistsbythecompactnessofY).
Therefore,xsomedensesubsetSXandsupposewithoutlossofgeneralitythatwehaveanisometryf:XYgivenbyfpxqlimnVfnpxq,xS,wherefnFεnX,Y,dPpfnνX,νYq¤εn,SUBTREEPRUNEANDRE-GRAFT9andlimnVεn0.
WewillbedoneifwecanshowthatfνXνY.
IfXisadiscretemeasurewithatomsbelongingtoS,thendPpfνX,νYq¤limsupndPpfnνX,νYqdPpfnX,fnνXqdPpfX,fnXqdPpfνX,fXq%¤2dPpX,νXq,(2.
14)wherewehaveusedLemma2.
2andthefactthatlimnVdPpfX,fnXq0becauseofthepointwiseconvergenceoffntofonS.
BecausewecanchooseXsothatdPpX,νXqisarbitrarilysmall,weseethatfνXνY,asrequired.
NowconsiderthreespacespX,dX,νXq,pY,dY,νYq,andpZ,dZ,νZqinTwt,andconstantsε,δ0,suchthatGHwtpX,dX,νXq,pY,dY,νYq¨εandGHwtpY,dY,νYq,pZ,dZ,νZq¨δ.
ThenthereexistfFεX,YandgFδY,ZsuchthatdPpfνX,νYqεanddPpgνY,νZqδ.
NotethatgfFεδX,Z.
Moreover,byLemma2.
2(2.
15)dPppgfqνX,νZq¤dPpgνY,νZqdPpgfνX,gνYqδεδ.
This,andasimilarargumentwiththerolesofXandZinterchanged,showsthat(2.
16)GHwtpX,Zq¤2rGHwtpX,YqGHwtpY,Zqs.
Thesecondinequalityinthestatementofthelemmaisclear.
Inordertoseetherstinequality,itsucestoshowthatforanyZ1,.
.
.
Znwehave(2.
17)GHwtpZ1,Znq14¤2n1i1GHwtpZi,Zi1q14.
Wewillestablish(2.
17)byinduction.
Theinequalitycertainlyholdswhenn2.
Supposeitholdsfor2,n1.
WriteSforthevalueofthesumontherighthandsideof(2.
17).
Put(2.
18)k:max51¤m¤n1:m1i1GHwtpZi,Zi1q14¤S{2C.
Bytheinductivehypothesisandthedenitionofk,(2.
19)GHwtpZ1,Zkq14¤2k1i1GHwtpZi,Zi1q14¤2pS{2qS.
Ofcourse,(2.
20)GHwtpZk,Zk1q14¤SBydenitionofk,(2.
21)ki1GHwtpZi,Zi1q14S{2,10STEVENN.
EVANSANDANITAWINTERsothatoncemorebytheinductivehypothesis,(2.
22)GHwtpZk1,Znq14¤2n1ik1GHwtpZi,Zi1q142S2ki1GHwtpZi,Zi1q14¤S.
From(2.
19),(2.
20),(2.
22)andtwoapplicationsof(2.
16)wehaveGHwtpZ1,Znq14¤t4rGHwtpZ1,ZkqGHwtpZk,Zk1qGHwtpZk1,Znqsu14¤p43S4q14¤2S,(2.
23)asrequired.
ItisobviousbyconstructionthatdGHwtsatisesthetriangleinequality.
TheotherpropertiesofametricfollowfromthecorrespondingpropertieswehavealreadyestablishedforGHwtandtheboundsinthestatementofthelemmawhichwehavealreadyestablished.
TheprocedureweusedtoconstructtheweightedGromov-Hausdormet-ricdGHwtfromthesemi-metricGHwtwasadaptedfromaproofin[Kel75]ofthecelebratedresultofAlexandroandUrysohnonthemetrizabilityofuniformspaces.
Thatproofwas,inturn,adaptedfromearlierworkofFrinkandBourbaki.
Thechoiceofthepower14isnotparticularlyspecial,anysucientlysmallpowerwouldhaveworked.
Theorem2.
5belowsaysthatthemetricspacepTwt,dGHwtqiscompleteandseparableandhenceisareasonablespaceonwhichtodoprobabilitytheory.
Inordertoprovethisresult,weneedacompactnesscriterionthatwillbeusefulinitsownright.
Proposition2.
4.
AsubsetDofpTwt,dGHwtqisrelativelycompactifandonlyifthesubsetE:tpT,dq:pT,d,νqDuinpT,dGHqisrelativelycompact.
Proof.
The"onlyif"directionisclear.
AssumefortheconversethatEisrelativelycompact.
SupposethatppTn,dTn,νTnqqnNisasequenceinD.
Byassumption,ppTn,dTnqqnNhasasubsequenceconvergingtosomepointpT,dTqofpT,dGHq.
Foreaseofnotation,wewillrenumberandalsodenotethissubsequencebyppTn,dTnqqnN.
Forbrevity,wewillalsoomitspecicmentionofthemetriconarealtreewhenitisclearfromthecontext.
ByProposition7.
4.
12in[BBI01],foreachε0thereisaniteε-netTεinTandforeachnNaniteε-netTεn:txε,1n,.
.
.
,xε,#TεnnuinTnsuchthatdGHpTεn,Tεq0asnV.
Moreover,wetake#Tεn#TεNε,say,forSUBTREEPRUNEANDRE-GRAFT11nsucientlylarge,andso,bypassingtoafurthersubsequenceifnecessary,wemayassumethat#Tεn#TεNεforallnN.
WemaythenassumethatTεnandTεhavebeenindexedsothatthatlimnVdTnpxε,in,xε,jnqdTpxε,i,xε,jqfor1¤i,j¤Nε.
WemaybeginwiththeballsofradiusεaroundeachpointofTεnandde-composeTnintoNεpossiblyempty,disjoint,measurablesetstTε,1n,.
.
.
,Tε,Nεnuofradiusnogreaterthanε.
Deneameasurablemapfεn:TnTεnbyfεnpxqxε,inifxTε,inandletgεnbetheinclusionmapfromTεntoTn.
Byconstruction,fεnandgεnaremeasurableε-isometries.
Moreover,dPpgεnqpfεnqνn,νn¨εand,ofcourse,dPpfεnqνn,pfεnqνn¨0.
Thus,GHwtppTεn,pfεnqνnq,pTn,νnqq¤ε.
Bysimilarreasoning,ifwedenehεn:TεnTεbyxε,inxε,i,thenlimnVGHwtppTεn,pfεnqνnq,pTε,phεnqνnqq0.
SinceTεisnite,bypassingtoasubsequence(andrelabelingasbefore)wehavelimnVdPpphεnqνn,νεq0forsomeprobabilitymeasureνεonTε,andhencelimnVGHwtppTε,phεnqνnq,pTε,νεqq0.
Therefore,byLemma2.
3,limsupnVdGHwtppTn,νnq,pTε,phεnqνnqq¤ε14.
Now,sincepT,dTqiscompact,thefamilyofmeasurestνε:ε0uisrelativelycompact,andsothereisaprobabilitymeasureνonTsuchthatνεconvergestoνintheProhorovdistancealongasubsequenceε0andhence,byargumentssimilartotheabove,alongthesamesubsequenceGHwtppTε,νεq,pT,νqqconvergesto0.
AgainapplyingLemma2.
3,wehavethatdGHwtppTε,νεq,pT,νqqconvergesto0alongthissubsequence.
Combiningtheforegoing,weseethatbypassingtoasuitablesubsequenceandrelabeling,dGHwtppTn,νnq,pT,νqqconvergesto0,asrequired.
Theorem2.
5.
ThemetricspacepTwt,dGHwtqiscompleteandseparable.
Proof.
SeparabilityfollowsreadilyfromseparabilityofpT,dGHq(seeThe-orem1in[EPW04]),andtheseparabilitywithrespecttotheProhorovdistanceoftheprobabilitymeasuresonaxedcomplete,separablemetricspace(see,forexample,[EK86]),andLemma2.
3.
Itremainstoestablishcompleteness.
Byastandardargument,itsucestoshowthatanyCauchysequenceinTwthasaconvergentsubsequence.
LetpTn,dTn,νnqnNbeaCauchysequenceinTwt.
ThenpTn,dTnqnNisaCauchysequenceinTbyLemma2.
3.
ByTheorem1in[EPW04]thereisaTTsuchthatdGHpTn,Tq0,asnV.
Inparticular,thesequence12STEVENN.
EVANSANDANITAWINTERpTn,dTnqnNisrelativelycompactinT,andtherefore,byProposition2.
4,pTn,dTn,νnqnNisrelativelycompactinTwt.
ThuspTn,dTn,νnqnNhasaconvergentsubsequence,asrequired.
WeconcludethissectionbygivinganecessaryandsucientconditionforasubsetofpT,dGHqtoberelativelycompact,andhence,byProposi-tion2.
4,anecessaryandsucientconditionforasubsetofpTwt,dGHwtqtoberelativelycompact.
FixpT,dqT,and,asusual,denotetheBorel-σ-algebraonTbyBpTq.
Let(2.
24)To¤a,bTsa,brtheskeletonofT.
ObservethatifTITisadensecountableset,then(2.
24)holdswithTreplacedbyTI.
Inparticular,ToBpTqandBpTq§§Toσptsa,br;a,bTIuq,whereBpTq§§To:tATo;ABpTqu.
Hencethereexistsauniqueσ-nitemeasureTonT,calledlengthmeasure,suchthatTpTzToq0and(2.
25)Tpsa,brqdpa,bq,da,bT.
SuchameasuremaybeconstructedasthetraceontoToofone-dimensionalHausdormeasureonT,andastandardmonotoneclassargumentshowsthatthisistheuniquemeasurewithproperty(2.
25).
Forε0,TT,andρTwrite(2.
26)RεpT,ρq:txT:hyT,rρ,ysx,dTpx,yqεutρu.
fortheε-trimmingrelativetotherootρofthecompactR-treeT.
Thenset(2.
27)RεpTq:4ρTRεpT,ρq,diampTqε,singleton,diampTq¤ε,wherebysingletonwemeanthetrivialR-treeconsistingofonepoint.
ThetreeRεpTqiscalledtheε-trimmingofthecompactR-treeT.
Lemma2.
6.
AsubsetEofpT,dGHqisrelativelycompactifandonlyifforallε0,(2.
28)suptTpRεpTqq:TEuV.
Proof.
The"onlyif"directionfollowsfromthefactthatTTpRεpTqqiscontinuous,whichisessentiallyLemma7.
3of[EPW04].
Conversely,supposethat(2.
28)holds.
GivenTE,anε-netforRεpTqisa2ε-netforT.
ByLemma2.
7below,RεpTqhasanε-netofcardinal-ityatmostpε2q1TpRεpTqq$pε2q1TpRεpTqq1$.
Byassumption,thelastquantityisuniformlyboundedinTE.
ThusEisuniformlytotallyboundedandhenceisrelativelycompactbyTheorem7.
4.
15of[BBI01].
Lemma2.
7.
LetTTbesuchthatTpTqV.
Foreachε0thereisanε-netforTofcardinalityatmostpε2q1TpTq$pε2q1TpTq1$SUBTREEPRUNEANDRE-GRAFT13Proof.
Notethatanε2-netforRε2pTqwillbeanε-netforT.
ThesetTzRε2pTqisacollectionofdisjointsubtrees,oneforeachleafofRε2pTq,andeachsuchsubtreeisofdiameteratleastε2.
ThusthenumberofleavesofRε2pTqisatmostpε2q1TpTq.
EnumeratetheleavesofRε2pTqasx0,x1,xn.
Eacharcrx0,xis,1¤i¤n,ofRε2pTqhasanε2-netofcardinalityatmostpε2q1dTpx0,xiq1¤pε2q1TpTq1.
Therefore,bytakingtheunionofthesenets,Rε2pTqhasanε2-netofcardinalityatmostpε2q1TpTq$pε2q1TpTq1$.
Remark2.
8.
TheboundinLemma2.
7isfarfromoptimal.
ItcanbeshownthatThasanε-netwithacardinalitythatisoforderTpTq{ε.
Thisisclearfornitetrees(thatis,treeswithanitenumberofbranchpoints),wherewecantraversethetreewithaunitspeedpathandhencethinkofthetreeasanimageoftheintervalr0,2TpTqsbyaLipschitzmapwithLipschitzconstant1,sothatacoveringoftheintervalr0,2TpTqsbyε-ballsgivesacoveringofTbyε-balls.
ThisargumentcanbeextendedtoarbitrarynitelengthR-trees,butthedetailsaretediousandsowehavecontentedourselveswiththeabovesimplerbound.
3.
TreesandcontinuouspathsForthesakeofcompletenessandtoestablishsomenotationwerecallsomefactsabouttheconnectionbetweencontinuousexcursionpathsandtrees(see[Ald93,LG99,DLG02]formoreonthisconnection).
WriteCpRqforthespaceofcontinuousfunctionsfromRintoR.
ForeCpRq,putζpeq:inftt0:eptq0uandwrite(3.
1)U:687eCpRq:ep0q0,ζpeqV,eptq0for0tζpeq,andeptq0fortζpeqDFEforthespaceofpositiveexcursionpaths.
SetU:teU:ζpequ.
WeassociateeacheU1withacompactR-treeasfollows.
Deneanequivalencerelationeonr0,1sbyletting(3.
2)u1eu2,iepu1qinfuru1u2,u1u2sepuqepu2q.
Considerthefollowingpseudo-metriconr0,1s(3.
3)dTepu1,u2q:epu1q2infuru1u2,u1u2sepuqepu2q,whichbecomesatruemetriconthequotientspaceTe:R§§er0,1s§§e.
Lemma3.
1.
ForeacheU1themetricspacepTe,dTeqisacompactR-tree.
14STEVENN.
EVANSANDANITAWINTERProof.
Itisstraightforwardtocheckthatthequotientmapfromr0,1sontoTeiscontinuouswithrespecttodTe.
ThuspTe,dTeqispath-connectedandcompactasthecontinuousimageofametricspacewiththeseproperties.
Inparticular,pTe,dTeqiscomplete.
Tocompletetheproof,itthereforesucestoverifythefourpointcondi-tion(2.
1).
However,foru1,u2,u3,u4Tewehave(3.
4)maxtdTepu1,u3qdTepu2,u4q,dTepu1,u4qdTepu2,u3qudTepu1,u2qdTepu3,u4q,wherestrictinequalityholdsifandonlyif(3.
5)minijinfuruiuj,uiujsepuq4infuru1u2,u1u2sepuq,infuru3u4,u3u4sepuqB.
Remark3.
2.
AnycompactR-treeTisisometrictoTeforsomeeU1.
Toseethis,xarootρT.
RecallRεpT,ρq,theε-trimmingofTwithrespecttoρdenedin(2.
26).
LetbeaprobabilitymeasureonTthatisequiv-alenttothelengthmeasureT.
BecauseTisσ-nite,suchaprobabilitymeasurealwaysexists,butonecanconstructexplicitlyasfollows:setH:maxuTdpρ,uq,andput:21TpRpρ,21Hq¤qTpRpρ,21Hqqi22iTpRpρ,2iHqzRpρ,2i1Hq¤qTpRpρ,2iHqzRpρ,2i1Hqq.
Forall0εHthereisacontinuouspathfε:r0,2TpRεpT,ρqqsRεpT,ρqsuchthathεdenedbyhεptq:dpρ,fεptqqbelongstoU2TpRεpT,ρqq(inpar-ticular,fεp0qfεp2TpRεpT,ρqqqρ),hεispiecewiselinearwithslopes¨1,andThεisisometrictoRεpT,ρq.
Moreover,thesepathsmaybechosenconsistentlysothatifεI¤εP,thenfεPptqfεIpinfts0:|t0¤r¤s:fεIprqRεPpT,ρqu|tuq,where|¤|denotesLebesguemeasure.
NowdeneeεUpRεpT,ρqqtobetheabsolutelycontinuouspathsatisfyingdeεptqdt2dTdpfεptqqdhεptqdt.
ItcanbeshownthateεconvergesuniformlytosomeeU1asε0andthatTeisisometrictoT.
SUBTREEPRUNEANDRE-GRAFT15Fromtheconnectionwehaverecalledbetweenexcursionpathsandrealtrees,itshouldbeclearthattheanalogueofanSPRmoveforarealtreearisingfromanexcursionpathistheexcisionandre-insertionofasub-excursion.
Figure2illustratessuchanoperation.
Figure2.
Asubtreepruneandre-graftoperationonanexcursionpath:theexcursionstartingattimeuinthetoppictureisexcisedandinsertedattimev,andtheresultinggapbetweenthetwopointsmarked#isclosedup.
Thetwopointsmarked#(resp.
)inthetop(resp.
bottom)picturecorrespondtoasinglepointintheassociatedR-tree.
EachtreecomingfromapathinU1hasanaturalweightonit:foreU1,weequippTe,dTeqwiththeweightνTegivenbythepush-forwardofLebesguemeasureonr0,1sbythequotientmap.
Wenishthissectionwitharemarkaboutthenaturallengthmeasureonatreecomingfromapath.
GiveneU1anda0,let(3.
6)Ga:687tr0,1s:eptqaand,forsomeε0,epuqaforallust,tεr,eptεqa.
DFEdenotethecountablesetofstartingpointsofexcursionsofthefunctioneabovethelevela.
ThenTe,thelengthmeasureonTe,isjustthepush-forwardofthemeasureV0da°tGaδtbythequotientmap.
Alternatively,16STEVENN.
EVANSANDANITAWINTERwrite(3.
7)Γe:tps,aq:ss0,1r,ar0,epsqrufortheregionbetweenthetimeaxisandthegraphofe,andforps,aqΓedenotebyspe,s,aq:suptrs:eprqauandspe,s,aq:inftts:eptqauthestartandnishoftheexcursionofeabovelevelathatstraddlestimes.
ThenTeisthepush-forwardofthemeasureΓedsda1spe,s,aqspe,s,aqδspe,s,aqbythequotientmap.
WenotethatthemeasureTeappearsin[AS02].
4.
UniformrandomweightedcompactR-trees:thecontinuumrandomtreeInthissectionwewillrecallthedenitionofAldous'scontinuumran-domtree,whichcanbethoughtofasauniformlychosenrandomweightedcompactR-tree.
ConsidertheItoexcursionmeasureforexcursionsofstandardBrownianmotionawayfrom0.
Thisσ-nitemeasureisdenedsubjecttoanormal-izationofBrownianlocaltimeat0,andwetaketheusualnormalizationoflocaltimesateachlevelwhichmakesthelocaltimeprocessanoccupationdensityinthespatialvariableforeachxedvalueofthetimevariable.
Theexcursionmeasureisthesumoftwomeasures,onewhichisconcentratedonnon-negativeexcursionsandonewhichisconcentratedonnon-positiveexcursions.
LetNbethepartwhichisconcentratedonnon-negativeex-cursions.
Thus,inthenotationofSection3,Nisaσ-nitemeasureonU,whereweequipUwiththeσ-eldUgeneratedbythecoordinatemaps.
Deneamapv:UU1byeepζpeq¤qζpeq.
Then(4.
1)PpΓq:Ntv1pΓqteU:ζpeqcuuNteU:ζpeqcu,ΓU,doesnotdependonc0(see,forexample,Exercise12.
2.
13.
2in[RY99]).
TheprobabilitymeasurePiscalledthelawofnormalizednon-negativeBrownianexcursion.
Wehave(4.
2)NteU:ζpeqdcudc22πc3and,deningSc:U1Ucby(4.
3)Sce:cep¤{cqwehave(4.
4)NpdeqGpeqV0dc22πc3U1PpdeqGpSceqforanon-negativemeasurablefunctionG:UR.
RecallfromSection3howeacheU1isassociatedwithaweightedcom-pactR-treepTe,dTe,νTeq.
LetPbetheprobabilitymeasureonpTwt,dGHwtqSUBTREEPRUNEANDRE-GRAFT17thatisthepush-forwardofthenormalizedexcursionmeasurebythemapepT2e,dT2e,νT2eq,where2eU1isjusttheexcursionpatht2eptq.
TheprobabilitymeasurePisthedistributionofanobjectconsistingofAldous'scontinuumrandomtreealongwithanaturalmeasureonthistree(see,forexample,[Ald91a,Ald93]).
ThecontinuumrandomtreearisesasthelimitofauniformrandomtreeonnverticeswhennVandedgelengthsarerescaledbyafactorof1{n.
Theappearanceof2eratherthaneinthedenitionofPisaconsequenceofthischoiceofscaling.
Theassociatedprobabilitymeasureoneachrealizationofthecontinuumrandomtreeisthemeasurethatarisesinthislimitingconstructionbytakingtheuniformprobabilitymeasureonrealizationsoftheapproximatingnitetrees.
TheprobabilitymeasurePcanthereforebeviewedinformallyasthe"uniformdistribution"onpTwt,dGHwtq.
5.
CampbellmeasurefactsForthepurposesofconstructingtheMarkovprocessthatisofinteresttous,weneedtounderstandpickingarandomweightedtreepT,dT,νTqaccordingtothecontinuumrandomtreedistributionP,pickingapointuaccordingtothelengthmeasureTandanotherpointvaccordingtotheweightνT,andthendecomposingTintotwosubtreesrootedatu–onethatcontainsvandonethatdoesnot(wearebeingalittleimprecisehere,becauseTwillbeaninnitemeasure,Palmostsurely).
Inordertounderstandthisdecomposition,wemustunderstandthecor-respondingdecompositionofexcursionpathsundernormalizedexcursionmeasure.
Becausesubtreescorrespondtosub-excursionsandbecauseofourobservationinSection3thatforanexcursionethelengthmeasureTeonthecorrespondingtreeisthepush-forwardofthemeasureΓedsda1spe,s,aqspe,s,aqδspe,s,aqbythequotientmap,weneedtounderstandthedecompositionoftheexcursioneintotheexcursionaboveathatstraddlessandthe"remaining"excursionwhenwheneischosenaccordingtothestandardBrownianexcursiondistributionPandps,aqischosenaccordingtotheσ-nitemeasuredsda1spe,s,aqspe,s,aqonΓe–seeFigure3.
GivenanexcursioneUandalevela0write:ζpeq:inftt0:eptq0uforthe"length"ofe,atpeqforthelocaltimeofeatlevelauptotimet,eaforetime-changedbytheinverseoftt0ds1tepsq¤au(thatis,eaisewiththesub-excursionsabovelevelaexcisedandthegapsclosedup),atpeaqforthelocaltimeofeaatthelevelauptotimet,Uapeqforthesetofsub-excursionintervalsofeabovea(thatis,anelementofUapeqisanintervalIrgI,dIssuchthatepgIqepdIqaandeptqaforgItdI),NapeqforthecountingmeasurethatputsaunitmassateachpointpsI,eIq,where,forsomeIUapeq,sI:agIpeqistheamountof18STEVENN.
EVANSANDANITAWINTERFigure3.
Thedecompositionoftheexcursione(toppic-ture)intotheexcursiones,aabovelevelathatstraddlestimes(bottomleftpicture)andthe"remaining"excursionˇes,a(bottomrightpicture).
localtimeofeatlevelaaccumulateduptothebeginningofthesub-excursionIandeIUisgivenby(5.
1)eIptqepgItqa,0¤t¤dIgI,0,tdIgI,isthecorrespondingpieceofthepatheshiftedtobecomeanexcur-sionabovethelevel0startingattime0,es,aUandˇes,aU,forthesubexcursion"above"ps,aqΓe,thatis,(5.
2)es,aptq:4epspe,s,aqtqa,0¤t¤spe,s,aqspe,s,aq,0,tspe,s,aqspe,s,aq,respectively"below"ps,aqΓe,thatis,(5.
3)ˇes,aptq:4eptq,0¤t¤spe,s,aq,eptspe,s,aqspe,s,aqq,tspe,s,aq.
σaspeq:inftt0:atpeqsuandτaspeq:inftt0:atpeqsu,SUBTREEPRUNEANDRE-GRAFT19es,aUforewiththeintervalsσaspeq,τaspeqrcontaininganexcursionabovelevelaexcised,thatis,(5.
4)es,aptq:eptq,0¤t¤σaspeq,eptτaspeqσaspeqq,tσaspeq.
Thefollowingpathdecompositionresultundertheσ-nitemeasureNispreparatorytoadecompositionundertheprobabilitymeasureP,Corollary5.
2,thathasasimplerintuitiveinterpretation.
Proposition5.
1.
Fornon-negativemeasurablefunctionsFonRandG,HonU,NpdeqΓedsdaspe,s,aqspe,s,aqFpspe,s,aqqGpes,aqHpˇes,aqNpdeqV0daNapeqpdpsI,eIqqFpσasIpeqqGpeIqHpesI,aqNrGsNHζ0dsFpsq$.
Proof.
TherstequalityisjustachangeintheorderofintegrationandhasalreadybeenremarkeduponinSection3.
Standardexcursiontheory(see,forexample,[RW00,RY99,Ber96])saysthatunderN,therandommeasureeNapeqconditionaloneeaisaPoissonrandommeasurewithintensitymeasureλapeqN,whereλapeqisLebesguemeasurerestrictedtotheintervalr0,aVpeqsr0,2aVpeaqs.
NotethatesI,aisconstructedfromeaandNapeqδpsI,eIqinthesamewaythateisconstructedfromeaandNapeq.
Also,σasIpesI,aqσasIpeq.
Therefore,bytheCampbell-PalmformulaforPoissonrandommeasures(see,forexample,Section12.
1of[DVJ88]),NpdeqV0daNapeqpdpsI,eIqqFpσasIpeqqGpeIqHpesI,aqNpdeqV0daNNapeqpdpsI,eIqqFpσasIpeqqGpeIqHpesI,aq§§§ea%NpdeqV0daNrGsN3aVpeq0dsIFpσasIpeqqAH§§§ea%NrGsV0daNpdeq3daspeqFpsqAHpeqNrGsNpdeq3V0dadaspeqFpsqAHpeqNrGsNHζ0dsFpsq%.
20STEVENN.
EVANSANDANITAWINTERThenextresultsaysthatifwepickanexcursioneaccordingtothestandardexcursiondistributionPandthenpickapointps,aqΓeaccordingtotheσ-nitelengthmeasurecorrespondingtothelengthmeasureTeontheassociatedtreeTe(seetheendofSection3),thenthefollowingobjectsareindependent:(a)thelengthoftheexcursionabovelevelathatstraddlestimes,(b)theexcursionobtainedbytakingtheexcursionabovelevelathatstraddlestimes,turningit(byashiftofaxes)intoanexcursiones,aabovelevelzerostartingattimezero,andthenBrownianre-scalinges,atoproduceanexcursionofunitlength,(c)theexcursionobtainedbytakingtheexcursionˇes,athatcomesfromexcisinges,aandclosingupthegap,andthenBrownianre-scalingˇes,atoproduceanexcursionofunitlength,(d)thestartingtimespe,s,aqoftheexcursionabovelevelathatstrad-dlestimesrescaledbythelengthofˇes,atogiveatimeintheintervalr0,1s.
Moreover,thelengthin(a)is"distributed"accordingtotheσ-nitemea-sure(5.
5)122πdρp1ρqρ3,0¤ρ¤1,theunitlengthexcursionsin(b)and(c)arebothdistributedasstandardBrownianexcursions(thatis,accordingtoP),andthetimein(d)isuni-formlydistributedontheintervalr0,1s.
Recallfrom(4.
3)thatSc:U1UcistheBrownianre-scalingmapdenedbySce:cep¤{cq.
Corollary5.
2.
Fornon-negativemeasurablefunctionsFonRandKonUU,PpdeqΓedsdaspe,s,aqspe,s,aqFspe,s,aqζpˇes,aqKpes,a,ˇes,aq310duFpuqAPpdeqΓedsdaspe,s,aqspe,s,aqKpes,a,ˇes,aq310duFpuqA122π10dρp1ρqρ3PpdeIqPpdePqKpSρeI,S1ρePq.
SUBTREEPRUNEANDRE-GRAFT21Proof.
Foranon-negativemeasurablefunctionLonUU,itfollowsstraight-forwardlyfromProposition5.
1that(5.
6)NpdeqΓedsdaspe,s,aqspe,s,aqFspe,s,aqζpˇes,aqLpes,a,ˇes,aq310duFpuqANpdeIqNpdePqLpeI,ePqζpePq.
Theleft-handsideofequation(5.
6)is,by(4.
4),(5.
7)V0dc22πc3PpdeqΓScedsdaFspSce,s,aqζp}Sces,aqLpySces,a,}Sces,aqspSce,s,aqspSce,s,aq.
Ifwechangevariablestots{candba{c,thentheintegralforps,aqoverΓScebecomesanintegralforpt,bqoverΓe.
Also,(5.
8)spSce,ct,cbqsup3rct:cerccbAcsuptrt:eprqbucspe,t,bq,and,bysimilarreasoning,(5.
9)spSce,ct,cbqcspe,t,bqand(5.
10)ζp}Scect,`cbqcζpˇet,bq.
Thus(5.
7)is(5.
11)V0dc22πc3PpdeqcΓedtdbFspe,t,bqζpˇet,bq¨LpyScect,`cb,}Scect,`cbqspe,t,bqspe,t,bq.
NowsupposethatLisoftheform(5.
12)LpeI,ePqKpRζpeIqζpePqeI,RζpeIqζpePqePqMpζpeIqζpePqqζpeIqζpePq,where,foreaseofnotation,weputforeU,andc0,(5.
13)Rce:Sc1e1cepc¤q.
Then(5.
11)becomes(5.
14)V0dc22πc3PpdeqΓedtdbFspe,t,bqζpˇet,bqKpet,b,ˇet,bqMpcqspe,t,bqspe,t,bq.
22STEVENN.
EVANSANDANITAWINTERSince(5.
14)wasshowntobeequivalenttothelefthandsideof(5.
6),itfollowsfrom(4.
4)that(5.
15)PpdeqΓedtdbspe,t,bqspe,t,bqFspe,t,bqζpˇet,bq¨Kpet,b,ˇet,bq10duFpuqNrMsNpdeIqNpdePqLpeI,ePqζpePq,andtherstequalityofthestatementfollows.
Wehavefromtheidentity(5.
15)that,foranyC0,NtζpeqCuPpdeqΓedsdaspe,s,aqspe,s,aqKpes,a,ˇes,aqNpdeIqNpdePqKpRζpeIqζpePqeI,RζpeIqζpePqePq1tζpeIqζpePqCuζpeIqζpePqζpePqV0dcI22πcI3V0dcP22πcPPpdeIqPpdePqKpRcIcPScIeI,RcIcPScPePq1tcIcPCucIcP.
MakethechangeofvariablesρcIcIcPandξcIcP(withcorrespond-ingJacobianfactorξ)togetV0dcI22πcI3V0dcP22πcPPpdeIqPpdePqKpRcIcPScIeI,RcIcPScPePq1tcIcPCucIcP122π2V0dξ10dρξρ3p1ρqξ41tξCuξPpdeIqPpdePqKpSρeI,S1ρePq122π25VCdξξ3C10dρρ3p1ρqPpdeIqPpdePqKpSρeI,S1ρePq,andthecorollaryfollowsuponrecalling(4.
2).
Corollary5.
3.
(i)Forx0,PpdeqΓedsdaspe,s,aqspe,s,aq1tmax0¤t¤ζpes,aqes,axu2Vn1nxexpp2n2x2qSUBTREEPRUNEANDRE-GRAFT23(ii)For0p¤1,PpdeqΓedsdaspe,s,aqspe,s,aq1tζpes,aqpu1p2πp.
Proof.
(i)RecallrstofallfromTheorem5.
2.
10in[Kni81]that(5.
16)P4eU1:max0¤t¤1eptqxB2Vn1p4n2x21qexpp2n2x2q.
ByCorollary5.
2appliedtoKpeI,ePq:1tmaxtr0,ζpeIqseIptqxuandF1,PpdeqΓedsdaspe,s,aqspe,s,aq1tmax0¤t¤ζpes,aqes,axu122π10dρρ3p1ρqP4maxtr0,ρsρept{ρqxB122π10dρρ3p1ρqP4maxtr0,1septqxρB122π10dρρ3p1ρq2Vn14n2x2ρ1exp2n2x2ρ2Vn1nxexpp2n2x2q,asclaimed.
(ii)Corollary5.
2appliedtoKpeI,ePq:1tζpeIqpuandF1immediatelyyieldsPpdeqΓedsdaspe,s,aqspe,s,aq1tζpes,aqpu122π1pdρρ3p1ρq1p2πp.
Weconcludethissectionbycalculatingtheexpectationsofsomefunc-tionalswithrespecttoP(the"uniformdistribution"onpTwt,dGHwtqasintroducedintheendofSection4).
ForTTwt,andρT,recallRcpT,ρqfrom(2.
26),andthelengthmeasureTfrom(2.
25).
GivenpT,dqTwtandu,vT,let(5.
17)ST,u,v:twT:usv,wru,denotethesubtreeofTthatdiersfromitsclosurebythepointu,whichcanbethoughtofasitsroot,andconsistsofpointsthatareonthe"otherside"ofufromv(recallsv,wristheopenarcinTbetweenvandw).
24STEVENN.
EVANSANDANITAWINTERLemma5.
4.
(i)Forx0,PTνT2pu,vqTT:heightpST,u,vqx@$PTνTpdvqTpRxpT,vqq%2Vn1nxexppn2x2{2q.
(ii)For1αV,PTνTpdvqTTpduqheightpST,u,vq¨α&2α12αΓα12¨ζpαq,where,asusual,ζpαq:°n1nα.
(iii)For0p¤1,PTνTtpu,vqTT:νTpST,u,vqpu$d2p1pqπp.
(iv)For12βV,PTνTpdvqTTpduqνTST,u,v¨¨β&212Γβ12¨Γpβq.
Proof.
(i)TherstequalityisclearfromthedenitionofRxpT,vqandFubini'stheorem.
Turningtotheequalityoftherstandlastterms,rstrecallthatPisthepush-forwardonpTwt,dGHwtqofthenormalizedexcursionmeasurePbythemapepT2e,dT2e,νT2eq,where2eU1isjusttheexcursionpatht2eptq.
Inparticular,T2eisthequotientoftheintervalr0,1sbytheequivalencerelationdenedby2e.
BytheinvarianceofthestandardBrownianexcursionunderrandomre-rooting(seeSection2.
7of[Ald91b]),thepointinT2ethatcorrespondstotheequivalenceclassof0r0,1sisdistributedaccordingtoνT2ewheneischosenaccordingtoP.
Moreover,recallfromtheendofSection3thatforeU1,thelengthmeasureTeisthepush-forwardofthemeasuredsda1spe,s,aqspe,s,aqδspe,s,aqonthesub-graphΓebythequotientmapdenedin(3.
2).
ItfollowsthatifwepickTaccordingtoPandthenpickpu,vqTTaccordingtoTνT,thenthesubtreeST,u,vthatariseshasthesameσ-nitelawasthetreeassociatedwiththeexcursion2es,awheneischo-senaccordingtoPandps,aqischosenaccordingtothemeasuredsda1spe,s,aqspe,s,aqδspe,s,aqonthesub-graphΓe.
SUBTREEPRUNEANDRE-GRAFT25Therefore,bypart(i)ofCorollary5.
3,PTνTpdvqTTpduq12heightpST,u,vqx@&2PpdeqΓedsdaspe,s,aqspe,s,aq14max0¤t¤ζpes,aqes,ax2B2Vn1nxexppn2x2{2q.
Part(ii)isaconsequenceofpart(i)andsomestraightforwardcalculus.
Part(iii)followsimmediatelyfrompart(ii)ofCorollary5.
3.
Part(iv)isaconsequenceofpart(iii)andsomemorestraightforwardcalculus.
6.
AsymmetricjumpmeasureonpTwt,dGHwtqInthissectionwewillconstructandstudyameasureonTwtTwtthatisrelatedtothedecompositiondiscussedatthebeginningofSection5.
DeneamapΘfromtppT,dq,u,vq:TT,uT,vTuintoTbysettingΘppT,dq,u,vq:pT,dpu,vqqwhereletting(6.
1)dpu,vqpx,yq:6998997dpx,yq,ifx,yST,u,v,dpx,yq,ifx,yTzST,u,v,dpx,uqdpv,yq,ifxST,u,v,yTzST,u,v,dpy,uqdpv,xq,ifyST,u,v,xTzST,u,v.
Thatis,ΘppT,dq,u,vqisjustTasaset,butthemetrichasbeenchangedsothatthesubtreeST,u,vwithrootuisnowprunedandre-graftedsoastohaverootv.
IfpT,d,νqTwtandpu,vqTT,thenwecanthinkofνasaweightonpT,dpu,vqq,becausetheBorelstructuresinducesbydanddpu,vqarethesame.
WithaslightmisuseofnotationwewillthereforewriteΘppT,d,νq,u,vqforpT,dpu,vq,νqTwt.
Intuitively,themasscontainedinST,u,vistransportedalongwiththesubtree.
DeneakernelκonTwtby(6.
2)κppT,dT,νTq,Bq:TνT2pu,vqTT:ΘpT,u,vqB@forBBpTwtq.
ThusκppT,dT,νTq,¤qisthejumpkerneldescribedinfor-mallyintheIntroduction.
Remark6.
1.
ItisclearthatκppT,dT,νTq,¤qisaBorelmeasureonTwtforeachpT,dT,νTqTwt.
Inordertoshowthatκp¤,BqisaBorelfunctiononTwtforeachBBpTwtq,sothatκisindeedakernel,itsucestoobserveforeachboundedcontinuousfunctionF:TwtRthatFpΘpT,u,vqqTpduqνTpdvqlimε0FpΘpT,u,vqqRεpTqpduqνTpdvq26STEVENN.
EVANSANDANITAWINTERandthatpT,dT,νTqFpΘpT,u,vqqRεpTqpduqνTpdvqiscontinuousforallε0(thelatterfollowsfromanargumentsimilartothatinLemma7.
3of[EPW04],whereitisshownthatthepT,dT,νTqRεpTqpTqiscontinuous).
Wehaveonlysketchedtheargumentthatκisakernel,becauseκisjustadevicefordeningthemeasureJonTwtTwtinthenextparagraph.
ItisactuallythemeasureJthatweusetodeneourDirichletform,andthemeasureJcanbeconstructeddirectlyasthepush-forwardofameasureonU1U1–seetheproofofLemma6.
2.
Weshowinpart(i)ofLemma6.
2belowthatthekernelκisreversiblewithrespecttotheprobabilitymeasureP.
Moreprecisely,weshowthatifwedeneameasureJonTwtTwtby(6.
3)JpABq:APpdTqκpT,BqforA,BBpTwtq,thenJissymmetric.
Lemma6.
2.
(i)ThemeasureJissymmetric.
(ii)ForeachcompactsubsetKTwtandopensubsetUsuchthatKUTwt,JpK,TwtzUqV.
(iii)ThefunctionGHwtissquare-integrablewithrespecttoJ,thatis,TwtTwtJpdT,dSq2GHwtpT,SqV.
Proof.
(i)GiveneI,ePU1,0¤u¤1,and0ρ¤1,deneep¤;eI,eP,u,ρqU1byept;eI,eP,u,ρq:S1ρePptq,0¤t¤p1ρqu,S1ρePpp1ρquqSρeIptp1ρquq,p1ρqu¤t¤p1ρquρ,S1ρePptρq,p1ρquρ¤t¤1.
(6.
4)Thatis,ep¤;eI,eP,u,ρqistheexcursionthatarisesfromBrownianre-scalingeIandePtohavelengthsρand1ρ,respectively,andtheninsertingthere-scaledversionofeIintothere-scaledversionofePatapositionthatisafractionuofthetotallengthofthere-scaledversionofeP.
SUBTREEPRUNEANDRE-GRAFT27DeneameasureJonU1U1byU1U1Jpde,deqKpe,eq:r0,1s2dudv122π10dρp1ρqρ3PpdeIqPpdePqKep¤;eI,eP,u,ρq,ep¤;eI,eP,v,ρq¨.
(6.
5)Clearly,themeasureJissymmetric.
Itfollowsfromthediscussionatthebeginningoftheproofofpart(i)ofLemma5.
4andCorollary5.
2thatthemeasureJisthepush-forwardofthesymmetricmeasure2JbythemapU1U1pe,eqppT2e,dT2e,νT2eq,pT2e,dT2e,νT2eqqTwtTwt,andhenceJisalsosymmetric.
(ii)TheresultistrivialifKr,soweassumethatKr.
SinceTwtzUandKaredisjointclosedsetsandKiscompact,wehavethat(6.
6)c:infTK,SUGHwtpT,Sq0.
FixTK.
Ifpu,vqTTissuchthatGHwtpT,ΘpT,u,vqqc,thendiampTqc(sothatwecanthinkofRcpTq,recall(2.
27),asasubsetofT).
Moreover,weclaimthateitheruRcpT,vq(recall(2.
26)),oruRcpT,vqandνTpST,u,vqc(recall(5.
17)).
Suppose,tothecontrary,thatuRcpT,vqandthatνTpST,u,ρq¤c.
BecauseuRcpT,vq,themapf:TΘpT,u,vqgivenbyfpwq:u,ifwST,u,v,w,otherwise.
isameasurablec-isometry.
Thereisananalogousmeasurablec-isometryg:ΘpT,u,vqT.
Clearly,dPpfνT,νΘpT,u,vqq¤canddPpνT,gνΘpT,u,vqq¤c.
Hence,bydenition,GHwtpT,ΘpT,u,vqq¤c.
28STEVENN.
EVANSANDANITAWINTERThuswehave(6.
7)JpK,TwtzUq¤KPtdTuκpT,tS:GHwtpT,Sqcuq¤KPpdTqTνTpdvqTpRcpT,vqqKPpdTqTνTpdvqTtuT:νTpST,u,vqcuV,wherewehaveusedLemma5.
4.
(iii)Similarreasoningyieldsthat(6.
8)TwtTwtJpdT,dSq2GHwtpT,SqTwtPtdTuV0dt2tκpT,tS:GHwtpT,Sqtuq¤TwtPpdTqV0dt2tTνTpdvqTpRcpT,vqqTwtPpdTqV0dt2tTνTpdvqTtuT:νTtST,u,vutu¤V0dt2tTwtPpdTqTνTpdvqTpRcpT,vqqTwtPpdTqTνTpdvqTTpduqν2TpST,u,vqV,wherewehaveappliedLemma5.
4oncemore.
7.
DirichletformsConsiderthebilinearform(7.
1)Epf,gq:TwtTwtJpdT,dSqfpSqfpTq¨gpSqgpTq¨,forf,ginthedomain(7.
2)DpEq:tfL2pTwt,Pq:fismeasurable,andEpf,fqVu,(hereasusual,L2pTwt,Pqisequippedwiththeinnerproductpf,gqP:Ppdxqfpxqgpxq).
BytheargumentinExample1.
2.
1in[FOT94]andLemma6.
2,pE,DpEqqiswell-dened,symmetricandMarkovian.
SUBTREEPRUNEANDRE-GRAFT29Lemma7.
1.
TheformpE,DpEqqisclosed.
Thatis,ifpfnqnNbease-quenceinDpEqsuchthatlimm,nVpEpfnfm,fnfmqpfnfm,fnfmqPq0,thenthereexistsfDpEqsuchthatlimnVpEpfnf,fnfqpfnf,fnfqPq0.
Proof.
LetpfnqnNbeasequencesuchthatlimm,nVEpfnfm,fnfmqpfnfm,fnfmqP0(thatis,pfnqnNisCauchywithrespecttoEp¤,¤qp¤,¤qP).
ThereexistsasubsequencepnkqkNandfL2pTwt,PqsuchthatlimkVfnkf,P-a.
s,andlimkVpfnkf,fnkfqP0.
ByFatou'sLemma,(7.
3)JpdT,dSqpfpSqfpTq¨2¤liminfkVEpfnk,fnkqV,andsofDpEq.
Similarly,(7.
4)Epfnf,fnfqJpdT,dSqlimkVpfnfnkqpSqpfnfnkqpTq¨2¤liminfkVEpfnfnk,fnfnkq0asnV.
ThuspfnqnNhasasubsequencethatconvergestofwithrespecttoEp¤,¤qp¤,¤qP,but,bytheCauchyproperty,thisimpliesthatpfnqnNitselfconvergestof.
LetLdenotethecollectionoffunctionsf:TwtRsuchthat(7.
5)supTTwt|fpTq|Vand(7.
6)supS,TTwt,ST|fpSqfpTq|GHwtpS,TqV.
NotethatLconsistsofcontinuousfunctionsandcontainstheconstants.
Itfollowsfrom(2.
16)thatLisbothavectorlatticeandanalgebra.
ByLemma7.
2below,LDpEq.
Therefore,theclosureofpE,LqisaDirichletformthatwewilldenotebypE,DpEqq.
Lemma7.
2.
SupposethattfnunNisasequenceoffunctionsfromTwtintoRsuchthatsupnNsupTTwt|fnpTq|V,supnNsupS,TTwt,ST|fnpSqfnpTq|GHwtpS,TqV,30STEVENN.
EVANSANDANITAWINTERandlimnVfnf,P-a.
s.
forsomef:TwtR.
ThentfnunNDpEq,fDpEq,andlimnVpEpfnf,fnfqpfnf,fnfqPq0.
Proof.
BythedenitionofthemeasureJ(see(6.
3))andthesymmetryofJ(Lemma6.
2(i)),wehavethatfnpxqfnpyqfpxqfpyqforJ-almosteverypairpx,yq.
Theresultthenfollowsfrompart(iii)ofLemma6.
2andthedominatedconvergencetheorem.
BeforeshowingthatpE,DpEqqistheDirichletformofaniceMarkovprocess,weremarkthatL,andhenceDpEqisquitearichclassoffunctions:weshowintheproofofTheorem7.
3belowthatLseparatespointsofTwtandhenceifKisanycompactsubsetofTwt,then,bytheArzela-Ascolitheorem,thesetofrestrictionsoffunctionsinLtoKisuniformlydenseinthespaceofreal-valuedcontinuousfunctionsonK.
Thefollowingtheoremstatesthatthereisawell-denedMarkovprocesswiththedynamicswewouldexpectforalimitofthesubtreepruneandre-graftchains.
Theorem7.
3.
ThereexistsarecurrentP-symmetricHuntprocessXpXt,PTqonTwtwhoseDirichletformispE,DpEqq.
Proof.
WewillchecktheconditionsofTheorem7.
3.
1in[FOT94]toestablishtheexistenceofX.
BecauseTwtiscompleteandseparable(recallTheorem2.
5)thereisasequenceH1H2.
.
.
ofcompactsubsetsofTwtsuchthatPpkNHkq1.
Givenα,β0,writeLα,βforthesubsetofLconsistingoffunctionsfsuchthat(7.
7)supTTwt|fpTq|¤αand(7.
8)supS,TTwt,ST|fpSqfpTq|GHwtpS,Tq¤β.
Bytheseparabilityofthecontinuousreal-valuedfunctionsoneachHkwithrespecttothesupremumnorm,itfollowsthatforeachkNthereisacountablesetLα,β,kLα,βsuchthatforeveryfLα,β(7.
9)infgLα,β,ksupTHk|fpTqgpTq|0.
SetLα,β:kNLα,β,k.
ThenforanyfLα,βthereexistsasequencetfnunNinLα,βsuchthatlimnVfnfpointwiseonkNHk,andhenceP-almostsurely.
ByLemma7.
2,thecountablesetmNLm,misdenseinL,andhencealsodenseinDpEq,withrespecttoEp¤,¤qp¤,¤qP.
SUBTREEPRUNEANDRE-GRAFT31NowxacountabledensesubsetSTwt.
LetMdenotethecountablesetoffunctionsoftheform(7.
10)TpqpGHwtpS,TqrqforsomeSSandp,q,rQ.
NotethatML,thatMseparatesthepointsofTwt,and,foranyTTwt,thatthereiscertainlyafunctionfMwithfpTq0.
Consequently,ifCisthealgebrageneratedbythecountablesetMmNLm,m,thenitiscertainlythecasethatCisdenseinDpEqwithrespectEp¤,¤qp¤,¤qP,thatCseparatesthepointsofTwt,and,foranyTTwt,thatthereisafunctionfCwithfpTq0.
AllthatremainsinverifyingtheconditionsofTheorem7.
3.
1in[FOT94]istocheckthetightnessconditionthatthereexistcompactsubsetsK1K2.
.
.
ofTwtsuchthatlimnVCappTwtzKnq0whereCapisthecapacityassociatedwiththeDirichletform–seeRemark7.
4belowforadenition.
Thisconvergence,however,isthecontentofLemma7.
7below.
Finally,becauseconstantsbelongstoDpEq,itfollowsfromTheorem1.
6.
3in[FOT94]thatXisrecurrent.
Remark7.
4.
IntheproofofTheorem7.
3weusedthecapacityassociatedwiththeDirichletformpE,DpEqq.
WeremindthereaderthatforanopensubsetUTwt,CappUq:inftEpf,fqpf,fqP:fDpEq,fpTq1,Pa.
e.
TUu,andforageneralsubsetATwtCappAq:inftCappUq:AUisopenu.
WereferthereadertoSection2.
1of[FOT94]fordetailsandaproofthatCapisaChoquetcapacity.
ThefollowingresultswereneededintheproofofTheorem7.
3Lemma7.
5.
Forε,a,δ0,putVε,a:tTT:TpRεpTqqauand,asusual,Vδε,a:tTT:dGHpT,Vε,aqδu.
Then,forxedε3δ,a0Vδε,ar.
Proof.
FixST.
IfSVδε,a,thenthereexistsTVε,asuchthatdGHpS,Tqδ.
ObservethatRεpTqisnotthetrivialtreeconsistingofasinglepointbecauseithastotallengthgreaterthana.
Writety1,ynufortheleavesofRεpTq.
Foralli1,.
.
.
,n,theconnectedcomponentofTzRεpTqothatcontainsyicontainsapointzisuchthatdTpyi,ziqε.
LetbeacorrespondencebetweenSandTwithdispq2δ.
Pickx1,xnSsuchthatpxi,ziq,andhence|dSpxi,xjqdTpzi,zjq|2δforalli,j.
32STEVENN.
EVANSANDANITAWINTERThedistanceinRεpTqfromthepointyktothearcryi,yjsis(7.
11)12dSpyk,yiqdSpyk,yjqdSpyi,yjq¨.
Thusthedistancefromyk,3¤k¤n,tothesubtreespannedbyy1,yk1is(7.
12)1¤i¤j¤k112dTpyk,yiqdTpyk,yjqdTpyi,yjq¨,andhenceTpRεpTqqdTpy1,y2qnk31¤i¤j¤k112pdTpyk,yiqdTpyk,yjqdTpyi,yjqq.
(7.
13)NowthedistanceinSfromthepointxktothearcrxi,xjsis12pdSpxk,xiqdSpxk,xjqdSpxi,xjqq12pdTpzk,ziqdTpzk,zjqdTpzi,zjq32δq12pdTpyk,yiq2εdTpyk,yjq2εdTpyi,yjq2ε6δq0(7.
14)bytheassumptionthatε3δ.
Inparticular,x1,xnareleavesofthesubtreespannedbytx1,xnu,andRγpSqhasatleastnleaveswhen0γ2ε6δ.
Fixsuchaγ.
NowSpRγpSqqdSpx1,x2q2γnk31¤i¤j¤k112pdSpxk,xiqdSpxk,xjqdSpxi,xjqqγ&TpRεpTqqp2ε2δ2γqpn2qpε3δγqap2ε2δ2γqpn2qpε3δγq.
(7.
15)BecauseSpRγpSqqisnite,itisapparentthatScannotbelongtoVδε,awhenaissucientlylarge.
Lemma7.
6.
Forε,a0,letVε,abeasinLemma7.
5.
SetUε,a:tpT,νqTwt:TVε,au.
Then,forxedε,(7.
16)limaVCappUε,aq0.
SUBTREEPRUNEANDRE-GRAFT33Proof.
ObservethatpT,dT,νTqRεpTqpTqiscontinuous(thisisessentiallyLemma7.
3of[EPW04]),andsoUε,aisopen.
Chooseδ0suchthatε3δ.
Suppressingthedependenceonεandδ,deneua:Twtr0,1sby(7.
17)uappT,νqq:δ1pδdGHpT,Vε,aqq.
Notethatuatakesthevalue1ontheopensetUε,a,andsoCappUε,aq¤Epua,uaqpua,uaqP.
Alsoobservethat(7.
18)|uappTI,νIqquappTP,νPqq|¤δ1dGHpTI,TPq¤δ1GHwtppTI,νIq,pTP,νPqq.
Itthereforesucesbypart(iii)ofLemma6.
2andthedominatedcon-vergencetheoremtoshowforeachpairppTI,νIq,pTP,νPqqTwtTwtthatuappTI,νIqquappTP,νPqqis0forasucientlylargeandforeachTTwtthatuappT,νqqis0forasucientlylarge.
However,uappTI,νIqquappTP,νPqq0impliesthateitherTIorTPbelongtoVδε,a,whileuappT,νqq0impliesthatTbelongstoVδε,a.
TheresultthenfollowsfromLemma7.
5.
Lemma7.
7.
ThereisasequenceofcompactsetsK1K2.
.
.
suchthatlimnVCappTwtzKnq0.
Proof.
ByLemma7.
6,forn1,2,.
.
.
wecanchooseansothatCappU2n,anq¤2n.
Set(7.
19)Fn:TwtzU2n,antpT,νqTwt:TpR2npTqq¤anuand(7.
20)Kn:mnFm.
ByProposition2.
4andLemma2.
6,eachsetKniscompact.
Byconstruc-tion,CappTwtzKnqCap¤mnU2m,am¤mnCappU2m,amq¤mn2m2pn1q.
(7.
21)34STEVENN.
EVANSANDANITAWINTER8.
ThetrivialtreeisessentiallypolarFromourinformalpictureoftheprocessXevolvingviare-arrangementsoftheinitialtreethatpreservethetotalbranchlength,onemightexpectthatifXdoesnotstartatthetrivialtreeT0consistingofasinglepoint,thenXwillneverhitT0.
However,anSPRmovecandecreasethediameterofatree,soitisconceivablethat,inpassingtothelimit,thereissomeprobabilitythataninnitesequenceofSPRmoveswillconspiretocollapsetheevolvingtreedowntoasinglepoint.
Ofcourse,itishardtoimaginefromtheapproximatingdynamicshowXcouldrecoverfromsuchacatastrophe–whichitwouldhavetosinceitisreversiblewithrespecttothecontinuumrandomtreedistribution.
InthissectionwewillusepotentialtheoryforDirichletformstoshowthatXdoesnothitT0fromP-almostallstartingpoints;thatis,thatthesettT0uisessentiallypolar.
LetdbethemapwhichsendsaweightedRtreepT,d,νqtotheν-averageddistancebetweenpairsofpointsinT.
Thatis,(8.
1)dpT,d,νq¨:TTνpdxqνpdyqdpx,yq,pT,d,νqTwt.
InordertoshowthatT0isessentiallypolar,itwillsucetoshowthattheset(8.
2)tpT,d,νqTwt:dpT,d,νq¨0uisessentiallypolar.
Lemma8.
1.
ThefunctiondbelongstothedomainDpEq.
Proof.
IfweletdnpT,d,νq¨:TTνpdxqνpdyqrdpx,yqns,fornN,thendnd,P-a.
s.
Bythetriangleinequality,(8.
3)pd,dqP¤PpdTqpdiampTqq2¤Ppdeq4suptr0,1septq¨2V,andhencedndasnVinL2pTwt,Pq.
Notice,moreover,thatforpT,d,νqTwtandu,vT,(8.
4)dpT,d,νq¨dΘppT,d,νq,u,vq¨22ST,u,vTzST,u,vνpdxqνpdyqdpy,uqdpy,vq¨22νTpST,u,vqνpTzST,u,vqd2pu,vq.
SUBTREEPRUNEANDRE-GRAFT35Hence,applyingCorollary5.
2andtheinvarianceofthestandardBrownianexcursionunderrandomre-rooting(seeSection2.
7of[Ald91b]),(8.
5)TwtTwtJpdT,dSqdpTqdpSq¨22TwtPpdTqTTνTpdvqTpduqνTpST,u,vqνTpTzST,u,vqd2Tpu,vq¤2Ppdeq2Γedsdaspe,s,aqspe,s,aqζpes,aqζpˇes,aqp2aq282π10dρp1ρqρ3PpdeIqPpdePqρp1ρqsupS1ρeP¨282π10dρp1ρqρ3ρp1ρq2Ppdeqsuptr0,1septq2V.
Consequently,bydominatedconvergence,Epddn,ddnq0asnV.
ItisthereforeenoughtoverifythatdnLforallnN.
Obviously,(8.
6)supTTwtdnpTq¤n,andsotheboundednesscondition(7.
5)holds.
Toshowthatthe"Lipschitz"property(7.
6)holds,xε0,andletpT,νTq,pS,νSqTwtbesuchthatGHwtpT,νTq,pS,νSq¨ε.
ThenthereexistfFεT,SandgFεS,TsuchthatdPpνT,gνSqεanddPpfνT,νSqε(recallFεT,Sfrom(2.
10)).
Hence(8.
7)§§§§dnpT,νTq¨dnpS,νSq¨§§§§¤§§§§TTνTpdxqνTpdyqpdTpx,yqnqgpSqgpSqgνSpdxqgνSpdyqpdTpx,yqnq§§§§§§§§gpSqgpSqgνSpdxqgνSpdyqpdTpx,yqnqSSνSpdxIqνSpdyIqpdSpxI,yIqnq§§§§.
36STEVENN.
EVANSANDANITAWINTERForthersttermontherighthandsideof(8.
7)weget(8.
8)§§§§TTνTpdxqνTpdyqpdTpx,yqnqgpSqgpSqgνSpdxqgνSpdyqpdTpx,yqnq§§§§¤§§§§TTνTpdxqνTpdyqpdTpx,yqnqTgpSqνTpdxqgνSpdyqpdTpx,yqnq§§§§§§§§SpgqTgνSpdxqνTpdyqpdTpx,yqnqgpSqgpSqgνSpdxqgνSpdyqpdTpx,yqnq§§§§.
ByassumptionandTheorem3.
1.
2in[EK86],wecanndaprobabilitymeasureνonTTwithmarginalsνTandgνSsuchthat(8.
9)ν2px,yq:dTpx,yqε@¤ε.
Hence,forallxT,(8.
10)§§§§TνTpdyqpdTpx,yqnqgpSqgνSpdyqpdTpx,yqnq§§§§¤TgpSqνdpy,yIq¨§§§§pdTpx,yqnqpdTpx,yIqnq§§§§¤TgpSqνdpy,yIq¨pdTpy,yIqnq¤1pdiampTqnq¨¤ε.
Forthesecondtermin(8.
7)weusethefactthatgisanε-isometry,thatis,|pdSpxI,yIqnqpdTpgpxIq,gpyIqqnq|εforallxI,xPT.
Achangeofvariablesthenyieldsthat(8.
11)§§§§gpSqgpSqgνSpdxqgνSpdyqpdTpx,yqnqSSνSpdxIqνSpdyIqpdSpxI,yIqnq§§§§¤ε§§§§gpSqgpSqgνSpdxqgνSpdyqpdTpx,yqnqSSνSpdxIqνSpdyIqpdTpgpxIq,gpyIqqnq§§§§ε.
SUBTREEPRUNEANDRE-GRAFT37Combining(8.
7)through(8.
11)yieldsnallythat(8.
12)suppT,νTqpS,νSqTwt§§dnpT,νTq¨dnpS,νSq¨§§GHwtpT,νTq,pS,νSq¨¤32n.
Proposition8.
2.
ThesettTTwt:dpTq0uisessentiallypolar.
Inparticular,thesettT0uconsistingofthetrivialtreeisessentiallypolar.
Proof.
WeneedtoshowthatCapptTTwt:dpTq0uq0(seeTheorem4.
2.
1of[FOT94]).
Forε0set(8.
13)Wε:tTTwt:dpTqεu.
BytheargumentintheproofofLemma8.
1,thefunctiondiscontinuous,andsoWεisopen.
ItsucestoshowthatCappWεq0asε0.
Put(8.
14)uεpTq:2dpTqε,TTwt.
ThenuDpEqbyLemma8.
1andthefactthatthedomainofaDirichletformisclosedundercompositionwithLipschitzfunctions.
BecauseuεpTq1forTWε,itthusfurthersucestoshow(8.
15)limε0pEpuε,uεqpuε,uεqPq0.
ByelementarypropertiesofthestandardBrownianexcursion,(8.
16)puε,uεqP¤4PtT:dpTq2εu0asε0.
EstimatingEpuε,uεqwillbesomewhatmoreinvolved.
LetEandˇEbetwoindependentstandardBrownianexcursions,andletUandVbetwoindependentrandomvariablesthatareindependentofEandˇEanduniformlydistributedonr0,1s.
Withaslightabuseofnotation,wewillwritePfortheprobabilitymeasureontheprobabilityspacewhereE,ˇE,UandVaredened.
38STEVENN.
EVANSANDANITAWINTERSetD:40¤st¤1dsdtEsEt2infs¤w¤tEw&H:2r0,1sdtEtˇD:40¤st¤1dsdtˇEsˇEt2infs¤w¤tˇEw&ˇHU:2r0,1sdtˇEtˇEU2infUt¤w¤UtˇEw&ˇHV:2r0,1sdtˇEtˇEV2infVt¤w¤VtˇEw&.
(8.
17)For0¤ρ¤1setDUpρq:p1ρq21ρˇDρ2ρD2p1ρqρρH2p1ρqρ1ρˇHU(8.
18)andDVpρq:p1ρq21ρˇDρ2ρD2p1ρqρρH2p1ρqρ1ρˇHV.
(8.
19)ThenEpuε,uεq122πP10dρp1ρqρ342DUpρqε2DVpρqεB2'.
(8.
20)Fix0a12andwritea1aforconvenience.
Wecanwritetheright-handsideof(8.
20)asthesumofthreetermsIpε,aq,IIpε,aq,andIIIpε,aq,thatarisefromintegratingρovertherespectiveranges(8.
21)tρ:DUpρqDVpρq¤2ε,0¤ρ¤au,(8.
22)tρ:DUpρqDVpρq¤2ε¤DUpρqDVpρq,0¤ρ¤au,and(8.
23)tρ:aρ¤1u.
ConsiderIpε,aqrst.
NotethatifDUpρqDVpρq¤2ε,then(8.
24)42DUpρqε2DVpρqεB2¤22ρ2ε2tˇHUˇHVu2.
SUBTREEPRUNEANDRE-GRAFT39Moreover,t0¤ρ¤a:DUpρqDVpρq¤2εu30¤ρ¤a:p1ρq52ˇD2p1ρq32ρpˇHUˇHVq¤2εA30¤ρ¤a:a52ˇD2a32ρpˇHUˇHVq¤2εA5ρ:0¤ρ¤p2εa52ˇDq2a32pˇHUˇHVqaC.
(8.
25)ThusIpε,aqisboundedabovebytheexpectationoftherandomvariablethatarisesfromintegrating22ρ2tˇHUˇHVu2{ε2againstthemeasure12`2πdρp1ρqρ3overtheintervalr0,p2εa52ˇDq{p2a32pˇHUˇHVqqs.
Notethat(8.
26)x0dρρ3ρα1α12xα12,α12.
Hence,lettingCdenoteagenericconstantwithavaluethatdoesn'tdependonεoraandmaychangefromlinetoline,andIpε,aq¤CP!
p2εa52ˇDqˇHUˇHV32tˇHUˇHVu2ε2()¤Cε2Pp2εa52ˇDq32pˇHUˇHVq12&¤Cε12PpˇHUˇHVq121tˇD¤2a52εu%¤Cε12PˇD121tˇD¤2a52εu%¤CPtˇD¤2a52εu,(8.
27)whereinthesecondlastlineweusedthefactthat(8.
28)PrˇHU|ˇEsPrˇHV|ˇEsˇD,andJensen'sinequalityforconditionalexpectationstoobtaintheinequali-tiesPrˇH12U|ˇEs¤ˇD12andPrˇH12V|ˇEs¤ˇD12.
Thus,limε0Ipε,aq0foranyvalueofa.
TurningtoIIpε,aq,rstnotethatD¤4Hand,bythetriangleinequality,(8.
29)ˇD¤2pˇHUˇHVq.
Hence,forsomeconstantKthatdoesnotdependonεora,(8.
30)|DUpρqDVpρqˇD|¤KpHρ32pˇHUˇHVqρqand(8.
31)|DUpρqDVpρqˇD|¤KpHρ32pˇHUˇHVqρq.
40STEVENN.
EVANSANDANITAWINTERCombining(8.
31)withanargumentsimilartothatwhichestablished(8.
25)gives,forasuitableconstantK,t0¤ρ¤a:DUpρqDVpρq¤2ε¤DUpρqDVpρqut0¤ρ¤a:2ε¤DUpρqDVpρq,ut0¤ρ¤a:DUpρqDVpρq¤2εu5ρ:p2εˇDqKpHˇHUˇHVq¤ρ¤aC5ρ:0¤ρ¤p2εa52ˇDq2a32pˇHUˇHVqaC.
(8.
32)Moreover,by(8.
30)andtheobservation|p2εxqp2εyq|¤|xy|,wehaveforDUpρqDVpρq¤2ε¤DUpρqDVpρqthat,42DUpρqε2DVpρqεB242DUpρqDVpρqεB2¤2ε232εˇD¨A22ε23p2εDUpρqDVpρqq2εˇD¨A2¤2ε232εˇD¨A22ε22DUpρqDVpρqˇD@2¤Cε2p2εˇDq2H2ρ3pˇHUˇHVq2ρ2%.
(8.
33)forasuitableconstantCthatdoesn'tdependonεora.
Itfollowsfrom(8.
26)and(8.
34)axdρρ3ρβ112βxβ12aβ12%,β12,thatIIpε,aq¤CIε2P!
p2εˇDq24p2εˇDqHˇHUˇHVB12()CPε2P!
H25p2εa52ˇDq2a32pˇHUˇHVqaC52()CQε2P!
pˇHUˇHVq25p2εa52ˇDq2a32pˇHUˇHVqaC32()(8.
35)forsuitableconstantsCI,CP,andCQ.
SUBTREEPRUNEANDRE-GRAFT41Considerthersttermin(8.
35).
UsingJensen'sinequalityforconditionalexpectationsand(8.
28)again,thistermisboundedaboveby(8.
36)1ε2Pp2εˇDq323AˇD12BA&¤1ε2Pp2εˇDq323212Aε12BA&forsuitableconstantsA,B.
Now,byJensen'sinequalityforconditionalexpectationyetagain,alongwiththeinvarianceofstandardBrownianex-cursionunderrandomre-rooting(seeSection2.
7of[Ald91b])andthefactthat(8.
37)PtˇEUdrurer22dr(seeSection3.
3of[Ald91b]),wehavePp2εˇDq32&PP2ε24ˇEUˇEV2infUV¤t¤UVˇEtB§§§ˇE&32'¤P2ε24ˇEUˇEV2infUV¤t¤UVˇEtB32'P2ε2ˇEU¨32%V0drrer22p2ε2rq32¤ε0drrp2ε2rq32232ε7210dssp1sq32.
(8.
38)Thusthelimitasε0ofthersttermin(8.
35)is0foreacha.
Forthesecondtermin(8.
35),rstobservebyJensen'sinequalityforconditionalexpectationand(8.
37)thatPtˇD¤ru¤P2ˇDr&¤P2ˇEUr&¤2P2ˇEU¤2r@¤2p2rq224r2.
(8.
39)42STEVENN.
EVANSANDANITAWINTERCombiningthisobservationwith(8.
29)andintegratingbypartsgivesP!
5p2εa52ˇDq2a32pˇHUˇHVqaC52()¤P!
5p2εa52ˇDqa32ˇDaC52()2ε{a520PtˇDdrua322εra52a52¤2ε{a522ε{paa12a52qdr4r2a154522εra52322εr240ε2a1541{a521{paa12a52qds1sa5232.
(8.
40)IfwedenotetherightmosttermbyLpε,aq,thenitisclearthat(8.
41)lima0limε01ε2Lpε,aq0.
From(8.
28)andJensen'sinequalityforconditionalexpectations,thethirdtermin(8.
35)isboundedabovebyCε2PpˇHUˇHVq122εa52ˇD32&¤Cε2PˇD122εa52ˇD32&¤Cε32P2εa52ˇD32&,(8.
42)andthecalculationin(8.
38)showsthattherightmosttermconvergestozeroasε0foreacha.
Puttingtogethertheobservationswehavemadeonthethreetermsin(8.
35),weseethat(8.
43)lima0limε0IIpε,aq0.
Itfollowsfromthedominatedconvergencetheoremthat(8.
44)limε0IIIpε,aq0foralla,andthiscompletestheproof.
AcknowledgmentTheauthorsthankDavidAldous,PeterPfaelhuber,JimPitmanandTandyWarnowforhelpfuldiscussions,andtherefereeandassociateeditorforextremelyclosereadingsofthepaperandseveralveryhelpfulsuggestions.
PartoftheresearchwasconductedwhiletheauthorsSUBTREEPRUNEANDRE-GRAFT43werevisitingthePacicInstitutefortheMathematicalSciencesinVancou-ver,Canada.
References[Ald91a]DavidAldous.
ThecontinuumrandomtreeI.
Ann.
Probab.
,19:1–28,1991.
[Ald91b]DavidAldous.
Thecontinuumrandomtree.
II.
Anoverview.
InStochasticanalysis(Durham,1990),volume167ofLondonMath.
Soc.
LectureNoteSer.
,pages23–70.
CambridgeUniv.
Press,Cambridge,1991.
[Ald93]DavidAldous.
ThecontinuumrandomtreeIII.
Ann.
Probab.
,21:248–289,1993.
[Ald00]DavidJ.
Aldous.
MixingtimeforaMarkovchainoncladograms.
Combin.
Probab.
Comput.
,9(3):191–204,2000.
[AS01]BenjaminL.
AllenandMikeSteel.
Subtreetransferoperationsandtheirin-ducedmetricsonevolutionarytrees.
Ann.
Comb.
,5(1):1–15,2001.
[AS02]RomainAbrahamandLaurentSerlet.
Poissonsnakeandfragmentation.
Elec-tron.
J.
Probab.
,7:no.
17,15pp.
(electronic),2002.
[BBI01]DmitriBurago,YuriBurago,andSergeiIvanov.
Acourseinmetricgeometry,volume33ofGraduatestudiesinmathematics.
AMS,Boston,MA,2001.
[Ber96]JeanBertoin.
Levyprocesses,volume121ofCambridgeTractsinMathematics.
CambridgeUniversityPress,Cambridge,1996.
[BH99]MartinR.
BridsonandAndreHaeiger.
Metricspacesofnon-positivecurva-ture,volume319ofGrundlehrenderMathematischenWissenschaften[Funda-mentalPrinciplesofMathematicalSciences].
Springer-Verlag,Berlin,1999.
[BHV01]LouisJ.
Billera,SusanP.
Holmes,andKarenVogtmann.
Geometryofthespaceofphylogenetictrees.
Adv.
inAppl.
Math.
,27(4):733–767,2001.
[BRST02]OliverBastert,DanRockmore,PeterF.
Stadler,andGottfriedTinhofer.
Land-scapesonspacesoftrees.
Appl.
Math.
Comput.
,131(2-3):439–459,2002.
[Chi01]IanChiswell.
IntroductiontoΛ-trees.
WorldScienticPublishingCo.
Inc.
,RiverEdge,NJ,2001.
[DH02]PersiDiaconisandSusanP.
Holmes.
Randomwalksontreesandmatchings.
Electron.
J.
Probab.
,7:no.
6,17pp.
(electronic),2002.
[DLG02]ThomasDuquesneandJean-FrancoisLeGall.
Randomtrees,Levyprocessesandspatialbranchingprocesses.
Asterisque,(281):vi+147,2002.
[DMT96]AndreasW.
M.
Dress,V.
Moulton,andW.
F.
Terhalle.
T-theorie.
Europ.
J.
Combinatorics,17,1996.
[Dre84]AndreasW.
M.
Dress.
Trees,tightextensionsofmetricspaces,andthecoho-mologicaldimensionofcertaingroups:Anoteoncombinatoricalpropertiesofmetricspaces.
Adv.
Math.
,53:321–402,1984.
[DT96]AndreasW.
M.
DressandW.
F.
Terhalle.
Therealtree.
Adv.
Math.
,120:283–301,1996.
[DVJ88]D.
J.
DaleyandD.
Vere-Jones.
Anintroductiontothetheoryofpointprocesses.
SpringerSeriesinStatistics.
Springer-Verlag,NewYork,1988.
[EK86]StewartN.
EthierandThomasG.
Kurtz.
Markovprocesses.
WileySeriesinProbabilityandMathematicalStatistics:ProbabilityandMathematicalSta-tistics.
JohnWiley&SonsInc.
,NewYork,1986.
Characterizationandconver-gence.
[EPW04]StevenN.
Evans,JimPitman,andAnitaWinter.
Rayleighprocesses,realtrees,androotgrowthwithre-grafting.
TechnicalReport654,U.
C.
BerkeleyDepartmentofStatistics,2004.
ToappearinProbabilityTheoryandRelatedFields.
[Fel03]JosephFelsenstein.
InferringPhylogenies.
SinauerAssociates,Sunderland,Massachusetts,2003.
44STEVENN.
EVANSANDANITAWINTER[FOT94]MasatoshiFukushima,YoichiOshima,andMasayoshiTakeda.
DirichletFormsandSymmetricMarkovProcesses.
deGruyter,1994.
[Gro99]MishaGromov.
MetricstructuresforRiemannianandnon-Riemannianspaces,volume152ofProgressinMathematics.
Birkh¨auserBostonInc.
,Boston,MA,1999.
Basedonthe1981Frenchoriginal[MR85e:53051],WithappendicesbyM.
Katz,P.
PansuandS.
Semmes,TranslatedfromtheFrenchbySeanMichaelBates.
[Kel75]JohnL.
Kelley.
Generaltopology.
Springer-Verlag,NewYork,1975.
Reprintofthe1955edition[VanNostrand,Toronto,Ont.
],GraduateTextsinMathemat-ics,No.
27.
[Kni81]FrankB.
Knight.
EssentialsofBrownianmotionanddiusion,volume18ofMathematicalSurveys.
AmericanMathematicalSociety,Providence,R.
I.
,1981.
[LG99]Jean-FrancoisLeGall.
Spatialbranchingprocesses,randomsnakesandpartialdierentialequations.
LecturesinMathematicsETHZ¨urich.
Birkh¨auserVerlag,Basel,1999.
[RW00]L.
C.
G.
RogersandDavidWilliams.
Diusions,Markovprocesses,andmartin-gales.
Vol.
2.
CambridgeMathematicalLibrary.
CambridgeUniversityPress,Cambridge,2000.
Itocalculus,Reprintofthesecond(1994)edition.
[RY99]DanielRevuzandMarcYor.
ContinuousmartingalesandBrownianmotion,volume293ofGrundlehrenderMathematischenWissenschaften[FundamentalPrinciplesofMathematicalSciences].
Springer-Verlag,Berlin,thirdedition,1999.
[Sch02]JasonSchweinsberg.
AnOpn2qboundfortherelaxationtimeofaMarkovchainoncladograms.
RandomStructuresAlgorithms,20(1):59–70,2002.
[SO90]D.
L.
SwoordandG.
J.
Olsen.
Phylogenyreconstruction.
InD.
M.
HillisandG.
Moritz,editors,MolecularSystematics,pages411–501.
SinauerAssociates,Sunderland,Massachusetts,1990.
[SS03]CharlesSempleandMikeSteel.
Phylogenetics,volume24ofOxfordLectureSeriesinMathematicsanditsApplications.
OxfordUniversityPress,Oxford,2003.
[Stu04]Karl-TheodorSturm.
Onthegeometryofmetricmeasurespaces.
TechnicalReport203,SFB611,Universit¨atBonn,2004.
[Ter97]W.
F.
Terhalle.
R-treesandsymmetricdierencesofsets.
Europ.
J.
Combina-torics,18:825–833,1997.
[Zam01]LorenzoZambotti.
Areectedstochasticheatequationassymmetricdynamicswithrespecttothe3-dBesselbridge.
J.
Funct.
Anal.
,180(1):195–209,2001.
[Zam02]LorenzoZambotti.
IntegrationbypartsonBesselbridgesandrelatedstochasticpartialdierentialequations.
C.
R.
Math.
Acad.
Sci.
Paris,334(3):209–212,2002.
[Zam03]LorenzoZambotti.
Integrationbypartsonδ-Besselbridges,δ3andrelatedSPDEs.
Ann.
Probab.
,31(1):323–348,2003.
StevenN.
Evans,DepartmentofStatistics#3860,UniversityofCaliforniaatBerkeley,367EvansHall,Berkeley,CA94720-3860,U.
S.
A.
E-mailaddress:evans@stat.
Berkeley.
EDUURL:http://www.
stat.
berkeley.
edu/users/evans/AnitaWinter,MathematischesInstitut,Universit¨atErlangen–N¨urnberg,Bismarckstrae112,91054Erlangen,GERMANYE-mailaddress:winter@mi.
uni-erlangen.
deURL:http://www.
mi.
uni-erlangen.
de/~winter/

日本美国站群服务器raksmart站群新增,限量低至月1.99美元

RAKsmart 商家八月份的促销活动今天更新。基本上和上个月的产品套餐活动差不多的,不过也是有简单的微调。对于RAKsmart商家还是比较了解的,他们家产品虽然这两年增加多个机房,以及在VPS主机方案上有丰富的机房和调整到一些自营机房,他们家的策划能力还是有限,基本上每个月的套餐活动都差不多。RAKsmart 在八月份看到有新增香港高防服务器可选,最高100GB防御。同时原来上个月缺货的日本独立...

Hostodo(年付12美元),美西斯波坎机房Linux VPS主机66折

Hostodo 商家是比较小众的国外VPS主机商,这不看到商家有推送促销优惠在美国西岸的斯波坎机房还有少部分库存准备通过低价格促销,年付低至12美元Linux VPS主机,且如果是1GB内存方案的可以享受六六折优惠,均是采用KVM架构,且可以支付宝付款。第一、商家优惠码优惠码:spokanessd 1GB+内存方案才可以用到优惠码,其他都是固定的优惠低至年12美元。第二、商家促销这里,我们可以看到...

牦牛云(3.5USD/月 )阿里云国际版云服务器 1核1G40G

收到好多消息,让我聊一下阿里云国际版本,作为一个阿里云死忠粉,之前用的服务器都是阿里云国内版的VPS主机,对于现在火热的阿里云国际版,这段时间了解了下,觉得还是有很多部分可以聊的,毕竟,实名制的服务器规则导致国际版无需实名这一特点被无限放大。以前也写过几篇综合性的阿里云国际版vps的分析,其中有一点得到很多人的认同,那句是阿里云不管国内版还是国际版的IO读写速度实在不敢恭维,相对意义上的,如果在这...

www.qqq147.com为你推荐
易烊千玺弟弟创魔方世界纪录易烊千玺的弟弟楠楠,在TFBOYS三周年牵的那个小女孩是谁?杨紫别祝我生日快乐周杰伦的祝我生日快乐这首歌有什么寓意或者是在什么背景下写的access数据库ACCESS数据库和SQL有什么区别?罗伦佐娜罗拉芳娜 (西班牙小姐)谁可以简单的介绍以下网站检测请问,对网站进行监控检测的工具有哪些?抓站工具大家在家用什么工具练站?怎么固定?面壁思过?在医院是站站立架www.zhiboba.com上什么网看哪个电视台直播NBAwww.45gtv.com登录农行网银首页www.abchina.com,33tutu.comDnf绝望100鬼泣怎么过555sss.com拜求:http://www.jjj555.com/这个网站是用的什么程序
域名拍卖 租服务器价格 联通vps buyvm justhost 安云加速器 美国仿牌空间 shopex空间 服务器日志分析 最好看的qq空间 qingyun 可外链网盘 世界测速 服务器干什么用的 vip购优惠 最好的qq空间 微软服务器操作系统 搜索引擎提交入口 免费外链相册 东莞服务器托管 更多